In the present study, gold/surfactant core/shell colloidal nanoparticles with a controlled morphology and chemical composition have been obtained via the so-called sacrificial anode technique, carried out in galvanostatic mode. As synthesized Au-NPs had an average core diameter comprised between 4 and 8 nm, as a function of the electrochemical process experimental conditions. The UV–Vis characterization of gold nanocolloids showed clear spectroscopic size effects, affecting both the position and width of the nanoparticle surface plasmon resonance peak. The nanomaterial surface spectroscopic characterization showed the presence of two chemical states, namely nanostructured Au(0) (its abundance being higher than 90%) and Au(I). Au-NPs were then deposited on the top of a capacitive field effect sensor and subjected to a mild thermal annealing aiming at removing the excess of stabilizing surfactant molecules. Au-NP sensors were tested towards some gases found in automotive gas exhausts. The sensing device showed the largest response towards NOx, and much smaller – if any – responses towards interferent species such as NH3, H2, CO, and hydrocarbons.

Electrosynthesis and characterization of gold nanoparticles for electronic capacitance sensing of pollutants

CIOFFI, NICOLA
;
DITARANTO, NICOLETTA;SABBATINI, Luigia;TORSI, Luisa
2011-01-01

Abstract

In the present study, gold/surfactant core/shell colloidal nanoparticles with a controlled morphology and chemical composition have been obtained via the so-called sacrificial anode technique, carried out in galvanostatic mode. As synthesized Au-NPs had an average core diameter comprised between 4 and 8 nm, as a function of the electrochemical process experimental conditions. The UV–Vis characterization of gold nanocolloids showed clear spectroscopic size effects, affecting both the position and width of the nanoparticle surface plasmon resonance peak. The nanomaterial surface spectroscopic characterization showed the presence of two chemical states, namely nanostructured Au(0) (its abundance being higher than 90%) and Au(I). Au-NPs were then deposited on the top of a capacitive field effect sensor and subjected to a mild thermal annealing aiming at removing the excess of stabilizing surfactant molecules. Au-NP sensors were tested towards some gases found in automotive gas exhausts. The sensing device showed the largest response towards NOx, and much smaller – if any – responses towards interferent species such as NH3, H2, CO, and hydrocarbons.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/126574
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 39
social impact