Estimating and testing for differences in molecular phenotypes (e.g., gene expression, chromatin accessibility, transcription factor binding) across conditions is an important part of understanding the molecular basis of gene regulation. These phenotypes are commonly measured using high-throughput sequencing assays (e.g., RNA-seq, ATAC-seq, ChIP-seq), which provide high-resolution count data that reflect how the phenotypes vary along the genome. Multiple methods have been proposed to help exploit these highresolution measurements for differential expression analysis. However, they ignore the count nature of the data, instead using normal distributions that work well only for data with large sample sizes or high counts. Here we develop count-based methods to address this problem. We model the data for each sample using an inhomogeneous Poisson process with spatially structured underlying intensity function and then, building on multiscale models for the Poisson process, estimate and test for differences in the underlying intensity function across samples (or groups of samples). Using both simulation and real ATAC-seq data, we show that our method outperforms previous normal-based methods, especially in situations with small sample sizes or low counts.
Multi-scale Poisson process approaches for differential expression analysis of high-throughput sequencing data
Pantaleo, EsterMembro del Collaboration Group
;
2024-01-01
Abstract
Estimating and testing for differences in molecular phenotypes (e.g., gene expression, chromatin accessibility, transcription factor binding) across conditions is an important part of understanding the molecular basis of gene regulation. These phenotypes are commonly measured using high-throughput sequencing assays (e.g., RNA-seq, ATAC-seq, ChIP-seq), which provide high-resolution count data that reflect how the phenotypes vary along the genome. Multiple methods have been proposed to help exploit these highresolution measurements for differential expression analysis. However, they ignore the count nature of the data, instead using normal distributions that work well only for data with large sample sizes or high counts. Here we develop count-based methods to address this problem. We model the data for each sample using an inhomogeneous Poisson process with spatially structured underlying intensity function and then, building on multiscale models for the Poisson process, estimate and test for differences in the underlying intensity function across samples (or groups of samples). Using both simulation and real ATAC-seq data, we show that our method outperforms previous normal-based methods, especially in situations with small sample sizes or low counts.File | Dimensione | Formato | |
---|---|---|---|
23-AOAS1828.pdf
non disponibili
Descrizione: Multiscale Poisson process approaches for detecting and estimating differences from high-throughput sequencing assays
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.