Tocainide is effective in the symptomatic treatment of myotonic syndromes for its ability to reduce the high frequency discharges of action potentials typical of the disease, by blocking voltage-gated sodium channels. However, its use is restricted by serious side effects. In spite of its chiral structure, tocainide is clinically used as a racemic mixture. Since the optical isomers may differ in their efficacy and toxicity, the present study was aimed at evaluating the antimyotonic activity of the pure R(-) and S(+) enantiomers of tocainide, on the abnormal membrane hyperexcitability of external intercostal muscle fibers of congenitally myotonic goats. The excitability parameters were recorded in vitro by means of the standard two-microelectrode current-clamp technique before and after the addition of the compounds. The R(-) enantiomer of tocainide at concentrations as low as 10 microM potently counteracted the abnormal excitability of myotonic fibers, by increasing the threshold current, and decreasing the latency of the action potential and firing capability. Also, this concentration of R-(-) tocainide almost completely abolished the abnormal spontaneous electrical activity occurring in about 70-80% of the myotonic fiber. The S(+) enantiomer was remarkably less potent since up to 100 microM did not restore the normal excitability pattern. The results show that most of the antimyotonic activity of tocainide resides in the R(-) enantiomer suggesting that its clinical use may allow a significant reduction of the doses and possibly of the side effects.

Antimyotonic effects of tocainide enantiomers on skeletal muscle fibers of congenitally myotonic goats

CONTE, Diana;PIERNO, Sabata;DE LUCA, Annamaria;
2000-01-01

Abstract

Tocainide is effective in the symptomatic treatment of myotonic syndromes for its ability to reduce the high frequency discharges of action potentials typical of the disease, by blocking voltage-gated sodium channels. However, its use is restricted by serious side effects. In spite of its chiral structure, tocainide is clinically used as a racemic mixture. Since the optical isomers may differ in their efficacy and toxicity, the present study was aimed at evaluating the antimyotonic activity of the pure R(-) and S(+) enantiomers of tocainide, on the abnormal membrane hyperexcitability of external intercostal muscle fibers of congenitally myotonic goats. The excitability parameters were recorded in vitro by means of the standard two-microelectrode current-clamp technique before and after the addition of the compounds. The R(-) enantiomer of tocainide at concentrations as low as 10 microM potently counteracted the abnormal excitability of myotonic fibers, by increasing the threshold current, and decreasing the latency of the action potential and firing capability. Also, this concentration of R-(-) tocainide almost completely abolished the abnormal spontaneous electrical activity occurring in about 70-80% of the myotonic fiber. The S(+) enantiomer was remarkably less potent since up to 100 microM did not restore the normal excitability pattern. The results show that most of the antimyotonic activity of tocainide resides in the R(-) enantiomer suggesting that its clinical use may allow a significant reduction of the doses and possibly of the side effects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/126927
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact