Objective: Memory is the faculty responsible for encoding, storing and retrieving information, comprising several sub-systems such as sensory memory (SM) and working memory (WM). Some previous studies exclusively using clinical population revealed associations between these two memory systems. Here we aimed at investigating the relation between modality-general WM performance and auditory SM formation indexed by magnetic mismatch negativity (MMN) responses in a healthy population of young adults. Methods: Using magnetoencephalography (MEG), we recorded MMN amplitudes to changes related to six acoustic features (pitch, timbre, location, intensity, slide, and rhythm) inserted in a 4-tone sequence in 86 adult participants who were watching a silent movie. After the MEG recordings, participants were administered the WM primary subtests (Spatial Span and Letter Number Sequencing) of Wechsler Memory Scale (WMS). Results: We found significant correlations between frontal MMN amplitudes to intensity and slide deviants and WM performance. In case of intensity, the relation was revealed in all participants, while for slide only in individuals with a musical background. Conclusions: Automatic neural responses to auditory feature changes are increased in individuals with higher visual WM performance. Significance: Conscious WM abilities might be linked to pre-attentive sensory-specific neural skills of prediction and short-term storage of environmental regularities.

Auditory sensory memory and working memory skills: Association between frontal MMN and performance scores

Brattico E.
Supervision
;
2018-01-01

Abstract

Objective: Memory is the faculty responsible for encoding, storing and retrieving information, comprising several sub-systems such as sensory memory (SM) and working memory (WM). Some previous studies exclusively using clinical population revealed associations between these two memory systems. Here we aimed at investigating the relation between modality-general WM performance and auditory SM formation indexed by magnetic mismatch negativity (MMN) responses in a healthy population of young adults. Methods: Using magnetoencephalography (MEG), we recorded MMN amplitudes to changes related to six acoustic features (pitch, timbre, location, intensity, slide, and rhythm) inserted in a 4-tone sequence in 86 adult participants who were watching a silent movie. After the MEG recordings, participants were administered the WM primary subtests (Spatial Span and Letter Number Sequencing) of Wechsler Memory Scale (WMS). Results: We found significant correlations between frontal MMN amplitudes to intensity and slide deviants and WM performance. In case of intensity, the relation was revealed in all participants, while for slide only in individuals with a musical background. Conclusions: Automatic neural responses to auditory feature changes are increased in individuals with higher visual WM performance. Significance: Conscious WM abilities might be linked to pre-attentive sensory-specific neural skills of prediction and short-term storage of environmental regularities.
File in questo prodotto:
File Dimensione Formato  
Bonetti18_Auditory sensory memory and working memory skills.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/269144
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact