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Recent advances in tracking technology enable the gathering of spatio-temporal
data in the form of trajectories. Analyzing trajectories can convey knowledge
useful for prominent applications and designing computational solutions for
mining groups of moving objects may turn out to be a valuable means for a
wide class of problems related to mobility. The task of group mining has been
investigated by considering mostly the spatial closeness and similarity of the
trajectories, while little attention has been paid to the relationships between
the trajectories and time-changing nature of the trajectories. The relation-
ships may provide evidence of interactions between the moving objects. The
time-changing nature may provide evidence of dynamics of the movements.
Therefore, interactions and dynamics can be sources of information that one
can consider to discover new forms of groups. In fact, groups of objects may be
of interest not only when the objects move together or move close from each
other, but also when they come from different places, change direction, join
together and then move away from each other. Motivated by this, we introduce
the concept of crews and propose a computational solution to discover crews.
A crew gathers moving objects with similar interactions and similar dynamics.
The proposed computational solution relies on i) new movement parameters,
which explicitly consider interactions and dynamics, and ii) a distance-free
clustering algorithm, which groups objects based on the similarity of the move-
ment parameters. We conduct extensive experiments on real-world trajectory
data, present a quantitative evaluation of the quality of the crews and perform
comparisons with a baseline algorithm and with an algorithm of group pattern
mining. The empirical results provide interesting insights on the relevance of
some parameters in the construction of the crews.
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1. Introduction

The adoption of position-aware technologies, such as telemetry and GPS devices, has
stimulated the development of solutions to collect movement data and has opened up a
category of challenges regarding moving objects. Movement data thus constitute a very
precious resource for the study of computational models, for the design of data analy-
sis techniques and for the development of advanced solutions for real-world scenarios,
such as crowd dynamics monitoring, human mobility understanding, public security and
emergency management (Laube 2014, Dodge et al. 2008). A recurring problem is finding
out collective movements that represent “common” behaviors of different objects and ,
in most approaches, it is faced with trajectory data analysis techniques aiming at dis-
covering groups of objects that move close to each other for a time duration Dodge et al.
(2008), Long and Nelson (2013b), Mazimpaka and Timpf (2016).
Benkert et al. (2006) and Gudmundsson and van Kreveld (2006) introduced the seminal

notion of flock. It refers to a collection of objects moving together over a time interval of
pre-fixed duration, such that for every time-stamp of the time interval there is a disk of
pre-fixed radius that contains the objects. Ong et al. (2011) embed the duration into the
flock notion to capture traffic jams. Jeung et al. (2008) extended the concept of flocks
by relaxing the constraints on the shape and size. They formalized the notion of convoy
and proposed an algorithm to grouping objects that are density-connected to each other
within a generic geometric shape. However, the convoy has a practical brittleness due to
the requirement on the temporal contiguity (Mazimpaka and Timpf 2016), that is, the
objects are put together only when they move close to one another over an uninterrupted
time interval.
Motivated by this, Li et al. (2010) relax the temporal constraints and propose the

notion of swarm intended as group of objects that move together on disjointed time
instants, while Zheng et al. (2014) introduce the notion of gathering, which is charac-
terized by core members, which stick to the group, and by objects can enter and leave.
Temporal discontinuity has also been studied in Wood (2013) by gathering individuals
that move with continuous or intermittent spatial coherence. Three definitions of spatial
coherence have been proposed: the first two types maintain the classical connotation of
closeness (shared location), while the third type works on the reciprocal behavior of the
individuals.
In the above-mentioned works, the trajectories are analyzed as sequences, considered

independent of each other, composed of positions, considered unrelated to each other.
This is a restrictive perspective because i) limits the potential we can extract from the
movement of individual objects and from the movement of a collection of objects, and
ii) overlooks two sources of information, that is, the presence of relationships between
trajectories and time-changing nature of the movements. Indeed, the presence of relation-
ships between the trajectories may provide evidence of the interactions between objects
(Doncaster 1990). In fact, the objects can interact not only when they stay in the same
place, but also when they are far apart and move towards a common location to meet.
To account for the interactions, we should take the trajectories as correlated processes
and consider forms of relationships different from the one due to the sole co-presence.
The time-changing nature in intrinsic in movements and expresses the dynamics of phys-
ical properties of the motion (Laube et al. 2007). The objects can slow down, speed up
and change direction. Dynamics characterizes not only individual objects, but also the
movement of a collection of objects. For instance, when two objects travel together, the
inter-distance can change. To account for dynamics, we should consider the variations of
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physical properties, even between two consecutive positions, and analyze the positions
as correlated observations of an evolving process.
There is a growing interest in interactions and dynamics in the recent research (Kon-

zack et al. 2017, Long and Nelson 2013a, Dodge et al. 2016), while, in the past, very
few attempts have been done. Andersson et al. (2008) define the concept of leadership in
order to model the interaction between an individual (leader), who is moving ahead, and
other individuals, who follow the leader for an uninterrupted time interval. Interactions
are studied jointly with dynamics in the pioneer research of Laube et al. (2005), in which
the notion of interaction is interpreted as relative motion. Relative motion is based on
the comparison of motion attributes of individual objects. The motion attributes denote
the dynamics of motion and correspond to quantitative movement parameters (e.g., az-
imuth1), which are computed over consecutive time instants relatively to a conventional
reference system. Groups of objects that move in spatial proximity and that have the
same motion attributes represent the so-called Relative Motion (Remo) patterns.
However, the method of extraction of the Remo patterns relies on a pattern match-

ing approach, which requires domain knowledge and expert intervention to define a
“template-pattern”. This means that only the groups which satisfy the (pre-defined)
templates will be extracted, while others will be discarded, regardless of the collective
movements they represent. Another drawback of the Remo patterns is that they rec-
ognize only the interaction due to spatial proximity and model only the dynamics of
individual objects. This way, the analysis is limited to discover groups with objects stay-
ing the same location or objects moving in a relatable space (Long and Nelson 2013b).
This is quite unrealistic in practical situations because objects can be equally members
of a group without necessarily move close or travel similar paths (Konzack et al. 2017).
In this paper, we study how discovering groups of moving objects by leveraging upon

interactions and dynamics. Our main contributions are the formalization of the concept
of crew and a computational solution to discover crews from raw trajectory data. A crew
gathers moving objects that have similar interactions and similar dynamics. These two
characteristics cannot be directly obtained from the raw trajectory data for the reasons
discussed above. Thus, we define new movement parameters that represent interactions
of pairs of objects and changes of motion of pairs of objects. These parameters correspond
to spatio-temporal primitives able to describe i) the movement of an object relatively
to the movement of another object (interactions), and ii) the variations of the physical
properties of motion of an object relatively to the movement of another object (dynam-
ics). Using interactions and dynamics to group moving objects allows us to track the
dynamics of a collective.
However, while the changes can be captured by analyzing the objects in a conventional

reference system, we cannot do the same with the interactions, because they should be
modeled as perceived by a moving observer involved in the interaction. The approach
we follow is to defining new trajectory primitives able to represent the movement of an
object relative to another one (Noyon et al. 2007). This idea has been also explored by
Andrienko et al. (2013), who propose to transform the physical space into an abstract
space defined by the position of the group center and direction of the group’s movements.
In such abstract space, the authors represent the relative positions and movements of
the individuals with respect to a reference entity, which, contrarily to the current paper,
is the rest of the group.
The computational solution we propose is structured in two main steps. In the first

1The azimuth is the horizontal angle of an observer’s bearing, measured clockwise from the north direction.
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step, we transform the original descriptive space based on raw trajectory data into a
feature space based on new movement parameters. This results in a representation based
on vectors, where a vector represents the movement of a pair of objects over consecutive
time instants. The second step is in charge of discovering valid crews. It performs an
ad-hoc clustering algorithm in order to group vectors characterized by similar movement
parameters. The members of a crew are pairs of objects whose movements are similar in
terms of the new parameters.
Through experiments on real trajectory data (specifically, GPS data) of different cat-

egories of moving objects (specifically, pedestrians and wild animals), we investigate the
applicability of the computational solution to real-world case studies. Moreover, we per-
form i) a qualitative evaluation by discussing interactions and dynamics expressed by the
crews, ii) a quantitative assessment of the quality of the discovered groups and iii) com-
parative experiments with the swarms (Li et al. 2010), which is the kind of groups closer
to the crews. The Remo patterns, seemingly the groups closest to the crews, were not
considered for the experimental comparison because they require pre-defined templates,
which are not necessary in our work.
The rest of the paper is organized as follows. The next section provides the basic con-

cepts of this work. Section 3 illustrates the proposed computational solution as a frame-
work structured in two main components. Section 4 reports the details of the extensive
experiments we performed on two real-world trajectory data. Finally, some conclusions
are drawn in Section 5 to close the paper.

2. Basics

Before illustrating the computational solution in detail, in this section we first explain
the crews through an example and then provide the fundamental notions and formulation
of the trajectory data mining problem studied.

2.1. Motivating Example

To give a concrete idea of the crews, we report an example in public security and safety
(Mazimpaka and Timpf 2016), where interactions and dynamics can be used to identify
places and moving objects (individuals or pedestrians) that have a high potential to
cause threats or be targeted by threats. In that scenario, we need to monitor individuals
even when they do not stay in the same location or even when they are distant from any
target place. In this example, we also discuss the differences between the crews and some
existing notions of groups.
In Figure 1, six individuals are tracked over seven time instants. If we rely on spatial

closeness only, we may capture, as a flock, a convoy and a swarm, the movement of
the individuals {o1, o2, o3} observed over the sequence of time instants {τ1, τ2, τ3, τ4, τ5}.
Those groups may denote the behaviour of suspect individuals that move close to each
other uninterruptedly. On the other hand, by combining spatial closeness and temporal
discontinuities (Li et al. (2010)), we may capture, as a swarm, the movement of the
individuals {o4, o5, o6} over the sequence of (non-consecutive) time instants {τ0, τ1, τ5},
while no flock or convoy would be detected (Figure 1a). This group would denote the
behavior of suspect individuals that move close to each other with some interruptions.
Considering the azimuth as a motion attribute, we discover also Remo patterns (Laube
et al. 2005). In particular, there are two trend-settings, one composed of the individuals
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(a)

(b)

Figure 1. Comparison between flocks, convoys, swarms, Remo patterns and crews. a) Examples
of flocks, convoys, swarms (left side) and Remo patterns (right side). b) Examples of crews.

{o1, o2, o3}, the other composed of the individuals {o2, o3, o4, o5} respectively. The first
pattern covers the time-instants {τ1, τ2} and has the individual o2 as a trend-setter, while
the second pattern covers the time-instants {τ2, τ3} and has the individual o4 as a trend-
setter. We can also find a composite pattern defined by concurrence and constancy with
the individuals {o2, o3, o4, o5} over the time-instants {τ5, τ6}. This pattern may denote
the behavior of suspect individuals that move close to each other and follow the direction
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Table 1. Summary of the characteristics of different notions of groups of moving objects.
no spatial
constraint

shape
relaxation

temporal dis-
continuity

interaction motion
changes

no pre-defined
templates

flock X
convoy X X
swarm X X X
gathering X X X
remo X X X X
leadership X X
crew X X X X X X

of 338◦ north (Figure 1a). It should be noted that without proximity, no Remo pattern
is retrieved.
However, by observing the individuals {o1, o2, o3} over the entire sequence T , we see

they are far apart at the beginning (τ0), then they come close and follow similar paths
({τ1, τ2, τ3, τ4}) until they leave ({τ5, τ6}). This may reveal the movement of suspects
coming from distant locations (for instance, airport or train station), they move close
towards a target place and finally go towards separate locations (Figure 1b). We should
note that this movement models also the above-mentioned groups (Figure 1a), but those
groups does not model that movement. In fact, the algorithms for detecting flocks, con-
voys and swarms cannot discover that movement because they rely on only the spatial
closeness. Even the Remo patterns cannot do it because they consider neither the changes
within a collective (e.g., the distance between two individuals decreases) nor the inter-
actions (e.g., the individuals which are apart and come close may be related to each
other). To capture that movement, we need to i) relax the constraint of the proximity,
ii) account for the interactions and motion changes and iii) using the similarity of inter-
actions and motion changes when building the groups. This can be done by considering
ad-hoc movement parameters able to characterize the movement of several individuals
simultaneously rather than describe their movements independently on each other. Ex-
amples of these parameters are azimuth shortest distance and inter-distance ratio (Figure
1b), which describe pairs of individuals. The former accounts for the shortest distance
between the azimuths formed by the two individuals over two time instants, the latter
denotes the change of the spatial distance between the positions of the individuals over
the same time instants. In this context, we can build a crew with the pairs {o1, o2} and
{o2, o3}, based on the similarity of azimuth shortest distance and inter-distance ratio
on consecutive time instants. In particular, there is similarity on the values of azimuth
shortest distance and inter-distance ratio respectively, for the pairs {o1, o2} and {o2, o3}:
they fall in [22,45) and [1,2) respectively over ⟨τ0, τ1⟩. We see that also in the time in-
stants ⟨τ1, τ2⟩, ⟨τ2, τ3⟩ and ⟨τ3, τ4⟩, the values of azimuth shortest distance are similar
and fall in [0;22) as well as the values of inter-distance ratio that fall in [0,1). For the
same reason, the crew covers also the movements in ⟨τ4, τ5⟩and ⟨τ5, τ6⟩. Using the same
principle, we can build a crew with the pairs {o4, o5} and {o5, o6}. It is also models the
swarm {o4, o5, o6} (Figure 1a). A concise representation of the differences between crews
and other groups is reported in Table 1.

2.2. Problem Formulation

Here we provide fundamental notions and formulate the problem studied in this work.
Frequently used symbols are reported in Table 2. Let O={o1, o2, . . . , on} be the set of all
moving objects and T = {τ1, τ2, . . . ,τm} be the time domain. The trajectory of an object
o is represented by a poly-line that is given as a finite sequence of positions (fixes), each as-
sociated with a time instant of T . The trajectory is denoted with tr(o) : ⟨(p1, τ1), (p2, τ2),
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Table 2. List of symbols frequently used.
Symbol Explanation

O the set of moving objects
T the time domain

tr(ou) the trajectory of the object ou
F the set of the movement parameters
Fl the l-th movement parameter describing the movement of a pair of objects

⟨τi, τj⟩ a sequence of two time instants of T
G a pair group
or a reference object of a pair group
os a participant object of a pair group
zl the value associated with the pairs of a similarity-based pair group for the movement parameter Fl

[zllower
,zlupper ] a range of values of a movement parameter Fl

Π a timeline (a series of sequences of time instants)
PG a pair group
PC a cluster of pairs of objects

SPG a similarity-based pair group
µ the minimum number of objects that a valid crew has to contain
γ the maximum temporal gap in the timeline of a valid crew

. . ., (pm, τm)⟩, where pi ∈ R2 is the geo-spatial position sampled at τi ∈ T . The time in-
stants of a trajectory may not be equally distanced. Two different trajectories may have
different time instants and therefore they may have different lengths. We call a sequence
of time instants two-by-two consecutive arranged as ⟨τi, τi+1, . . . , τj , τj+1, . . . , τh, τh+1⟩
(i < j < h) a timeline.
In this work, the raw trajectory data are projected into a feature space built with the

movement parameters F={F1, . . . , Fl, . . . , Ff}. A movement parameter is represented by
a function Fl, which maps the positions of two objects ou and ov sampled at the time
instants ⟨τi, τi+1⟩ to a numeric value zl. This is abbreviated as Fl|⟨τi,τi+1⟩(tr(ou), tr(ov)) →
zl. Intuitively, the movement parameters characterize the movement of two objects and
specifically account for the interactions of the objects and dynamics of their motion. We
determine their values on two consecutive time instants in order to capture the shorter
variations of the interactions and motion, that is, the variation from one time instant to
the next one. This choice allows us to characterize the trajectories at finer resolutions
(Dodge et al. 2009).
Now, we formalize notions useful to state the concept of crews and design the algo-

rithm to discover crews. For each notion, we provide a formal statement and an informal
explanation.

Definition 2.1: [Pair Group] Let

(i) O be the set of moving objects
(ii) G = {(or,R) |or∈ O,R ⊆ O \ {or}}

then G is a pair group.

A pair group (PG) consists of |R| pairs that have one object in common. Its purpose
is to model the movements of the pairs of objects formed with the object or. We build
the pair groups by taking one object at a time as the reference object and combining it
with all the others (participants), so the pair groups are used to model the movements
of all the pairs. For simplicity, we will denote the pair (or, os) by specifying always the
reference as the first element. For instance, given the objects {o1, o2, o3, o4}, the set
{(o2, o1), (o2, o3), (o2, o4)} is a pair group.

Definition 2.2: [Pair Cluster] Let

(i) O be the set of moving objects
(ii) G = {(or,R) |or∈ O,R ⊆ O \ {or}}
(iii) [zllower

,zlupper
] be a range of values of the movement parameter Fl
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(iv) 1(·) be an indicator function that, given the value zl of the movement parameter
Fl, returns true if zl ∈ [zllower

, zlupper
], otherwise it is false,

then G is a Pair Cluster iff ∀(or, os) ∈ G, ∀Fl ∈ F ′(F ′ ⊆ F), ∃ τi ∈ T s.t. the indicator
function 1(Fl|⟨τi,τi+1⟩(tr(or), tr(os))) returns true.

Intuitively, a pair cluster (PC) comprises pairs whose values of a movement parameter,
computed on consecutive time instants, fall in the same range.

Definition 2.3: [Similarity-based Pair Group] Let

(i) G be a pair group
(ii) Π = ⟨τi, τi+1, . . . , τh, τh+1⟩ be a timeline
(iii) [zllower

,zlupper
] be a range of values of the movement parameter Fl

(iv) 1(·, ·) be an indicator function that, given two values of a movement parameter Fl,
returns true if they fall in [zllower

,zlupper
], otherwise it is false,

then G is a Similarity-based Pair Group iff ∀(or, os), (or, ot) ∈ G, the indicator function
1
(
Fl|⟨τj ,τj+1⟩(tr(or), tr(os)), Fl|⟨τj ,τj+1⟩(tr(or), tr(ot))

)
returns true, ∀1 ≤ j ≤ m : τj ∈

Π, τj+1 ∈ Π.

Intuitively, a similarity-based pair group (SPG) refers to a pair group in which the
values of the movement parameters, computed on the timeline Π, fall in the same range.
An example of an SPG built with two movement parameters is illustrated in Figure 1b,

where we use the azimuth distance and distance-ratio defined as in Section 2.1. We can
compute the values of the movement parameters on the fixes sampled at time instants
⟨τ0, τ1⟩. For instance, the azimuth distance between the azimuths of o1 and o2 (300◦ and
260◦) is 40, the azimuth distance between the azimuths of o2 and o3 (260◦ and 290◦) is
30, the azimuth distance between the azimuths of o2 and o4 (290◦ and 50◦) is 240. By
supposing the ranges [0,21), [22,45), [46,359] for azimuth distance and [0,1), [1,2), [2,10]
for distance ratio, we can build an SPG with the pairs (o2, o1) and (o2, o3) on the timeline
⟨τ0, τ1⟩. Indeed, the values of the azimuth distance fall in the same range, that is [22,45),
and the values of the distance ratio fall in the same range, that is [1,2), respectively. The
pair (o2, o4) is not a member because the value of the azimuth distance is not included
in [22,45) but in [46,359) and the value of the distance ratio is not included in [1,2) but
in [0,1), therefore it cannot be considered similar to the others two.
Having defined the concepts of pair group, pair cluster and similarity-based pair group,

we can define the crews formally.

Definition 2.4: [Crew] Let C = {S1, . . . ,Ss} be a set of similarity-based pair groups.
It is a crew iff ∀Su,Sv ∈ C

(i) Gu = Gv,
(ii) ⟨τi, τj⟩ ∩ ⟨τh, τk⟩ = ⊘, ∀1 ≤ i < j ≤ h < k : τi, τj time instants of the timeline of Su

and τh, τk time instants of the timeline of Sv, respectively.

A crew is characterized by i) one pair group, ii) the timelines of the SPGs of C iii) the
ranges of values associated with the movement parameters, for each timeline. The union
of the timelines of the SPGs {S1, . . . ,Sn} results in the timeline of the crew.
Intuitively, Definition 2.4 states that a crew is a moving group composed of one refer-

ence object and a set of participant objects, where the members (pairs) have similarities in
terms of movement parameters along a sequence of time instants. For instance, in Figure
1b, the pairs (o2, o1) and (o2, o3) have similar movement parameters along the timeline
⟨τ0, τ1, τ4, τ5, τ5 τ6⟩ (azimuth distance in [22,45), distance ratio in [1,2)) and along the
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timeline ⟨τ1, τ2, τ2, τ3, τ3, τ4⟩ (azimuth distance in [0,22), distance ratio in [0,1)).
To formulate the problem of discovery of crews, we consider some constraints to guide

the analysis towards the identification of significant groups. The constraints are user-
defined requirements expressed as input thresholds. In particular, we have i) γ, the
maximum temporal gap (in terms of time instants) between two consecutive similarity-
based pair groups; ii) µ, the minimum number of objects required to build a crew.
Now, we can formally state the problem:
Assume we are given: the set of moving objects O, set of trajectories

{tr(o1), . . . , tr(on)}, maximum temporal gap γ and minimum number of objects µ.
Discover the crews compliant to Definition 2.4 and satisfying the input-thresholds γ

and µ.

3. The Framework

The framework implements the computational solution for the problem formulated above.
It is structured in two main components. The first component (Raw trajectory data
pre-processing in Figure 2) processes the raw trajectory data and uses a vector-based
representation in order to capture the interactions and dynamics of pairs of objects.
A vector describes the movement of a pair, in terms of the movement parameters F ,
on two consecutive time instants τi, τi+1. We distinguish the movement parameters in
two different categories. The second component of the framework (Discovery of crews
in Figure 2) performs a hierarchical clustering algorithm on the vectors and discovers
valid crews. The clustering algorithms outputs similarity-based pair groups, which are
combining together to discover valid crews.

3.1. Trajectory Data Preparation

The trajectory of a moving object in the real world is always a continuous line, but for
storage and analysis purposes, it is represented in a discrete form, which corresponds to
a sequence of fixes. These may contain noise, outliers and gaps due to the instrumental
factors of the tracking devices (e.g., the precision of the device) and to physical factors
(e.g., the existence of obstacles), which lead to an irregular timing of the trajectories

Figure 2. The proposed framework is structured in two main components. The first component
performs projects the raw trajectory data into a feature space defined with the parameters F .
The second components generates similarity-based pair groups and combines them to discover
valid crews.
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and to an unfair analysis whether the fixes are processed as recorded. To overcome this
problem we propose a data preparation step, which includes techniques typically used to
make the trajectories more reliable (Dodge et al. 2009). In particular, we filter out outliers
by removing the positions whose inter-distance from the previous position is greater
than a predefined experimentally set threshold. Then, the missing points (caused by the
filtering) are filled by means of a linear interpolation operation, which generates new fixes
at the same rate of the sampling of the raw data. Finally, for each object, we generate
regular trajectories by transforming the original temporal axis in the time domain T . In
particular, this operation maps one equal-width time interval (of the original time axis)
to one time instant τi of T , to which we associate the weighted moving average of the
original fixes. This way, the fixes sampled at the beginning of the time interval will have
less weight, while those collocated at the end will have more weight.
We clarify that the construction of the time-domain T from the original time axis is

not finalized to define two temporal granularities, but to prepare trajectory data for one
level of temporal granularity. This may overlook crews that can be evident at higher level
of analysis, but the cross-granularity discovery is beyond this work.

3.2. Movement parameters for Interactions and Dynamics

To capture interactions and dynamics we introduce new movement parameters, which,
more precisely, are defined to characterize the reciprocal behavior of an object relative
to another object and changes of motion of interacting objects. The definition of new
parameters is necessary why most existing movement parameters has two main limita-
tions, the representation of the movement of an object regardless of the behavior of the
others and the modeling of the motion change of individual objects only (Dodge et al.
2008), therefore they cannot be adapted to the current scenario. However, for this step,
we use some existing primitive and derivative parameters. In this work, we identify two
categories of movement parameters: the first category (Pairwise Dynamics Parameters,
PDP) is defined to represent the variations of geo-spatial primitives that describe the pair
as a sole moving entity, while the second category (Interactions-wise Dynamics Param-
eters, IDP) is defined to represent the variations of physical derivatives and geo-spatial
primitives that describe the movement of an object relative to another object. All the
movement parameters F are computed in the time domain T , except two parameters,
which are defined on original time axis. In the following we provide a detailed description.

3.2.1. Pairwise Dynamics Parameters

• Azimuth. This denotes the direction in which the pair (or, os) is going over two consec-
utive time instants ⟨τi, τi+1⟩. An example is reported in Figure 3a. We compute it as
the angle measured clockwise between the line passing through two middle points and
north. The two middle points are associated with the two time instants separately and
are located at half the distance between the fixes of the objects respectively. The con-
tribution of the parameter Azimuth is to finding pairs of objects that move in similar
directions and that have similar changes of direction over two time instants.

• Displacement. This denotes the distance between the fixes of the pair (or, os) recorded
in the two time instants ⟨τi, τi+1⟩. An example is reported in Figure 3b. We compute it
as the Euclidean distance between the two middle points, which are determined as in
the case of the parameter Azimuth. The contribution of the parameter Displacement
is to identifying pairs of objects that keep similar distances over two time instants.
Another concept of displacement has been proposed by Long and Nelson (2013a), but,
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equally to the ours, it can re-formulated in terms of Euclidean distance.

• Position. This is a primitive parameter and denotes the position of the pair (or, os)
at the end of the two time instants ⟨τi, τi+1⟩. An example is reported in Figure 3c.
It has two components, latitude and longitude. We compute it as the middle point of
the two fixes at the second time instant. The parameter Position allows us to identify
pairs that move around a shared location over two time instants.

(a) (b) (c)

Figure 3. The movement parameters of the category Pairwise Dynamics Parameters account for
the variation of the geo-spatial primitives describing the pair of objects as a sole moving entity
((a) Azimuth, (b) Displacement, (c) Position).

3.2.2. Interaction-wise Dynamics Parameters

• Azimuth Distance. This denotes the difference between the directions in which the two
objects or and os move respectively. We compute it as the distance between the angles
that correspond to the two azimuths. The azimuth of an object is measured clockwise
between the line passing through the two fixes of the object and north. For instance,
in Figure 4a, the azimuth of o1 and o2 is 315◦ and 290◦ respectively, whereas the
angular distance is 25◦. The parameter Azimuth Distance complements the parameter
Azimuth, in that it quantifies how far the directions of the two azimuths are. This
parameter is used to group pairs whose changes of direction are similar. A typical
situation is when the pairs are moving from different directions and proceed in the
same direction.

• Distance Ratio. This denotes the variation of the inter-distance between the two objects
or and os over two time instants ⟨τi, τi+1⟩. We compute it as the ratio between two
inter-distances, that is, the Euclidean distance between the two fixes at the second
time instant τi+1, divided by the Euclidean distance between the two fixes at the first
time instant τi. The result is a positive real number, which exceeds 1 when the inter-
distance increases by a factor higher than 1. For instance, in Figure 4b, the ratio is
70/100. This parameter is used to group pairs that are coming close (or moving away)
by keeping similar distances. Moreover, it allows us to model the cases in which one of
the two objects moves away from (or comes close to) the other one at a relatively high
speed, which may be a reasonable motivation for longer distances from a time instant
to the next one. For instance, when a pedestrian catches a vehicle to move away from
another pedestrian. It should be noted that this parameter provides a quantification of
the distance between the objects when one changes direction (see Azimuth Distance).

• Tortuosity Ratio. This denotes how the tortuosity of the trajectory tr(or) of an object
changes, compared to the tortuosity of another trajectory tr(os). An example is re-
ported in Figure 4c. The tortuosity refers to the degree of windingness or bending of
the trajectory within a time interval (Laube et al. 2007). To compute the Tortuosity
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Ratio, we use the pre-processed raw trajectories as returned by the linear interpola-
tion. In particular, given i) Yτ1,o1 and Yτ1,o2 the tortuosity values of two objects o1 and
o2 computed on the fixes included in the time interval associated with τ1, and ii) Yτ2,o1
and Yτ2,o2 , the tortuosity values of the two objects computed on the fixes included in

the time interval associated with τ2, the Tortuosity Ratio is equal to
1+|Yτ2,o1−Yτ2,o2 |
1+|Yτ1,o1−Yτ1,o2 |

.

A tortuosity value is determined as the ratio between the sum of the distances of
consecutive fixes of the trajectory included in the time interval and the length of the
path. It has normalized to the range [0,1], as proposed by Dutton (1999). The range
of Tortuosity Ratio is [0.5,2], thus values close to 0.5 indicate that the tortuosities of
the trajectories become identical in the second time interval, while values close to 2
indicate that the tortuosities are completely different in the second time interval and
eventually value 1 indicates that the tortuosities have not been changed. The rationale
behind this parameter is that of grouping pairs based on the similar changes in terms
of windingness of the trajectories. Clearly, this does not mean that only the pairs with
similar tortuosities may be members of a crew, but also pairs with different tortuosities
but similar variations relative to two time intervals.

• Speed Ratio. This denotes how the speed of an object or changes compared to the
speed of another object os. In particular, we account for the absolute variation of the
respective speeds. To compute it, we use the pre-processed raw trajectories as returned
by the linear interpolation and determine first the average speeds of the two objects
separately and then the final ratio. An example is reported in Figure 4d. In particular,
given i) Vτ1,o1 and Vτ1,o2 the speed values of the two objects o1 and o2 computed on
the fixes included in the time interval associated with τ1, and ii) Vτ2,o1 and Vτ2,o2 the
speed values of the two objects computed on the fixes included in the time interval

associated with τ2, the Speed Ratio is equal to
1+|Vτ2,o1−Vτ2,o2 |
1+|Vτ1,o1−Vτ1,o2 |

.

The average speed is calculated on consecutive fixes and it has normalized to the
range [0,1]. The range of the Speed Ratio is [0.5,2], thus values close to 0.5 indicate
that the objects, on the second time interval, travel with similar speeds, values close
to 2 indicate that the speeds differ greatly as time goes by, while when the speeds do
not change the value of Speed Ratio is 1.

As a result of the first component of the framework (Figure 2), we have vectors built
for all the sequences of consecutive time instants ⟨τi, τi+1⟩ of the time domain T . A
vector is the result of the transformation of the fixes of two objects (or, os) sampled at
two consecutive time instants ⟨τi, τi+1⟩, it has |F| dimensions and contains the values
Fl|⟨τi,τi+1⟩(tr(or), tr(os)) of each movement parameter Fl.

3.3. Discovery of Crews

The second component of the framework is in charge of discovering crews from the
vectors previously extracted. It should be noted that the vectors depict the smallest
interactions and shortest changes. Indeed, they capture the interactions of the smallest
set of objects, that is, a pair of objects, over the shortest time interval, that is, two
consecutive time instants. This gives us some hints on how designing the method for the
second component. Starting from the consideration that a crew involves more than two
objects and may cover more than two time instants, the key idea is to consider the vectors
as building blocks and build valid crews by combining the vectors properly. To do this,
the second component first finds out pair clusters (PCs), then generates similarity-based
pair groups (SPGs) and finally builds the crews from SPGs.
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(a) (b)

(c) (d)

Figure 4. The movement parameters of the category Interactions-wise Dynamics Parameters
account for the variation of the physical derivatives and geo-spatial primitives describing the
movement of an object relative to another object ((a) Azimuth Distance, (b) Distance Ratio, (c)
Tortuosity Ratio, (d) Speed Ratio).

The algorithmic choice of combining together vectors to generate SPGs reminds the
multi-scale analysis, whose purpose is recognizing groups of different sizes that have
the same collective movements (e.g., Wood and Galton (2009)). However, compared
to the current work, there is a substantial difference: accordingly to Definition 2.4, the
crews have well-distinct behaviors and cannot share the same collective movement, which
instead is permitted in the multi-scale analysis.

3.4. Clustering Pairs of Moving Objects

To find out PCs, we propose a hierarchical clustering algorithm that groups vectors based
on the similarity of the parameters F . It does not rely on costly functions of distance, as
instead many clustering algorithms do, and decides the membership of an element (pair)
to a cluster by means of a test performed on the values of the parameters F , which
requires less computation.
The algorithm follows the principle of the conventional decision trees, traditionally

used for predictive tasks (Frank et al. 1998, Loglisci and Malerba 2017), and induces a
tree-like structure from the vectors returned by the first component. The nodes of the
tree are associated to subsets of vectors: the vectors contained in the root are similar
with respect to one movement parameter, while the vectors contained in the leaves are
similar with respect to all the parameters. In particular, an internal node of the tree is
characterized by i) a movement parameter Fl (Section 3.2), ii) a pair cluster L (Definition
2.2), iii) a threshold value c (whose range is that of the parameter Fl) and it is connected
to other nodes by means of two-way branches. A branch goes from a “starting node” to
an “ending node” and encodes the clustering function by testing the threshold value c
against the values of the parameter Fl of the vectors contained in the starting node.
More precisely, a branch guides a subset of the pairs of the PC of the starting node
towards the ending node, that is, the set of the vectors that satisfy the test. Thus, the
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vectors of an ending node represent the pair of objects (or, os), for which the indicator
function 1(·, ·) is true for the parameter Fl. The parameter Fl we assign to a node is
selected with a criteria based on the (dis)similarity of the vectors reaching the node.
More precisely, we select the parameter Fl that maximizes the reduction between the
dissimilarity computed on the vectors of the node and dissimilarity of two subsets. This
operation uses the formula

DissReduction = σ2(L)Fl
− σ2(left)Fl

∗ |left|+ σ2(right)Fl
∗ |right|

|L|
, (1)

where σ2(L)Fl
(σ2(left)Fl

, σ2(right)Fl
) is the dissimilarity computed on the values of the

parameter Fl for the vectors of L (left, right), which is defined as follows:

σ2(L) =

n∑
i=1

pi ∗ (vi − v̄)2, (2)

where, vi(i = 1 . . . n) are the values of the parameter Fl in the set L, pi is the probability
of observing vi in L and v̄ is the mean of the values v1, . . . , vn.
Procedurally, the tree is built by means of an algorithm that recursively splits the

initial set of the vectors into subsets of decreasing size. The algorithm starts from the
root (which contains the complete set of the vectors) and, moving downwards, creates
new (ending) nodes, to which assigns subsets of the vectors of the previously created
(starting) node. The ending nodes of an execution of the algorithm become the starting
nodes of next execution. More precisely, after having appended new nodes to the tree, the
algorithm examines one node at a time. It builds two-by-two subsets of vectors for each
movement parameter Fl, but takes only those that maximize the dissimilarity reduction
DissReduction (Equation 1). The selected subsets are identified by a threshold value,
which splits the values of the movement parameter Fl into two ranges. Thus, one subset
covers one range and comprises the vectors whose values of the parameter fall in that
range (Definition 2.2 and Definition 2.3). The recursive procedure terminates when the
initial dissimilarity (computed on the root) has been been reduced for all the parameters
by a factor fixed by the user (required reduction ∈ [0, 1]) or when all the leaves have a
number of pairs of objects smaller than µ2. In the latter case, the tree might not have all
the movement parameters. An illustration of the algorithm of tree induction is reported
as Appendix.

3.5. Building Crews from Similarity-based Pair Groups

To discover crews with similar interactions and similar dynamics, we should generate
SPGs with the highest number of similar movement parameters. The organization of
the tree built above suggests to considering the PGs collocated at the leaves. Indeed, by
the effect of the dissimilarity reduction (Equation 1), the vectors contained in the leaves
have the highest number of similar movement parameters, compared to the vectors of the
internal nodes. To generate SPGs, we need two types of information (Definition 2.3), one
has a spatial connotation and is related to the ranges of values [zllower

,zlupper
], the other

one has temporal connotation and is related to the timeline Π. The spatial information
can be obtained from the tree; indeed, the path from the root to a leaf directly provides
the list of the movement parameters and relative ranges of values. To determine the
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timelines, we have to perform a further step of analysis on the pairs contained in the
leaves. More precisely, for each leaf, we first gather the vectors by pair group (that is,
pairs having an object in common) and then generate the timeline of each pair of objects
(or, os) by using their time instants ⟨τi, τi+1⟩. Finally, we generate the timeline with the
time-instants which are common to all the pairs. To do this, we adapt the technique of
computation of intersections among sets proposed in Layer et al. (2013), which returns the
intervals common to sequences of disjointed time intervals. Our adaptation first matches a
primary timeline against remaining timelines and then evaluates the intersection between
the time instants of the primary timeline and time instants of the other timelines by
means of two binary search operations. These operations work on two sorted lists of
time instants, one is composed of the time instants τi, the other is composed of the time
instants τi+1. The intersecting time instants are thus sorted by chronological order and
combined to form the candidates. Finally, we select the timeline that satisfies a user
preference criterion. The preference criterion selects the final timeline and consequently
the pair group of the SPG. There are two alternative preference criteria, one criterion,
denoted as maxDuration, chooses the pair group having the longest timeline, while the
second criterion, denoted as maxObjects, chooses the pair group with more objects. The
criterion choosen holds also for the selection of the primary timeline used when searching
intersections. Indeed, the option maxDuration picks the longest timeline present in the
pair groups, while the option maxObjects picks the shortest timeline. Finally, we analyze
all the SPGs built from the leaves, but consider only those that satisfy the threshold of
the minimum number of objects µ.

Figure 5. The timelines of candidate similarity-based pair groups are generated from the time
instants of the vectors on the leaves. The resulting timeline is selected with an user preference
criterion.

An illustration is reported in Figure 5, where there are the timelines of the pairs (o5, o6),
(o5, o7) and (o5, o8) of a leaf. We can extract two candidates, one is obtained from the
intersection of the time instants of the pairs (o5, o6) and (o5, o7) and covers the timeline
⟨τ3, τ4, τ6, τ7⟩, the other one is obtained from the time instants of the pairs (o5, o6), (o5, o7)
and (o5, o8) and covers the timeline ⟨τ3, τ4⟩. Thus, by applying the criterion maxDuration
to this example, we obtain the timeline at the top of Figure 5.
The construction of the crews is completed by an algorithm that first selects the SPGs

with same reference object or and same participant objects or and then joins their time-
lines in chronological order. Procedurally, the algorithm considers one reference object
or at a time and works on the timelines in which or is present. It builds one crew at a
time by extending incrementally its timeline. A crew is not built from scratch, but it is
obtained by extending the timelines of the crews, which have been previously built, with
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other admissible time instants. This strategy guarantees the construction of maximal
crews, so there are no crews contained in each other. In the following, we first describe
how algorithm operates when builds the crews with same reference object or and then
provide an explanatory example.
The algorithm starts with the early time instants of the reference object or and proceeds

by selecting the time instants that have not been considered before. It appends newly
selected time instants to the timeline of the current crew. Once the time instants have
been used, they are marked, so we will not have duplicated crews. The current crew is
extended only if two conditions are satisfied, i) the new time instants are distant from
those already appended at most γ, and ii) the new SPG contains the same participants.
When there are no time instants for the current crew, the timeline is completed. Then,
the algorithm continues with the time instants that have not been considered before and
with those that have been considered before but that have not been marked yet. Thus,
the algorithm seeks other crews by evaluating (sub)timelines of previously built crews.
More precisely, it removes the time instants in the same order with which they have been
inserted and performs new joins with other admissible time instants. The construction of
the crews having or as the reference stops when all the time instants have been marked
and there are no time instants that can be used for new crews. The algorithm terminates
when all the reference objects have been scanned. Finally, the crews that have less than
µ objects are filtered out.
An illustration is reported in Figure 6 with the timelines of three SPGs (⟨A,D, I⟩,

⟨B,C,E⟩, ⟨G,H,F ⟩ and 1). Suppose or=o2, γ=3. The algorithm starts with the early
time instants, that is, A and evaluates the closer time instants, that is G, which cannot be
used because there are not the same participants. Thus, the algorithm evaluates B and
joins it with the current crew ⟨A⟩ because B has the same participants and is distant
from A less than γ. For the same reason, also D and E are joined, so the algorithm
builds the crew ⟨A,B,C,D,E⟩ and marks A,B,C,D and E. The time instants F are not
considered because there are not participants in common, so the algorithm restarts by
removing E from the crew ⟨A,B,C,D,E⟩ and seeking new joins with other admissible
time instants. It picks I, which is not marked, and uses it to build the crew ⟨A,B,C,D, I⟩,
then marks I. Next, the algorithm removes I and recovers the crew ⟨A,B,C,D⟩, which
cannot further be extended because there are no admissible time instants after D. The
same analysis is done also with ⟨A,B,C⟩, ⟨A,B⟩ and ⟨A⟩. After that, the procedure
creates a crew with G, which cannot further be extended because its distance from H
exceeds γ.
performs a join with C because A is not yet marked. Then, the algorithm considers

the closer time instants, that is G, but cannot be used because there are not the same
participants. Next, the algorithm evaluates B and joins it with the current crew ⟨A⟩
because B has the same participants and is distant from A less than γ. For the same
reason, also C, D and E are joined, so the algorithm builds the crew ⟨A,B,C,D,E⟩
and marks A,B,C,D and E. The sequence of time instants F is not considered because
there are not participants in common. The algorithm restarts by removing E from the
crew ⟨A,B,C,D,E⟩ and seeking new joins with other admissible time instants. Thus, it
finds I, which is not marked, and uses I to build the crew ⟨A,B,C,D, I⟩, then marks I.
Next, the algorithm removes I and recovers the crew ⟨A,B,C,D⟩, which cannot further
be extended because there are no admissible time instants after D. The same analysis is
done also with ⟨A,B,C⟩, ⟨A,B⟩ and ⟨A⟩. After that, the procedure creates a crew with

1For simplicity, we replace the notation of the time instants ⟨τi, τi+1⟩ with capital letters.
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G, which cannot further be extended because its distance from H exceeds γ.
The algorithm accounts also for the cases in which two SPGs have exactly not the

same pairs of objects, but they have pairs in common. For instance, given the sets
{(o5, o6), (o5, o7)} and {(o5, o6), (o5, o7), (o5, o8)}, we may use the pairs {(o5, o6), (o5, o7)},
which are present in both sets.

Figure 6. The crews are built by joining similarity-based pair groups under the constraints
imposed by the maximum temporal gap γ and equality of the participants.

4. Experiments

The proposed framework has been implemented in Java and applied to trajectory data
of real-world moving objects. In particular, we considered the data of two different kinds
of moving objects: humans moving in the urban space and animals observed in the
natural environment of a forest. The trajectories of these two types of objects have
evident differences. Humans move in spaces constrained by physical restrictions due to
buildings and road networks, they have different travel modes and may move together
or travel/walk alone. The trajectories can refer to daily life routines (such as, going at
home, going at work), paths which are periodically traveled (going at soccer stadium on
weekends), or exceptional routes (alternative paths in case of emergency situations). On
the contrary, wild animals move in a space that is characterized by the morphology of
the territory, their movements are often related to changes of natural phenomena and
changes of the ecosystem and, therefore, have an intrinsic seasonal component. Animal
movements do not raise privacy concerns, which are instead frequent when analyzing
human trajectories.
In the scenario of human mobility, there is a category of tasks in which we need to

determine social ties between individuals. This type of information can be used, for in-
stance, in social media, to suggest potential friendships on the basis of similar trajectories
with other social profiles, or in transportation, to recommend trajectories that friends
may know. For the experiments we used the Geolife dataset1 (Zheng et al. 2009), which
collects the trajectories of outdoor movements of humans in a period of over three years
(from April 2007 to August 2012). These trajectories were recorded by different GPS
loggers and GPS phones, and are sampled mostly every 1-5 seconds. The application of

1https://www.microsoft.com/en-us/download/details.aspx?id=52367



December 8, 2017 12:59 International Journal of Geographical Information Science crewsR3

18 Taylor & Francis and I.T. Consultant

our framework to the Geolife dataset aims at i) discovering social ties between individu-
als who do not know each other and ii) following social ties when the individuals do not
stay in the same location.
In the scenario of animal movements, often ecologists are interested in understanding

how individuals or groups behave within their environment. The normal activities, such as
grazing, migration and mating, are related to factors dependent of the environment (e.g.,
habitat preferences, water sources and vegetation availability) and to factors dependent
of the relationships within or between the species. These activities could not take place
if there are no interactions. For the experiments we used the Starkey dataset1 (Rapp and
Pacific Northwest Research Station 2006), which contains the radio-telemetry locations,
tracked in north-eastern Oregon, of three species of animals (elks, deer, cattle) monitored
over the period May 1993–August 1996. The sample rate of recording ranges from 20
minutes to 2 hours. In Starkey, our contribution is addressed to two categories of use
cases. First, the understanding of the possible factors that may cause unnatural behavior
exhibited both by individuals and by groups, for instance, elks move away because of
hunting, herds fast graze because of human presence. Second, the characterization of
several activities (e.g., walking, grazing) through different configurations of movement
parameters.
The characteristics of the datasets are summarized in Table 3.

4.1. Experimental setup

The experiments have been performed along to several perspectives. We used several vari-
ants of the framework distinguished by user preference criterion (maxDuration, maxOb-
jects). We tested the influence of the input thresholds (µ and γ) on the resulting crews
and on the time consumption. To estimate the quality of the crews with an objective
evaluation, we defined two quantitative measures by following the principle of some mea-
sures of internal clustering validation (e.g., Modified Hubert statistic (Hubert and Arabie
1985), Davies-Bouldin index (Davies and Bouldin 1979)). These measures give us an in-
dication of how specific and distinct the movement behavior modeled by a crew is, so the
higher the measure the better the quality. In particular, the first measure (QM ) denotes
the distance between two crews in terms of the spatio-temporal information associated
with the movement parameters, regardless of the pair groups involved, while the second
measure QP specializes QM by considering also the pair groups.
In the following, we report the formulation of the two measures:

QM =
1

|Γ′| × |Γ′′|
∑
τi∈Γ′

∑
τj∈Γ′′

ΘT (τi, τj) + ΘS(τi, τj)

2
, (3)

where, Γ′ and Γ′′ are the timelines of the two crews, |Γ′| and |Γ′′| refer to the number of
the time instants of the two timelines respectively.

1www.fs.fed.us/pnw/starkey/data/tables

Table 3. Summary of the characteristics of the trajectory datasets.
|O| |T | avg fixes per object types of objects

Geolife 182 17656921 166633 pedestrians
Starkey 128 166826 1304 wild animals
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The term ΘT (τi, τj) accounts for the dissimilarity of the timelines and it is computed
as the distance between the time instants ⟨τi, τh⟩ and the time instants ⟨τj , τk⟩ as follows:

ΘT (τi, τj) =

{
0 if ⟨τi, τh⟩ ∩ ⟨τj , τk⟩ ̸= ⊘
max(τh,τk)−min(τi,τj)

max(T )−min(T ) otherwise.
(4)

Intuitively, the closer the time instants, the smaller the dissimilarity, the worse the
quality1.
The term ΘS(τi, τj) instead denotes the dissimilarity of the movement behaviors of the

two crews, and more precisely, accounts for the distance between the ranges of values
[zllower

,zlupper
] of the movement parameters. To compute this, we resort to dissimilarity

functions for interval-valued data defined in Symbolic Data Analysis (Diday and Esposito
2003):

ΘS(τi, τj) =

∑
Fl∈Fδ([zllower

, zlupper
]|τi , [zllower

, zlupper
]|τj )

|F|
, (5)

where [zllower
, zlupper

]|τi and [zllower
, zlupper

]|τj are the ranges of the parameter Fl in the time
instants ⟨τi, τh⟩ and ⟨τj , τk⟩. The dissimilarity function δ(·, ·) is in its turn the combination
of three measures, δπ(·, ·), δs(·, ·), δc(·, ·). In particular, δπ indicates the relative position of
the two ranges in their entire interval of values, δs indicates the relative sizes of one range
with respect to the other without considering the common sub-ranges (intersections) and
δc is a measure of the non-common sub-ranges. Intuitively, when there is high similarity
between the ranges of the parameters, the value of ΘS(τi, τj) is small and consequently
the quality is small.
The formulation of the second measure (QP ) is reported in the following:

QP =

∑
p∈G′

∑
q∈G′′ΘG(p, q)

|G′| × |G′′|
, (6)

with

ΘG(p, q) =

{
1 if p ̸= q

QM if p = q
. (7)

where, G′ and G′′ are the pair groups of the two crews. Intuitively, the quality is higher
when the pair groups and movements associated with a crew are well separated from
those of other crews. Both quality measures, QM and QP range in [0,1].

4.2. Comparative experiments

We performed comparative experiments between the proposed framework and two algo-
rithms, namely swarm and DISCRETIZATION. The first competitor is the algorithm

1The operators max(,) and min(,) work on the time domain T as on the set of the integers.
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proposed in Li et al. (2010) and discovers dense groups of objects (swarms) character-
ized by temporal discontinuity, which is also a characteristic of the crews. The second
competitor is a baseline and differs from the proposed framework in the algorithm of con-
struction of the tree. In particular, the choice of the movement parameter to associate
with an internal node is not based on the dissimilarity reduction of the vectors of the
previously created node, but it is determined a-priori on the basis of the standard devia-
tion of the movement parameters computed on the complete set of vectors (Loglisci et al.
2014). More precisely, the movement parameters are arranged from the root downward
to the leaves by decreasing standard deviation. The respective nodes are connected by
means of n-way branches. A branch is associated with one of n bins obtained by applying
an equal-width discretization technique to the movement parameter Fl, associated with
the node. We performed several trials and identified the best tradeoff between the size of
the internal nodes and minimum number of the objects in the leaves with a discretization
to five bins, that is, with 5-way branches. The trees of DISCRETIZATION are balanced
(contrarily to those built by our framework) and have a depth equal to the number of
the movement parameters plus one (leaves), that is, |F|+1.
The reason behind the use of DISCRETIZATION is to compare our framework with

a solution which adopts the same feature space (F), but implements a different notion
of similarity of the movement parameters. This affects the construction of the crews and
thus the quality.

4.3. Results and Discussion

We now present and discuss the results on the number of valid crews (#crews), running
times (times) and quality measures that were obtained by manually tuning one of the two
input thresholds (µ and γ) at a time and leaving the other one fixed. For both datasets,
we fix the value of required reduction to 0.2 (Section 3.4) and the threshold used for the
filtering technique (Section 3.1) to three times the standard deviation of the distances
between consecutive fixes, as suggested by Dodge et al. (2009). The width of the time
interval (Section 3.1) is 30 minutes for Geolife and 45 minutes for Starkey.
We organize the discussion in four perspectives: plots of the statistics, visualization of

the distribution of the crews over space, interpretation of some crews of the two datasets
and contribution of specific movement parameters in discovering crews.

4.3.1. Influence of the input thresholds

Figure 7 illustrates the number of crews discovered at different values of µ and γ.
More precisely, the results are averages computed on the numbers of crews generated
by running the framework with maxObjects and maxDuration. In Figure 7a, we see that
when the minimum number of the objects required to form the groups is higher, the
number of crews is relatively smaller. This is expected because at high values of µ we
should seek a higher number of participants with the same movements, which is more
difficult to obtain compared to few participants (e.g., µ=3). Contrary to µ, the threshold
γ weakly influences #crews (Figure 7b) because it has no immediate impact on the
number of SPGs, but it has influence on the length of the timeline. Indeed, when γ is
large, we have few crews but with longer duration.
Figure 8 illustrates the time consumption required at different values of µ and γ respec-

tively. More precisely, the results are averages computed on the running times obtained
by running the framework with maxObjects and maxDuration. We see that high values of
µ lead to a lower time consumption. The reason behind this is two-fold: i) the algorithm
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of tree induction requires less running time (it terminates with larger leaves), and ii) the
algorithm for the discovery of the crews works on a smaller set of SPGs. The low number
of SPGs, generated when increasing the threshold γ, explains the decreasing tendency of
Figure 8b.
Figure 9 illustrates the quality of the crews at different values of µ and γ. The results

are averages computed on the values (ranging in [0,1]) obtained by running the frame-
work with maxObjects and maxDuration. We see that the quality generally decreases at
high values of µ. This can be attributed to the increase of the number of objects that
SPGs have in common, which causes the decrease of the dissimilarity of the movement
parameters of the crews. Trivially, the highest quality is reached when there is only
one crew (Figure 9a, Starkey). Another observation can be drawn on the effect of the
threshold µ on the number of crews and on the quality. We see that the greater the set
of discovered crews, the higher the quality. Although this may seem contradictory, we
should note that at low values of µ the search space is greater, therefore we can nimbly
find out crews with very different movements (high quality), while, at high values of µ,
the (few) resulting crews appear to be located in a limited subspace of search, where the
movements may be very similar (low quality).
On the contrary, when increasing the threshold γ (Figure 9b), the quality remains sub-
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results are averages computed on the values by running the framework with maxObjects and maxDuration
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stantially unaltered because the smaller number of the crews counterbalances the higher
duration, in the sense that, at high values of γ, there is a small set of crews character-
ized by relatively high duration. Consequently, the dissimilarity of the movements of the
SPGs remains unchanged, also because γ has no immediate impact on the SPGs.
Figure 10 gives a visual and geographic perspective of the crews at two higher values

of the thresholds used in the experiments, that is, µ=5,6 and γ=4,5. The map in Figure
10a reports the localization of the areas of Geolife that contain at least 10 crews. The
map in Figure 10b reports the localization of the areas of Starkey with at least 5 crews.
As to Geolife, there are three main areas for µ (red circles) and five main areas for γ
(blue polygons). For Starkey, the distribution of the crews, when we operate on µ, is
concentrated in three areas, while there are four areas of crews when tuning γ. As we
see, the crews discovered at different values of µ are concentrated in a subset of the areas
of the crews discovered at different values of γ. This indicates that the crews with more
objects are concentrated in the same areas, while the crews with less objects preserve
the similarity for a longer.

4.3.2. Comparisons

We now discuss the results of the number of discovered groups and quality values
obtained from the comparison with DISCRETIZATION and swarm. For the competitor
DISCRETIZATION, as in our framework, there are two variants defined on the criterion
of preference maxDuration and maxObjects. Thus, the results we show here are the
averages obtained from the two settings. The experiments of swarm were performed by
defining the time-domain with two alternative widths of the time intervals, 60 minutes
(swarm 60) and 150 minutes (swarm 150).
Figure 11 reports the counts of the discovered groups. As expected, the increase of

the minimum required number of objects (µ) is the strong determinant in the reduction
of the number of groups discovered by the three algorithms. Contrarily, the value of γ
influences the results of our framework and DISCRETIZATION, but it has no effect on
swarm. This is why swarm has no threshold corresponding to γ to filter the groups with
respect to the temporal discontinuities.
Figure 12 shows that the quality of the crews determined by our framework is better in

general, compared to that of DISCRETIZATION. This is due to the different strategy of
tree induction. Indeed, in our framework, the creation of the nodes follows the principle
of maximization of the similarity of the properties of the current set of objects, which
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Figure 9. (a) Quality measuresQM andQG computed on the crews discovered at different values of the minimum
required number of objects µ, while γ is fixed to 2. (b) Quality measures QM and QG computed on the crews
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leads to assign smaller sets of vectors to the nodes. This generally makes the “intra-
crews” similarity higher and the “inter-crews” similarity lower. Contrarily, the algorithm
DISCRETIZATION follows the principle of minimization of the dissimilarity over the
complete set of objects and thus does not account for the local similarities, with the
result of making the aim of maximization of the similarity arduous.
As to swarm, we cannot use neither QM nor QG to estimate the quality because they

are based on the similarity of the movement parameters and similarity of the timelines,
while swarms rely on the spatial proximity, do not use similarity notions and do not
consider movement parameters to describe the groups.

4.3.3. Interpretation of the crews

In this section we report the crews with larger dissimilarity, which is computed as the
average of the values of the terms ΘT and ΘG between the crews discovered from the
two datasets, respectively. We also explain the information the crews depict. For each
crew, the movement parameters and timeline are reported.
The following has been discovered from Geolife with µ=3, γ=2, width of time interval

=60 mins, maxDuration. It involves three objects (two pairs).

(a)

(b)

Figure 10. a) Distribution of the crews of Geolife over the Bejing area (China) b) Distribution of the crews of
Starkey over the Starkey Forest area (Oregon-U.S.). The red circles denote the distribution of the crews obtained
when tuning threshold µ. The blue polygons denote the distribution of the crews obtained when tuning threshold
γ.
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Figure 11. Comparisons between the proposed framework and the competitors DISCRETIZATION and swarm
on the number of groups when tuning µ and γ (a) and c) Geolife with µ and γ respectively, b) and d) Starkey
with µ and γ respectively).

C1:
2009− 07− 05 05 : 00 : 00, 2009− 07− 05 06 : 00 : 00
⟨azimuth distance ∈ [0◦, 47◦), azimuth ∈ [187.5◦, 359◦], displacement ∈ [129,+∞),
distance ratio ∈ [0, 0.5)⟩

2009− 07− 05 06 : 00 : 00, 2009− 07− 05 07 : 00 : 00
⟨azimuth distance ∈ [0, 47◦), azimuth ∈ [187.5◦, 359◦], distance ratio ∈ [0, 1],
displacement ∈ [0, 85), tortuosity ratio ∈ [0.5, 0.9), azimuth distance ∈ [0, 13◦),
speed ratio ∈ [1.2, 1.6)⟩

2009− 07− 05 07 : 00 : 00, 2009− 07− 05 08 : 00 : 00
⟨azimuth distance ∈ [0, 47◦), azimuth ∈ [0, 187.5◦), speed ratio ∈ [0.5, 1.9), distance ratio ∈
[1,+∞)⟩
The crew C1 covers three hours and for each hour (τi, τi+1) the movement parameters

change. For instance, for the time instants ⟨2009−07−05 05 : 00 : 00 , 2009−07−05 06 :
00 : 00⟩, the two pairs of objects come close (distance ratio ∈ [0, 0.5)), their angular
distance is less than 47 (azimuth distance ∈ [0, 47◦)), they travel at least 129 meters
(displacement ∈ [129,+∞)) and they move westwards (azimuth ∈ [187.5◦, 359◦]).
The following crew has been discovered from Geolife at µ=5, γ=2, width of time

interval=60 mins, maxObjects. It involves five objects (four pairs).

C2:
2009− 04− 13 13 : 00 : 00, 2009− 04− 13 14 : 00 : 00
⟨azimuth distance ∈ [0◦, 80◦), azimuth ∈ [0◦, 190◦], displacement ∈ [129,+∞),
distance ratio ∈ [0, 0.5), tortuosity ratio ∈ [0.5, 0.9), speed ratio ∈ [1.1, 2.5]⟩

2009− 04− 13 14 : 00 : 00, 2009− 04− 13 15 : 00 : 00
⟨azimuth distance ∈ [0, 80◦), azimuth ∈ (190◦, 359◦], distance ratio ∈ [1, 1.5),
displacement ∈ [0, 134), speed ratio ∈ [0.5, 1.1), tortuosity ratio ∈ [0.5, 0.9)⟩

Here, the pairs maintain their angular distance under 80◦ (azimuth distance ∈ [0, 80◦),
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Figure 12. Comparisons between our framework and the competitor DISCRETIZATION on the quality mea-
sures when tuning µ and γ (a) and c) Geolife with µ and γ respectively, b) and d) Starkey with µ and γ respectively).

they come close (distance ratio ∈ [0, 0.5)), they move eastwards (azimuth ∈ [0◦, 190◦]),
they travel more than 190 meters, with increasing speed, on paths with almost identical
tortuosity. The movement is different in the second part of the timeline. They move west-
wards (azimuth ∈ (190◦, 359◦]), move away (distance ratio ∈ [1, 1.5)), they travel less
than 134 meters, at similar speeds (speed ratio ∈ [0.5, 1.1)) and with similar tortuosity
of the paths (tortuosity ratio ∈ [0.5, 0.9)).
The crews we report below have been discovered on Starkey. The following crew has

been discovered at µ=3, γ=2, width of time interval =120 mins, maxInterval. It involves
two pairs of elks.

C3:
1993− 06− 16 04 : 00 : 00, 1993− 06− 16 06 : 00 : 00
⟨azimuth distance ∈ [180◦, 359◦], azimuth ∈ [177◦, 359◦], distance ratio ∈ [0.5, 1),
displacement ∈ [3.5,+∞)⟩

1993− 06− 16 06 : 00 : 00, 1993− 06− 16 07 : 00 : 00
⟨azimuth distance ∈ [0◦, 180◦), azimuth ∈ [0◦, 177◦), distance ratio ∈ [0, 0.5), displacement ∈
[6.1,+∞)⟩

The crew C3 has a timeline of four hours. In the first part, the pairs are separated by a
relatively large distance (azimuth distance ∈ [180◦, 359◦]), but they tend to come close
(distance ratio ∈ [0.5, 1)), proceed north-westwards (azimuth ∈ [177◦, 359◦]) and travel
at least 3.5 km (displacement ∈ [3.5,+∞)). In the second part, we see that they are sepa-
rated by an angular distance of at most 180◦ (azimuth distance ∈ [0◦, 180◦)), their direc-
tion remains unaltered (azimuth ∈ [177◦, 359◦]), they still come close (distance ratio ∈
[0, 0.5)) and travel at least 6.1 km (displacement ∈ [6.1,+∞)).
The following crew has been discovered on Starkey at µ=3, γ=4, width of time inter-
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val= 60 mins, maxInterval. It involves four pairs of deer.
C4:
1993− 05− 10 01 : 00 : 00, 1993− 05− 10 02 : 00 : 00
⟨azimuth distance ∈ [180◦, 359◦], azimuth ∈ [141◦, 359◦], displacement ∈ (−∞, 3.7),
speed ratio ∈ [1.1, 2.5], distance ratio ∈ [0, 0.8)⟩

1993− 05− 10 05 : 00 : 00, 1993− 05− 10 06 : 00 : 00
⟨azimuth distance ∈ [180◦, 359◦], azimuth ∈ [141◦, 359◦], displacement ∈ [3.7,+∞),
distance ratio ∈ (0, 0.2), speed ratio ∈ [0.5, 1.4]⟩
The crew C4 covers two hours separated by a temporal gap of three time instants (three

hours). We see the pairs travel less than 3.7km in the first part, while in the second part
they do more than 3.7km. Their inter-distance decreases (from distance ratio ∈ [0, 0.8)
to distance ratio ∈ [0, 0.2)). The speeds tend to be similar (from speed ratio ∈ [1.1, 2.5]
to speed ratio ∈ [0.5, 1.4]).

4.3.4. Insights from crews

We examine the crews visualized in the maps of Figure 10 to draw some qualitative
consideration. In particular, our analysis focuses on the identification of the movement
parameters that better contribute to the discovery of high quality crews, where the
desiderata is large similarity among the pairs of the same crew and little similarity
among pairs of different crews. Since the number of ranges produced for a parameter is
an indication of the dissimilarity of the values (Section 3.4), the movement parameters
relevant for the determination of high quality crews are those with a few ranges. The
results of our analysis are illustrated in Table 4, which specifically reports the parameters
with the smallest and largest number of ranges used in the crews. We see that the
parameters Distance Ratio and Speed Ratio are determinant for the crews discovered
from Geolife. This means that the movements have large similarity in terms of inter-
distance and relative speed, which is a behavior typical of individuals who know each
other. On the contrary, the parameters determinant for the crews discovered from Starkey
are generally of the category Pairwise Dynamics. In particular, we see large similarity
on Displacement and Azimuth for elks and cattle respectively. This indicates that the
elks travel by regular displacements and cattle move at the same direction, which are
typical features of migrating animals. We can also note that, for all the three types of
animals, the less relevant parameters are of the category Interaction-wise Dynamics and,
specifically, are Speed Ratio and Tortuosity Ratio. This denotes a large irregularity of
Speed Ratio and Tortuosity Ratio, which is due probably to the presence of threats (e.g.,
hunting), in the case of cattle, and to the presence of paths within the forest, in the case
of elk and deer. The final consideration is deserved to the input thresholds µ and γ. In
Starkey, the movement parameters with large similarity remain the same regardless of
the threshold we use.

5. Conclusions

In this paper, we have investigated the problem of mining groups of moving objects
by accounting for interactions between the objects and dynamics of the movements.
Interactions are extracted by capturing relationships between the trajectories. Dynamics
is extracted by capturing the time-changing nature of the trajectories. These are two new
sources of information that a few works have exploited, although with the limitations that
we discussed. Most part of the existing algorithms instead focuses on spatial proximity
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Table 4. The movement parameters used in the discovery of crews. The parameters which appear in the
crews with the smallest number of ranges (more relevant parameters) are denoted with “+”, while those
which appear with the highest number of ranges (less relevant parameters) are denoted as “-”.

µ γ
Geolife + Distance Ratio Speed Ratio

- Displacement Azimuth Distance

Starkey
(elks)

+ Displacement Displacement

- Speed Ratio Tortuosity Ratio

Starkey
(deer)

+ Azimuth Distance Azimuth Distance

- Tortuosity Ratio Tortuosity Ratio

Starkey
(cattle)

+ Azimuth Azimuth

- Speed Ratio Speed Ratio

and path similarity, which lead to mining groups of objects that move together or stay
close from each other. The current work opens to a new type of collective movement,
which is based on similar interactions and similar dynamics and which does not require
spatial constraints on the objects.
The proposed framework addresses some critical points of the problem at the hand.

First, we have defined new movement parameters in order extract interactions and dy-
namics from raw trajectory. The movement parameters model pair-wise interactions and
changes of physical properties of motion. Second, we have designed an efficient clustering
algorithm, which does not rely on costly measures of distance and avoids re-scanning all
the data. The clustering algorithm gathers pairs of objects based on similar interactions
and similar dynamics.
To provide arguments on the applicability of the framework to a potentially large class

of trajectories, we have performed experiments on different types of moving objects. The
experiments have been organized in order to i) test the influence of the input thresholds
on the discovery process and on the quality of the crews, ii) perform a quantitative com-
parison with alternative solutions, iii) argue the usefulness of the information conveyed
by the crews in real case studies, and iv) distinguish the contribute given by each move-
ment parameter in the construction of high quality crews. Some considerations can be
drawn. First, the quality of the crews strongly depends on the trajectory data prepara-
tion. Indeed, if we use a coarse sampling to define the time instants, then the movement
parameters poorly describe interactions and dynamics. This result is not surprising. Sec-
ond, the experiments on the temporal maximum gap highlight a characteristic of the
framework, that is, the property to discover crews that may be developed over time
without temporal continuity. This is demonstrated by the quality of the crews. Third,
the meaningfulness of the crews and number of the relative members are always not re-
lated to each other, so groups of interest are not necessarily those more numerous. This
is evident for both data sets.
The emerging Big Data technologies will stimulate us to upgrade the proposed frame-

work in order to deal with Big mobility data problems. Recent studies focus on solutions
of parallel computation for the analysis of large volumes (Altomare et al. 2017), while
we plan to investigate the other two challenges of Big data, that is, velocity and va-
riety. A future direction for the velocity will be re-designing the proposed framework
in order to mine trajectory data streams. Techniques of data stream mining based on
time-windows could be considered for this task (Loglisci and Malerba 2014). The final
purpose will be that of providing a prompt an real-time response on the formation of
crews. A future direction for the variety will be exploiting unstructured data (for in-
stance, geographic documents (Loglisci et al. 2012a,b)) and crowd-sourced information
(e.g., OpenStreetMap, GeoNames) in order to extend the feature space and movement
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parameters. This can be done with techniques of geo-tagging able to annotate punctual
trajectory data with contextual information. The final purpose will be that of enriching
the information expressed by discovered crews. Several works have already investigated,
for instance, the integration of geo-tagging with social media data (Comito et al. 2016).
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Appendix

A Tree induction algorithm for clustering pairs of moving objects

Here we explain the algorithm for clustering pairs of moving objects through an example
(Figure 13). Consider µ=2 and required reduction=0.2. The newly created nodes are
stored in a queue structure and will be processed one by one. At the beginning, the
algorithm stores the root in the queue (Figure 13- root.vectors), then it proceeds with
the generation of the splitting values for each movement parameter and, for each splitting
value, it creates two subsets from the set of vectors of the node. The splitting values are
taken from the values existing in the node. Subsequently, the algorithm computes the
reduction of the dissimilarity between the vectors of the node and the vectors of the two
subsets. By supposing that the parameter that guarantees greater dissimilarity reduction
is “Azimuth Distance” and the threshold value is 22 (Figure 13-

�� ��1 ), the algorithm inserts
two branches and two new nodes into the tree. The node on the left contains the vectors,
whose values of “Azimuth Distance” are lower than 22, while the node on the right takes
the values greater than or equal to 22 (Figure 13-

�� ��2 ). By assuming that the dissimilarity
of “Azimuth Distance” has been reduced by a factor of 0.1, it is removed from the
list of the parameters. The new nodes are stored in the queue. Hence, the algorithm
examines the node on the left and, by assuming that the next parameter with maximum
dissimilarity reduction is “Tortuosity Ratio” and the threshold value is 1.2, it expands
the tree with two new nodes (Figure 13-

�� ��3 ), which will not be stored because the number
of the contained pairs does not exceed µ2. The algorithm continues with the node on the
right of “Azimuth Distance”. The maximum dissimilarity reduction is obtained with the
parameter “Displacement” and with the threshold 150 (Figure 13-

�� ��4 ). Finally, the new
nodes are added to the tree, but are not stored because the conditions of termination
are satisfied.
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Figure 13. Illustration of the tree induction algorithm.

Time complexity

We conducted the complexity analysis of the three main procedures of the framework,
that is, i) transformation of the raw trajectory data into vectors, ii) clustering pairs of
moving objects, iii) building crews from similarity-based pair groups. The notation of
the input data and thresholds is reported in Table 2. i) Let n be the number of objects
O and t be the length of the time-domain T . The vectors are generated for all the pairs
of objects n2 at each sequence of consecutive time-instants ⟨τi, τi+1⟩, where a number of
computations equal to |F| (movement parameters) is performed for each pair of objects.
Thus, the number of operations is n2|F| at each sequence, while the time cost is O(tn2)
for all the non-overlapping sequences of time-instants, considering that |F|≪ n, t. ii)
The order of the input data of the algorithm of tree induction is tn2. By assuming that
the tree remains “bushy”, the depth is O(log (tn2)). At each node, not all the pairs are
considered, but all the pairs are considered at the different depths of the tree, so the
amount of work is O(tn2log (tn2)). Considering that at each node all the parameters
are evaluated, the time cost is O(|F|tn2log (tn2)). Also here, |F|≪ n, t. iii) Let µ be
the minimum required number of objects. The cost of the third procedure is due to
the operations of generation and joining of the SPGs. More precisely, the counting of
the intersections has time complexity equal to O(t logt) (Layer et al. (2013)) and it is

performed for all the leaves, which are tn2

µ2 in the worst case, therefore O( t
2n2

µ2 logt). The

number of the operations of join is related to the number of pairs µ2 at each leaf and to
the total number of leaves tn2

µ2 . Therefore, the amount of work is O(tn2+ t2n2

µ2 logt).
The total time cost of the framework is:

tn2︸︷︷︸
raw data transformation

+ tn2log(tn2)︸ ︷︷ ︸
pair clustering

+ tn2 +
t2n2

µ2
logt︸ ︷︷ ︸

building crews

that is, O(tn2(2 + log(tn2)) + t2n2

µ2 logt).


