In assessing the impact of climate change on infrastructure, it is essential to consider the interactions between the atmosphere, vegetation and the near-surface soil. This paper presents an overview of these processes, focusing on recent advances from the literature and those made by members of COST Action TU1202 - Impacts of climate change on engineered slopes for infrastructure. Climate- and vegetation-driven processes (suction generation, erosion, desiccation cracking, freeze- thaw effects) are expected to change in incidence and severity, which will affect the stability of new and existing infrastructure slopes. This paper identifies the climate- and vegetation-driven processes that are of greatest concern, the suite of known unknowns that require further research, and lists key aspect that should be considered for the design of engineered transport infrastructure slopes in the context of climate change.

Atmosphere-vegetation-soil interactions in a climate change context; Impact of changing conditions on engineered transport infrastructure slopes in Europe

Gentile, F.;
2018-01-01

Abstract

In assessing the impact of climate change on infrastructure, it is essential to consider the interactions between the atmosphere, vegetation and the near-surface soil. This paper presents an overview of these processes, focusing on recent advances from the literature and those made by members of COST Action TU1202 - Impacts of climate change on engineered slopes for infrastructure. Climate- and vegetation-driven processes (suction generation, erosion, desiccation cracking, freeze- thaw effects) are expected to change in incidence and severity, which will affect the stability of new and existing infrastructure slopes. This paper identifies the climate- and vegetation-driven processes that are of greatest concern, the suite of known unknowns that require further research, and lists key aspect that should be considered for the design of engineered transport infrastructure slopes in the context of climate change.
File in questo prodotto:
File Dimensione Formato  
QJEGH 2018.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/227520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 44
social impact