Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3 +) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”

Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells

Listorti Andrea;
2017-01-01

Abstract

Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3 +) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/262120
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? ND
social impact