Self-induced flavor conversions near the supernova (SN) core can make the fluxes for different neutrino species become almost equal, potentially altering the dynamics of the SN explosion and washing out all further neutrino oscillation effects. We present a new model-independent analysis strategy for the next galactic SN signal that will distinguish this flavor equalization scenario from a matter-effects-only scenario during the SN accretion phase. Our method does not rely on fitting or modeling the energy-dependent fluences of the different species to a known function, but rather uses a model-independent comparison of charged-current and neutral-current events at large next-generation underground detectors. Specifically, we advocate that the events due to elastic scattering on protons in a scintillator detector, which is insensitive to oscillation effects and can be used as a model-independent normalization, should be compared with the events due to inverse beta decay of νe in a water Cherenkov detector and/or the events due to charged-current interactions of νe in an argon detector. The ratio of events in these different detection channels allow one to distinguish a complete flavor equalization from a pure matter effect, for either of the neutrino mass orderings, as long as the spectral differences among the different species are not too small.

Model-independent diagnostic of self-induced spectral equalization versus ordinary matter effects in supernova neutrinos

Capozzi, Francesco;Mirizzi, Alessandro
2018-01-01

Abstract

Self-induced flavor conversions near the supernova (SN) core can make the fluxes for different neutrino species become almost equal, potentially altering the dynamics of the SN explosion and washing out all further neutrino oscillation effects. We present a new model-independent analysis strategy for the next galactic SN signal that will distinguish this flavor equalization scenario from a matter-effects-only scenario during the SN accretion phase. Our method does not rely on fitting or modeling the energy-dependent fluences of the different species to a known function, but rather uses a model-independent comparison of charged-current and neutral-current events at large next-generation underground detectors. Specifically, we advocate that the events due to elastic scattering on protons in a scintillator detector, which is insensitive to oscillation effects and can be used as a model-independent normalization, should be compared with the events due to inverse beta decay of νe in a water Cherenkov detector and/or the events due to charged-current interactions of νe in an argon detector. The ratio of events in these different detection channels allow one to distinguish a complete flavor equalization from a pure matter effect, for either of the neutrino mass orderings, as long as the spectral differences among the different species are not too small.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/223500
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact