Background: Powdery mildew (PM) is a widespread fungal disease of plants in temperate climates, causing significant economic losses in agricultural settings. Specific homologs of the MLO gene family are PM susceptibility factors, as their loss-of function results in durable PM resistance (mlo resistance) in several plant species. The role of MLO susceptibility genes in plant-pathogen interactions is still elusive, however it is known that they are strongly upregulated following PM infection. Results: In this study, we investigated the structure of 414 Putative Promoter Regions (PPRs) of MLO genes and highlighted motif and regulatory element patterns related to genomic relationships among species and phylogenetic distance among homologs. A TC box-like motif and a thymine-rich motif were found to be overrepresented in MLO genes transcriptionally upregulated upon infection with PM fungi. As proof of concept, we showed that the expression of a melon (Cucumis melo L.) gene enriched for the motifs above mentioned was strongly upregulated upon infection with the PM fungus Podosphaera xanthii. Conclusion: While identifying a candidate MLO susceptibility gene in melon, this study provides insight on the transcriptional control of MLO genes and indicates diagnostic features useful to identify MLO susceptibility genes across species affected by the PM disease.

Evolutionary conservation of MLO gene promoter signatures

Ricciardi L.;Pavan S.
;
2019-01-01

Abstract

Background: Powdery mildew (PM) is a widespread fungal disease of plants in temperate climates, causing significant economic losses in agricultural settings. Specific homologs of the MLO gene family are PM susceptibility factors, as their loss-of function results in durable PM resistance (mlo resistance) in several plant species. The role of MLO susceptibility genes in plant-pathogen interactions is still elusive, however it is known that they are strongly upregulated following PM infection. Results: In this study, we investigated the structure of 414 Putative Promoter Regions (PPRs) of MLO genes and highlighted motif and regulatory element patterns related to genomic relationships among species and phylogenetic distance among homologs. A TC box-like motif and a thymine-rich motif were found to be overrepresented in MLO genes transcriptionally upregulated upon infection with PM fungi. As proof of concept, we showed that the expression of a melon (Cucumis melo L.) gene enriched for the motifs above mentioned was strongly upregulated upon infection with the PM fungus Podosphaera xanthii. Conclusion: While identifying a candidate MLO susceptibility gene in melon, this study provides insight on the transcriptional control of MLO genes and indicates diagnostic features useful to identify MLO susceptibility genes across species affected by the PM disease.
File in questo prodotto:
File Dimensione Formato  
Andolfo et al. 2019.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/236683
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact