Abstract—Brain edema and severe alterations of the glial and endothelial cells have recently been demonstrated in the dystrophin-deficient mdx mouse, an experimental model of Duchenne muscular dystrophy, and an increase in microvessel density in patients affected by Duchenne muscular dystrophy has also been shown. In order to further elucidate the mechanisms underlying the angiogenetic processes occurring in Duchenne muscular dystrophy, in this study we analyzed matrix-metalloproteinase-2 and -9 expression in the brain of 20-month-old mdx and control mice by means of immunohistochemistry, in situ hybridization, immunoblotting and gelatin zymography. Moreover, we studied vascular endothelial growth factor expression by means of Western blot and immunohistochemistry, and by dual immunofluorescence using anti-vascular endothelial growth factor and anti matrix-metalloproteinase-2 and-9 antibodies. Ultrastructural features of the brain choroidal plexuses were evaluated by electron microscopy. Spatial relationships between endothelium and astrocyte processes were studied by confocal laser microscopy, using an anti-CD31 antibody as a marker of endothelial cells, and anti-glial fibrillary acidic protein (GFAP) as a marker of glial cells. The results demonstrate that high expression of matrixmetalloproteinase- 2 and matrix-metalloproteinase-9 protein content occurs in mdx brain and in choroidal plexuses where, by in situ hybridization, matrix-metalloproteinase-2 and matrix- metalloproteinase-9 mRNA was localized in the epithelial cells. Moreover, matrix-metalloproteinase-2 mRNA was found in both mdx perivascular astrocytes and blood vessels, while matrix-metalloproteinase-9 mRNA was localized in mdx vessels. Through zymography, increased expression of matrixmetalloproteinase- 2 and matrix-metalloproteinase-9 was found in mdx brain compared with the controls. These enhanced matrix-metalloproteinase levels in mdx mice were found to be associated with increased vascular endothelial growth factor expression, as determined by immunoblotting and immunocytochemistry and with ultrastructural alterations of the mdx choroidal epithelial cells and brain vessels, as previously reported [Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Roncali L (2003) Severe alterations of endothelial and glial cells in the blood–brain barrier of dystrophic mdx mice. Glia 42:235–251]. Indeed, in the mdx epithelial cells of the plexuses, the apical microvilli were located on the lateral membranes, whereas in the controls they were uniformly distributed over the free ventricular surface. Moreover, by dual immunofluorescence, a colocalization of vascular endothelial growth factor and matrix-metalloproteinase-2 and matrix- metalloproteinase-9 was found in the ependymal and epithelial cells of plexuses in mdx mice and, under confocal laser microscopy, mdx CD-31 positive vessels were enveloped by less GFAP-positive astrocyte processes than the controls. Overall, these data point to a specific pathogenetic role of matrix-metalloproteinase-2 and matrix-metalloproteinase- 9 in neurological dysfunctions associated with Duchenne muscular dystrophy.

Increased matrix-metalloproteinase-2 and matrix-metalloproteinase-9 expression in the brain of dystrophic mice

NICO, Beatrice;CORSI, Patrizia;RIA, ROBERTO;VACCA, Angelo;RIBATTI, Domenico;
2006-01-01

Abstract

Abstract—Brain edema and severe alterations of the glial and endothelial cells have recently been demonstrated in the dystrophin-deficient mdx mouse, an experimental model of Duchenne muscular dystrophy, and an increase in microvessel density in patients affected by Duchenne muscular dystrophy has also been shown. In order to further elucidate the mechanisms underlying the angiogenetic processes occurring in Duchenne muscular dystrophy, in this study we analyzed matrix-metalloproteinase-2 and -9 expression in the brain of 20-month-old mdx and control mice by means of immunohistochemistry, in situ hybridization, immunoblotting and gelatin zymography. Moreover, we studied vascular endothelial growth factor expression by means of Western blot and immunohistochemistry, and by dual immunofluorescence using anti-vascular endothelial growth factor and anti matrix-metalloproteinase-2 and-9 antibodies. Ultrastructural features of the brain choroidal plexuses were evaluated by electron microscopy. Spatial relationships between endothelium and astrocyte processes were studied by confocal laser microscopy, using an anti-CD31 antibody as a marker of endothelial cells, and anti-glial fibrillary acidic protein (GFAP) as a marker of glial cells. The results demonstrate that high expression of matrixmetalloproteinase- 2 and matrix-metalloproteinase-9 protein content occurs in mdx brain and in choroidal plexuses where, by in situ hybridization, matrix-metalloproteinase-2 and matrix- metalloproteinase-9 mRNA was localized in the epithelial cells. Moreover, matrix-metalloproteinase-2 mRNA was found in both mdx perivascular astrocytes and blood vessels, while matrix-metalloproteinase-9 mRNA was localized in mdx vessels. Through zymography, increased expression of matrixmetalloproteinase- 2 and matrix-metalloproteinase-9 was found in mdx brain compared with the controls. These enhanced matrix-metalloproteinase levels in mdx mice were found to be associated with increased vascular endothelial growth factor expression, as determined by immunoblotting and immunocytochemistry and with ultrastructural alterations of the mdx choroidal epithelial cells and brain vessels, as previously reported [Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Roncali L (2003) Severe alterations of endothelial and glial cells in the blood–brain barrier of dystrophic mdx mice. Glia 42:235–251]. Indeed, in the mdx epithelial cells of the plexuses, the apical microvilli were located on the lateral membranes, whereas in the controls they were uniformly distributed over the free ventricular surface. Moreover, by dual immunofluorescence, a colocalization of vascular endothelial growth factor and matrix-metalloproteinase-2 and matrix- metalloproteinase-9 was found in the ependymal and epithelial cells of plexuses in mdx mice and, under confocal laser microscopy, mdx CD-31 positive vessels were enveloped by less GFAP-positive astrocyte processes than the controls. Overall, these data point to a specific pathogenetic role of matrix-metalloproteinase-2 and matrix-metalloproteinase- 9 in neurological dysfunctions associated with Duchenne muscular dystrophy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/115750
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact