A pseudotachylite vein network crosscutting late Hercynian foliated tonalites can be observed along the Copanello cliffs (Calabria, Southern Italy). Pseudotachylites formed during the Oligocene-Miocene at intermediate crustal levels (ca. 10 km). They show variable thickness ranging from few mm up to 10 cm, as observed in injection veins branching from the fault plane. Microscopic observations indicate that pseudotachylite matrix mainly consists of plagioclase (An(46)-An(58)) and biotite microlites. Rounded clasts of quartz, plagioclase or of plagioclase-quartz lithic fragments are disseminated in the matrix. Intergranular, flow and spherulitic textures are commonly observed. Microstructural features are consistent with rapid crystallisation from melt. EDS analyses of rare and tiny glass veins indicated a trachyandesite or An(50) plagioclase melt composition. The conditions for pseudotachylite formation were reproduced by an analytical model taking into account the heat released by friction along a horizontal fault plane during a seismic event. The model is based on a three-stage rupture history that includes nucleation, propagation and stopping. In addition, by means of a numerical approach, the model reproduces cooling that follows the stopping stage. According to previous studies, the thermal perturbation induced by fault displacement is very intense. In fact, temperatures exceeding the tonalite and even An(50) plagioclase liquidus (1470 degrees C) are reproduced by small amount of slip (<= 6 cm) in suprahydrostatic regime. On the other hand, the thermal perturbation is strongly localised and of short duration. Peak temperatures abruptly decrease at a short distance from the fault plane (typically in few millimetres). In these conditions a thin film of melt can be produced. Therefore, the presence of cm-scale pseudotachylite veins can be only explained assuming an efficient and fast melt migration towards dilatant sites, such as pull-apart structures and injections veins. Results of the model may be useful to predict the thermal disturbance produced by earthquakes of low intensity. (c) 2005 Elsevier B.V. All rights reserved.

Modelling the heat pulses generated on a fault plane during coseismic slip: inferences from the pseudotachylites of the Copanello cliffs (Calabria, Italy)

CAGGIANELLI, Alfredo;DE LORENZO, SALVATORE;
2005-01-01

Abstract

A pseudotachylite vein network crosscutting late Hercynian foliated tonalites can be observed along the Copanello cliffs (Calabria, Southern Italy). Pseudotachylites formed during the Oligocene-Miocene at intermediate crustal levels (ca. 10 km). They show variable thickness ranging from few mm up to 10 cm, as observed in injection veins branching from the fault plane. Microscopic observations indicate that pseudotachylite matrix mainly consists of plagioclase (An(46)-An(58)) and biotite microlites. Rounded clasts of quartz, plagioclase or of plagioclase-quartz lithic fragments are disseminated in the matrix. Intergranular, flow and spherulitic textures are commonly observed. Microstructural features are consistent with rapid crystallisation from melt. EDS analyses of rare and tiny glass veins indicated a trachyandesite or An(50) plagioclase melt composition. The conditions for pseudotachylite formation were reproduced by an analytical model taking into account the heat released by friction along a horizontal fault plane during a seismic event. The model is based on a three-stage rupture history that includes nucleation, propagation and stopping. In addition, by means of a numerical approach, the model reproduces cooling that follows the stopping stage. According to previous studies, the thermal perturbation induced by fault displacement is very intense. In fact, temperatures exceeding the tonalite and even An(50) plagioclase liquidus (1470 degrees C) are reproduced by small amount of slip (<= 6 cm) in suprahydrostatic regime. On the other hand, the thermal perturbation is strongly localised and of short duration. Peak temperatures abruptly decrease at a short distance from the fault plane (typically in few millimetres). In these conditions a thin film of melt can be produced. Therefore, the presence of cm-scale pseudotachylite veins can be only explained assuming an efficient and fast melt migration towards dilatant sites, such as pull-apart structures and injections veins. Results of the model may be useful to predict the thermal disturbance produced by earthquakes of low intensity. (c) 2005 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/136289
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact