The existence of ovarian stem cells (OSCs) in women as well as their physiological role in post-menopausal age are disputed. However, accumulating evidence demonstrated that, besides the animal models including primarily mice, even in adult women putative OSCs obtained from ovarian cortex are capable to differentiate in vitro into oocyte-like cells (OLCs) expressing molecular markers typical of terminal stage of oogonial cell lineage. Recent studies describe that, similarly to mature oocytes, the OSC-derived OLCs also contain haploid karyotype. As proof of concept of their stem commitment, OSCs from mice differentiated to oocytes in vitro are suitable to be fertilized and implanted in sterilized animals resulting in embryo development. Despite enthusiasm for these data, which definitely require extended confirmation before considering potential application in humans for treatment of ovarian insufficiency, OSCs appear suitable for other clinical uses, restoring the endocrine derangements in premature ovarian failure or for fertility preservation in oncologic patients after anti-cancer treatments. In this context, the selection of viable oocytes generated from OSCs before chemotherapy protocols would overcome the potential adjunct oncogenic risk in women bearing hormone-dependent tumors who are repeatedly stimulated with high dose estrogens to induce oocyte maturation for their egg recruitment and cryopreservation.

In vitro generation of oocytes from ovarian stem cells (OSCs): In search of major evidence

Silvestris E.
;
D'oronzo S.;Cafforio P.;Cormio G.
2019-01-01

Abstract

The existence of ovarian stem cells (OSCs) in women as well as their physiological role in post-menopausal age are disputed. However, accumulating evidence demonstrated that, besides the animal models including primarily mice, even in adult women putative OSCs obtained from ovarian cortex are capable to differentiate in vitro into oocyte-like cells (OLCs) expressing molecular markers typical of terminal stage of oogonial cell lineage. Recent studies describe that, similarly to mature oocytes, the OSC-derived OLCs also contain haploid karyotype. As proof of concept of their stem commitment, OSCs from mice differentiated to oocytes in vitro are suitable to be fertilized and implanted in sterilized animals resulting in embryo development. Despite enthusiasm for these data, which definitely require extended confirmation before considering potential application in humans for treatment of ovarian insufficiency, OSCs appear suitable for other clinical uses, restoring the endocrine derangements in premature ovarian failure or for fertility preservation in oncologic patients after anti-cancer treatments. In this context, the selection of viable oocytes generated from OSCs before chemotherapy protocols would overcome the potential adjunct oncogenic risk in women bearing hormone-dependent tumors who are repeatedly stimulated with high dose estrogens to induce oocyte maturation for their egg recruitment and cryopreservation.
File in questo prodotto:
File Dimensione Formato  
Silvestris E - IJMS 2019.pdf

accesso aperto

Descrizione: Silvestris_2019
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/266040
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact