Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.

Oxidative stress and neurodegeneration: the involvement of iron

Carocci A.;Catalano A.;
2018-01-01

Abstract

Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.
File in questo prodotto:
File Dimensione Formato  
Biometals 2018 (1).pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/239736
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 82
social impact