Despite being considered an emerging yeast related to immunocompromised individuals, severe infections by Malassezia furfur have not been evaluated. During a one-year survey on yeasts fungemia, 290 neonatal and 17 pediatric patients with intravascular catheters, lipid parenteral nutrition, prolonged ward stay, and surgery were enrolled. In addition, the origin of the infection was investigated by swabbing hand skin of patients, parents, and healthcare workers and medical devices. All biological specimens and swabs were cultured on Sabouraud dextrose agar and Dixon agar. The yeasts identification was based on morphological and biochemical features and by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and confirmed by sequencing the internal transcribed spacer of nuclear ribosomal DNA. A higher prevalence of M. furfur (2.1%) over Candida spp. (1.4%) caused bloodstream infections (BSIs). Twelve fungemia episodes were recorded: 2 by M. furfur in a pediatric ward and 10 in a neonatal intensive care unit (6 caused by M. furfur and 4 by Candida spp.). M. furfur was also isolated from the skin of all patients with BSIs, from the hand skin of a parent, and from an incubator surface and sheet. Patients with Candida spp. and M. furfur BSIs were successfully treated with intravenous liposomal Amphotericin B. These findings highlight the need for a more accurate etiological diagnosis in high-risk patients by adding lipid-supplemented culture media for Malassezia in the current mycological routine as the clinical features, patient management, and outcomes in both Candida and Malassezia fungemia do not differ.

Bloodstream infections by Malassezia and Candida species in critical care patients

IATTA, ROBERTA;CAFARCHIA, Claudia;LAFORGIA, Nicola;OTRANTO, Domenico;MONTAGNA, Maria Teresa
2014-01-01

Abstract

Despite being considered an emerging yeast related to immunocompromised individuals, severe infections by Malassezia furfur have not been evaluated. During a one-year survey on yeasts fungemia, 290 neonatal and 17 pediatric patients with intravascular catheters, lipid parenteral nutrition, prolonged ward stay, and surgery were enrolled. In addition, the origin of the infection was investigated by swabbing hand skin of patients, parents, and healthcare workers and medical devices. All biological specimens and swabs were cultured on Sabouraud dextrose agar and Dixon agar. The yeasts identification was based on morphological and biochemical features and by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and confirmed by sequencing the internal transcribed spacer of nuclear ribosomal DNA. A higher prevalence of M. furfur (2.1%) over Candida spp. (1.4%) caused bloodstream infections (BSIs). Twelve fungemia episodes were recorded: 2 by M. furfur in a pediatric ward and 10 in a neonatal intensive care unit (6 caused by M. furfur and 4 by Candida spp.). M. furfur was also isolated from the skin of all patients with BSIs, from the hand skin of a parent, and from an incubator surface and sheet. Patients with Candida spp. and M. furfur BSIs were successfully treated with intravenous liposomal Amphotericin B. These findings highlight the need for a more accurate etiological diagnosis in high-risk patients by adding lipid-supplemented culture media for Malassezia in the current mycological routine as the clinical features, patient management, and outcomes in both Candida and Malassezia fungemia do not differ.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/126680
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 57
social impact