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Abstract

The time–fractional Schrödinger equation is a fundamental topic in physics and
its numerical solution is still an open problem. Here we start from the possibility to
express its solution by means of the Mittag–Leffler function; then we analyze some
approaches based on the Krylov projection methods to approximate this function;
their convergence properties are discussed, together with related issues. Numerical
tests are presented to confirm the strength of the approach under investigation.

Keywords: time–fractional Schrödinger equation, Mittag–Leffler function, Krylov
subspace methods.

1 Introduction

The time–dependent Schrödinger equation is a fundamental equation in quantum physics
and describes the evolution of the position–space wave function of a particle. Its formu-
lation dates back to 1926 by the Austrian physicist Erwin Schrödinger [1] who also laid
the foundations of quantum wave mechanics.

During the last two decades a special interest has been paid to generalize some impor-
tant models and equations in order to introduce derivatives of fractional (i.e., non–integer)
order. Experimental observations have indeed shown that the non–locality of fractional
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operators is a suitable tool to keep into account some anomalous phenomena and hered-
itary properties which can not be satisfactorily described by means of classical physical
laws.

Nowadays, models based on fractional differential equations (FDEs) are commonly
studied and employed in several fields, ranging from biology to engineering, finance,
physics and so on (we refer, for instance, to [2, 3, 4, 5, 6, 7] for an introductory overview
on fractional calculus and its main applications).

The generalization to non–integer order derivatives of the Schrödinger equation has
been firstly proposed by Laskin [8] who used the Feynman path integrals over the Levy
trajectories to derive a space–fractional Schrödinger equation with the Laplace operator
replaced by the quantum Riesz derivative. Successive contributions are due to [9, 10, 11,
5, 12, 13].

In [14] Naber proposed and discussed a different generalization by changing the first
order time–derivative into a Caputo fractional derivative and investigated two different
ways to perform this generalization, by expressing its preference on the one obtained by
performing a Wick rotation.

Although the formulation of the Schrödinger equation is quite simple, finding its so-
lutions is not in general an easy task and hence numerical approaches are often preferred
in practice. However, as far as we know, very few contributions [15, 16] are available in
literature on the numerical solution of the time–fractional Schrödinger equations (TFSEs).

Under a general point of view, it is well–known that classical approaches based, for
instance, on finite differences are usually computationally expensive when applied to time–
dependent FDEs; the presence, indeed, of a long persistent memory leads to convolution
quadratures which are very demanding especially for integration over long time intervals.
For these reasons, finding new and more efficient ways for numerically solving evolutionary
problems of fractional order is today an active field of research.

In the recent years a considerable attention has been focused on the application of
Krylov subspace methods for the approximation of the action of functions of matrices or
linear operators [17, 18, 19]. This has been mainly motivated by the fact that solutions to
various differential problems can be expressed in terms of such functions; on the basis of
this observation, modern exponential integrators are devised (see [20] for a recent survey).

In particular for FDEs, whose solutions can be often represented through Mittag–
Leffler (ML) functions, the possibility of evaluating the solution directly at some time,
by means of matrix functions, appears extremely remarkable since it allows to avoid long
convolution quadratures and save computational time; in this respect, we quote the recent
papers [19, 21, 22, 23, 24, 25, 26, 27].

The aim of this paper is to study such approach for the numerical solution of TFSEs.
For this reason we will present the standard Krylov subspace method (SKM) and we will
study their convergence properties. We will also show the main problems arising in some
particular situations and we will discuss some alternative strategies. In particular, the
rational Arnoldi method often named as the Shift-and-Invert Krylov method (SIKM) will
be here considered. Indeed, due to its good features, such procedure turns out to be
particularly suited for treating various types of PDEs. In several cases, SIKM converges
in a very fast way but the theoretical investigation of the convergence properties is not
an easy task; this is particularly true with TFSEs whose resulting operators have the
spectrum on the imaginary axis or, however, on some axis in regions affected by stability
issues.

This paper is organized in the following way. In Section 2 we introduce the main
formulations for the TFSEs and we provide some basis for their solution. Section 3 is
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devoted to present the ML function and study its main properties for operators having
the same spectral location of the operators arising from spatial discretization of the TFSE.
In Section 4 Krylov subspace methods are introduced and the convergence properties are
investigated; since this Section is quite technical, for the sake of clearness we have moved
all the proofs in an Appendix at the end of the paper. In Section 5 we present some
numerical experiments and we discuss some alternative strategies in order to improve the
computational efficiency.

2 Time-Fractional Schrödinger equation

The Schrödinger equation is the main tool in quantum physics to describe the position–
space wavefunction ψ = ψ(t, x) of a single non relativistic particle with mass m̂ and
potential energy V (x). As usual, here t denotes the independent time–variable and x
the spatial coordinates in a certain domain Ω ⊆ Rp, p ∈ {1, 2, 3}. One of the simplest
formulations of the time–dependent Schrödinger equation is provided by

i}
d

dt
ψ = − }2

2m̂
∇2
xψ + V (x)ψ,

where ∇2
x is the classical Laplacian operator with respect to the spatial variable x ∈ Ω,

i =
√
−1 is the imaginary unit and } the reduced Planck’s constant. In more sophisticated

quantum models, the Hamiltonian

H(x) = − }2

2m̂
∇2
x + V (x)

is replaced by more complex operators, which possibly vary with respect to the time;
however we will not address these cases and we will focus on the above basic form of
H(x). We recall that under suitable conditions on V (see the Kato–Rellich theorem in
[28]), the operator H is self adjoint.

Substantially, the following two distinct options emerge for the generalization of the
time–dependent Schrödinger equation to fractional order [14]:

i}Tα−1
p 0D

α
t ψ = − }2

2m̂
∇2
xψ + V (x)ψ (1)

and

iα}Tα−1
p 0D

α
t ψ = − }2

2m̂
∇2
xψ + V (x)ψ, (2)

where Tp denotes the Planck time; for a function u which is assumed n times differentiable
in [0, T ] with an absolutely continuous n-th derivative, 0D

α
t u(t) is the Caputo’s fractional

derivative defined according to

0D
α
t u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−1−αu(n)(s)ds, t ∈ (0, T ],

for n ∈ N, n− 1 < α < n, and Γ(z) =
∫∞

0
sz−1e−sds the Euler’s gamma function.

The choice to raise or not i to the order of the time derivative has physical motiva-
tions. In [14], the author motivates to choose the latter as the natural formulation of the
TFSE because its solution preserves the main physical features as α moves from integer
to fractional values in the neighborhood of 1. On the contrary, other authors [29] intro-
duced some considerations supporting formulation (1). Without entering into this type of
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discussion, since this paper focuses on the numerical solution of the fractional Schrödinger
equation, we will not express any preference for any of these formulations and we will face
the numerical treatment of both cases.

Nevertheless, for the sake of completeness, we must also mention a third formulation
which has been recently proposed in [30] on the basis of the same arguments (the Wick
rotation and its inverse) used in [14] to derive (2). This formulation is qualitatively similar
to (2) and, from the numerical point of view, does not add any supplementary difficulty
with respect to (2) and therefore we will not further consider it.

To provide a concise notation we recast problems (1) and (2) in the more general
framework

0D
α
t y(t) = Aηy(t), Aη = (−i)ηA (3)

with η = 1 or η = α according to the fact that we are dealing respectively with equation
(1) or (2). Here A is a suitable positive self–adjoint linear operator (not involving time
differentiation) acting on a (separable) Hilbert space H with spectrum σ(A) ⊂ [a,+∞),
with a > 0 and a dense domain D(A) ⊆ H.

The framework (3) is very general and allows to look at the same problem under
different points of view: from an abstract perspective A denotes the infinite dimensional
operator A = T 1−α

p }−1H(x); in a numerical setting A is a finite dimensional operator
(namely a matrix) resulting from spatial discretization of T 1−α

p }−1H(x) (for instance, by
means of finite differences, spectral methods or finite elements).

Throughout this paper we will confine our attention only to real values of α with
0 < α < 1, since this is the case of more interest in practical applications. Classical
theoretical results (see e.g. [31, 6, 7]) state that when equation (3) is coupled with the
initial condition y(0) = v its solution can be represented as

yα(t) = eα,1(t;Aη)v

with
eα,β(t; z) = tβ−1Eα,β(tαz) (4)

denoting a generalization of the Mittag–Leffler (ML) function

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C. (5)

Although it is possible to study the evaluation of ML functions on possibly unbounded
operators (see e.g. [25, 26]), in practice we work in finite dimension; hence, from now on
we assume that A is a real symmetric positive definite square matrix (usually arising from
some suitable discretization of the continuous operator H(x)).

3 The Mittag–Leffler function: integral formulations

and properties

The ML functions Eα,β and eα,β play a crucial role in the analysis and solution of FDEs,
including the TFSE under consideration. The investigation of some of their main prop-
erties is therefore of primary importance.

In the past several (more or less equivalent) representations of the ML function, mostly
in integral form, have been proposed. The introduction of different formulations is moti-
vated by the fact that some of them turn out to be useful for the investigation of theoretical
properties whereas others are of practical utility for computation.
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In this Section we briefly review some representations of the ML function in order to
present the main properties which will be used in the forthcoming analysis.

3.1 Integral formulation based on the Hankel representation

One of the most used formulations was first proposed in [32] for the case β = 1, and
hence in [33] for any arbitrary β, and it is based on the use of the Hankel’s integral
representation for the reciprocal of the Gamma function in (5). To this purpose we
consider, in the complex plane, the contour Q(ε, µ), with απ

2
< µ ≤ min[π, απ] and ε > 0,

oriented in a counterclockwise direction and consisting of the following three parts:

1. arg ξ = −µ, |ξ| > ε;

2. −µ ≤ arg ξ ≤ µ, |ξ| = ε;

3. arg ξ = µ, |ξ| > ε .

The contour Q(ε, µ) divides the complex plane into a left domain G−(ε, µ) and a right
domain G+(ε, µ) as shown in Figure 1 (left plot). The choice µ = π is allowed when
α ≥ 1 and G+(ε, π) becomes C excluding the circle |z| < ε and the line |arg z| = π (see
the right plot of Figure 1). For t > 0 the following representation [7, Theorem 1.1.] holds:
if z ∈ G−(ε, µ) then

eα,β(t; z) =
1

2απi

∫
Q(ε,µ)

exp(−tξ
1
α )ξ

1−β
α (ξ − z)−1dξ (6)

and if z ∈ G+(ε, µ) then

eα,β(t; z) =
1

α
z

1−β
α exp(tz

1
α ) +

1

2απi

∫
Q(ε,µ)

exp(−tξ
1
α )ξ

1−β
α (ξ − z)−1dξ. (7)

G−(ε, µ)

G+(ε, µ)

Q(ε, µ)

µ

ε

G−(ε, π)

G+(ε, π)

Q(ε, π)

ε

Figure 1: Contour Q(ε, µ) and left and right domains G−(ε, µ) and G+(ε, µ) for µ < π
(left plot) and µ = π (right plot).

The above formulas are usually used to study the ML function (mainly to get asymp-
totic expansions), but they have been also employed for numerical computation (see e.g.
[34, 35]).

Formulas (6) and (7) are likely to be useful since the extension to matrix arguments is

straightforward, recalling that A
1
α can be (uniquely) defined through Schur decomposition
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in such a way that it is symmetric positive definite too. We point out that we are interested
to give convergence results which hold for every discretization of H(x). This motivates to
assume that the spectrum σ(A) is contained in [a,+∞), a > 0. Yet, by this fact, when
η = α we cannot employ formula (6) and we are compelled to use (7) with ε < a in
order to ensure that the whole spectrum of (−i)αA is contained in G+(ε, µ). Accordingly,
referring to (3) and (4), in analyzing the proposed methods we will make use of (6) when
η = 1 and of (7) when η = α.

3.2 Integral formulation based on the Laplace transform

The Laplace transform of the generalized ML function eα,β(t; z) is [7, 6]

Eα,β(s; z) = L(eα,β(t; z)) =
sα−β

sα − z
.

Because of the presence of real powers, Eα,β(s;λ) is a multi-valued function; to make
it single-valued we thus select a branch cut from 0 to −∞ along the negative real axis.

It is therefore possible to represent eα,β(t;λ) by means of the formula for the inversion
of the Laplace transform

eα,β(t; z) =
1

2πi

∫
C
estEα,β(s; z)ds,

where C is a contour in the complex plane obtained by deforming the Bromwich line in a
suitable way to encompass all the singularities of Eα,β(s; z).

The contour C can be deformed into an Hankel contour Hγ which starts from −∞,
moves below the negative real semi-axis, surrounds the origin in the positive (counter-
clockwise) sense along a circular disc |s| = γ and returns at −∞ above the negative real
semi-axis. By letting γ → 0, the contour Hγ crosses the poles of Eα,β which are therefore
removed by residue subtraction

eα,β(t; z) =
∑
s?∈S

Res
(
estEα,β(s; z), s?

)
+ lim

γ→0

1

2πi

∫
Hγ
estEα,β(s; z)ds, (8)

where S is the set of all singularities of Eα,β except the branch–point singularity at the
origin and Res

(
f, s?

)
denotes the residue of f at s?.

Thanks to (8) we are able to decompose eα,β(t; z) into two terms

eα,β(t; z) = F
(1)
α,β(t; z) + F

(2)
α,β(t; z), (9)

where

F
(1)
α,β(t; z) = lim

γ→0

1

2πi

∫
Hγ
estEα,β(s; z)ds

and

F
(2)
α,β(t; z) =

∑
s?∈S

Res
(
estEα,β(s; z), s?

)
=

1

α

∑
s?∈S

ets
?

(s?)1−β.

3.3 Behavior of eα,β(t; z) for complex arguments

Splitting the ML function according to (9) can be useful for investigating some of its
properties. In particular we are interested in studying the behavior of eα,β(t; (−i)ηλ) for
real and positive λ ranging from 0 to +∞.
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The completely monotonic (c.m.) character of the ML function, in the presence of real
arguments, has been studied by several authors (see, for instance, [36, 6, 37, 38, 39]). We
recall that a function f(x) is c.m. when (−1)kf (k)(x) ≥ 0 for all k = 0, 1, . . . and x > 0.
The c.m. property is of interest since it assures a high level of smoothness.

These results on the c.m. of the ML can not be directly extended to the more general
case under investigation but anyway we can the same provide useful information of this
kind for F

(1)
α,β(t; z).

Proposition 1. The function F
(1)
α,β(t; z) is a linear combination of a finite number of c.m.

functions.

Proof. By letting γ → 0, the Hankel’s path Hγ collapses onto the branch cut and it is an

elementary task to verify, after standard manipulations, that F
(1)
α,β(t; z) can be equivalently

written as

F
(1)
α,β(t; z) =

1

2πi

∫ ∞
0

e−rtrα−β
rαeiβπ − z̄e−i(α−β)π

r2α − 2rαΦα(z̄) + |z|2
dr −

1

2πi

∫ ∞
0

e−rtrα−β
rαe−iβπ − z̄ei(α−β)π

r2α − 2rαΦα(z) + |z|2
dr,

where Φα(z) : C → R denotes the real–valued function defined according to Φα(z) =
<(z) cosαπ + =(z) sinαπ. Therefore, if we introduce the functions

Gα,β(t; z) =

∫ +∞

0

e−rtKα,β(r; z)dr, Kα,β(r; z) =
rα−β

r2α − 2rαΦα(z) + |z|2

we are able to express F
(1)
α,β(t; z) as the linear combination

F
(1)
α,β(t; z) =

eiβπ

2πi
Gα,β−α(t; z̄)− e−iβπ

2πi
Gα,β−α(t; z)

− z̄e
−i(α−β)π

2πi
Gα,β(t; z̄) +

z̄ei(α−β)π

2πi
Gα,β(t; z)

(observe that although very similar, here with Kα,β(r; z) we denote a slightly different
function with respect to the spectral function denoted by the same symbol in other papers,
for instance [36, 40, 6]).

Since Φα(z) = |z| cos(θ−απ), with θ = arg z, it is Kα,β(r; z) ≥ 0 for any 0 ≤ r < +∞.
Hence, thanks to the Bernstein’s theorem, the real–valued function Gα,β(t; z) is c.m., thus
concluding the proof.

Proposition 1 is not sufficient to guarantee that F
(1)
α,β(t; z) is c.m. too (to obtain this

result the coefficients in the linear combination should be non negative) but it allows to

state that it is infinitely time differentiable for t > 0. Moreover, since F
(1)
α,β(t; z) is a linear

combination of a finite number of monotonic functions, it is expected to have a quite
smooth behavior; the sign of its derivative can indeed change a (very small) finite number
of times and hence we can exclude the presence of oscillations. A graphical analysis
allows to better understand the smooth character of this function for β = 1 (although
the behavior of the ML function is usually investigated with respect to the independent
variable t, with z playing the role of a fixed argument, when z = (−i)ηλ, with λ > 0, the
roles of t and λ can be easily swapped since eα,1(t; (−i)ηλ) = eα,1(λ1/α; (−i)ηtα)).
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Albeit F
(1)
α,1(t; (−i)ηλ) is non monotonic, both its real and imaginary parts turn out to

be bounded for 0 < λ < +∞ and asymptotically they tend to 0 as λ→∞; we can observe
this behavior in Figure 2, where for t = 1 we plotted F

(1)
α,1(t;−iλ) for some instances of

α, and in Figure 3, where the same plots are presented for η = α. In both cases, the
absence of repeated oscillations suggests a certain level of smoothness which facilitates
the numerical approximation on matrix arguments by means of Krylov subspace, as we
will better observe later on.
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Figure 2: Plots of F
(1)
α,1(t;−iλ) for real λ > 0 and t = 1. The real part is in the left plot

and the imaginary part in the right plot.
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Figure 3: Plots of F
(1)
α,1(t; (−i)αλ) for real λ > 0 and t = 1. The real part is in the left

plot and the imaginary part in the right plot.

To study the second term F
(2)
α,1(t; (−i)ηλ) it is preliminarily necessary to establish the

number and the location of the poles of Eα,1(s; (−i)ηλ).
Since λ > 0 is real, the possible roots of sα − (−i)ηλ = 0 are clearly

s?j =
(
(−i)ηλ

)1/α
= λ1/αei

(4j−η)
2α

π, j ∈ Z.

Only the poles in the main Riemann sheet are relevant, i.e. the poles with the argument
in (−π, π].

In the case η = 1, it is immediate to verify that there are no relevant poles when
0 < α ≤ 1/2 while, when 1/2 < α ≤ 1, one pole s? = λ1/αe−i

π
2α exists. The function

8



F
(2)
α,1(t;−iλ) thus vanishes for 0 < α ≤ 1

2
while, for 1

2
< α < 1, we can reformulate

F
(2)
α,1(t;−iλ) as

F
(2)
α,1(t;−iλ) =

1

α
eφαtλ

1/α

with φα = e−i
π
2α . Since φα lies in the third quadrant of the complex plane, the function

F
(2)
α,1(t;−iλ) presents damped oscillations as λ increases in [0,+∞). The whole func-

tion eα,1(t;−iλ) is therefore the sum of a rapidly decaying term F
(1)
α,1(t;−iλ) and a term

F
(2)
α,1(t;−iλ) whose oscillations decay faster as α becomes smaller, until they completely

vanish for α < 1/2.
For η = α there is just one relevant pole s? = −λ1/αi. We can therefore reformulate

F
(2)
α,1(t; (−i)αλ) as

F
(2)
α,1(t; (−i)αλ) =

1

α
e−itλ

1/α

.

The presence of the term e−itλ
1/α

indicates the oscillating character of F
(2)
α,1(t; (−i)αλ)

which never decays. The frequency of the oscillations can be high according to the value
of λ and, as we will observe in the numerical tests of Section 5, this can create some
convergence problems when the ML function has to be evaluated on matrices with a large
spectrum.

4 Krylov projection methods

Approximating the value of a function with matrix argument (or the action of a matrix
function on a given vector) is, in general, a complex task. Several approaches have been
studied in the past and their effectiveness strictly depend on the specific properties of the
function and the matrix. Thus, as pointed out in [41], where a detailed account of the
main methods available for the computation of matrix exponentials is provided, it is not
possible to conclude the superiority of a method over the others.

When the matrix A has small dimensions the computation of eα,1(t, Aη)v can be carried
out by employing Schur diagonalization, provided that a suitable code for the computation
of scalar ML functions is at disposal. When A is large, as it usually occurs with discretized
differential operators, Schur decomposition may be unfeasible. A remedy which is usu-
ally adopted in approximating the action of matrix functions consists in reducing the
dimension of the problem by the use of Krylov projection methods.

Krylov subspace methods are indeed particularly effective for large and very large size
problems and they have recently gained an increasing attention so as to be included as
the twentieth approach among the “nineteen ways” for evaluating the exponential matrix
in the updated review [42].

Let us consider the general problem of computing f(A)w, where f and w are given
function and vector respectively and A a real matrix argument. Let K be a subspace of
CN and let the projection P : CN → K be orthogonal. Then let A be the restriction to
K of PA, namely

A = PA : K→ K. (10)

Clearly A is real, positive and self–adjoint too with σ(A) ⊂ [a,+∞). Then we approximate
f(A)w by f(A)Pw, with K taken as a suitable Krylov subspace.

From now on let Πk denote the set of the algebraic polynomials of degree equal or
less than k. As usual, given a matrix M and a vector w we indicate by Kk+1(M,w) =
{p(M)w, p ∈ Πk}, k = 0, 1, 2, . . . , the k-th Krylov subspace generated by M and w. As
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already mentioned, in this paper we focus the attention on the so-called Shift-and-Invert
Krylov method (SIKM) where the Krylov subspaces are generated by the matrix

Z = (δI + A)−1

for a suitably chosen real scalar δ > 0 and I the identity matrix. Accordingly, one-pole
rational approximations are produced.

A further motivation for considering A as a matrix, instead of an abstract operator, is
that we are allowed to make comparisons with the SKM; indeed, since with the SKM the
subspaces are generated by A, polynomial approximations are produced thus demanding
for an high level of smoothness which is, in general, quite difficult to guarantee with
abstract operators.

The results of our analysis, reported in the following subsections, will explain the
convergence features of both methods when applied to the computation of eα,1(t, Aη)v.

Let us denote by W a matrix whose columns are an orthonormal basis of K. Its
computation can be provided by the standard Lanczos algorithm. Thus we have P =
WW ∗, where W ∗ denotes the adjoint of W . Accordingly let us consider the self–adjoint
matrix W ∗AW and its Schur decomposition W ∗AW = Q∗DQ. Therefore f(A)Pw can
be approximated as WQ∗f(D)QW ∗w.

Since in practice the matrix W ∗AW is of reduced dimension, its Schur decomposition
is not particularly expensive and only the evaluation of the ML function with scalar
arguments is hence required. We point out that, implementing the Krylov projection
in the above way, the subspaces are constructed handling real matrices and complex
arithmetic is (possibly) involved only in the evaluation of scalar ML functions.

4.1 Convergence results

Here and in the sequel C will denote any generic constant independent of A as well as of
all the involved parameters. The norm introduced, both for vectors and matrices, is the
hermitian one.

Since, as it appears in the literature, the TFSEs arising in the practice concern values
of α close to 1, here we restrict the analysis to the interval 1

2
< α ≤ 1. In the convergence

analysis we distinguish the various cases, considering both the SIKM and the SKM. The
proofs of the propositions below are reported in the Appendix.

4.2 The case of the TFSE (1), i.e. η = 1

Given a vector v, we denote with yα(t) the approximation

yα(t) = eα,1(t;−iA)Pv

to the solution to the TFSE (3) where, referring to (10), we first consider the SIKM (see
Proposition 2) and hence the SKM (see Proposition 3). The statements below cover even
the case of the standard Schrödinger equation (i.e., α = 1). For any α < 1 we put for
shortness

µ =
(1 + α)π

4
, ω̃ =

1 +
√

1 + (tanµ)2√
1 + (tanµ+ 1)2

.

Proposition 2. Let 1
2
< α < 1 and K = Km+1(Z, v), for m ≥ 1 and δ > 0. Then, for

any t > 0,

‖yα(t)− yα(t)‖ ≤ C
‖Av‖
δ

[
exp(tδ

1
α )qm +

√
cosµ exp

(
−f(rm)

2

)]
, (11)
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where f denotes the function f(r) = 2t(δr)
1
α |cos(µ/α)|+ r−

1
2m cosµ and

q =
1

ω̃ +
√
ω̃ − 1

, rm = max

( αm cosµ

2tδ
1
α

∣∣cos µ
α

∣∣
) 2α

α+2

,
1

cosµ

 .
Moreover we have

lim
α→1

sup ‖yα(t)− yα(t)‖ ≤ C
exp(tδ

1
α ) ‖Av‖
δ

(q̄m +m−
1
3 ), (12)

where q̄ =
√

5/(1 +
√

2 +
√

2(
√

2− 1)).

Proposition 3. Let 1
2
< α ≤ 1 and K = Km(A, v), for m ≥ 1. Then, for any t > 0,

‖yα(t)− yα(t)‖ ≤ C
‖(tαA)mv‖

(αm)αm
exp(αm). (13)

Proposition 2 shows that the rate of convergence (i.e., the error’s decay with respect
to m) of the SIKM is actually independent of A, even if the error bounds depend on ‖Av‖.
Accordingly, to extend the results to an unbounded operator A in (3) it is necessary to
assume that v ∈ D(A).

In order to choose δ, one could minimize the error bounds. More simply, the bounds
suggest that, for all t, say in the interval (0, T ], something like δ = 1

Tα
should be a

reasonable choice (we also refer the reader to our numerical experiments).
On the other hand, Proposition 3 shows that the rate of convergence of the SKM

depends strongly on A and even if a superlinear convergence is eventually achieved, this
may occur only for very large values of m. This fact was already pointed out in the
literature devoted to the numerical treatment of the classical (i.e., α = 1) Schrödinger
equation (see e.g. [43, 44])

Obviously, in order to apply the bound (13) to an abstract operator in (3) we must
assume v ∈ D(Am).

We also notice that, by some slight changes in the proofs, it is possible to obtain
similar bounds also for 0 < α ≤ 1

2
.

4.3 The case of the TFSE (2), i.e. η = α

As we expected, this case turns out to be more difficult to be handled, since the spectrum
of (−i)αA lies on the border of the stability region

{
|arg(λ)| ≥ απ

2

}
. As previously pointed

out, in this case eα,1(t, (−i)αA) will be expressed through formula (7) with ε < a. For our
purposes we will treat the two components of (7) separately.

In order to analyze the SKM (see Propositions 5 and 7) we need now to set an upper
bound on σ(A); in this way the role of the conditioning of A can be pointed out.

We begin with the computation of

wα(t) =
exp(−itA 1

α )

α
v.

Dealing with the SIKM it is convenient to rewrite wα(t) as wα(t) = g(A)Av, where
g(z) = exp(−itz1/α)z−1/α. Accordingly, we approximate wα(t) by wα(t) = g(A)Av.

11



Proposition 4. Let 1
2
< α < 1 and K = Km+1(Z,Av), for m ≥ 1 and δ = a. Then, for

any t > 0,

‖wα(t)− wα(t))‖ ≤ C
‖A2v‖
a2

exp
(
t
π

3
a

1
α

)(
3−m +

(
4

m

) 2(2α−1)
α+2

)
. (14)

When the SKM is employed, the approximation in K = Km+2(A, v), m ≥ 0, for wα(t)

is obtained by means of wα(t) = exp(−itA
1
α )v/α.

Proposition 5. Let 1
2
< α < 1 and K = Km+2(A, v), for m ≥ 0. Assume that σ(A) ⊂

[a, b] and set R = (b− a)/a. Then, for any t > 0,

‖wα(t)− wα(t)‖ ≤ C
‖A2v‖
a2

exp
(
t
π

3
a

1
α

)exp

(
−m

√
2

R

)
+

(√
2R

m

) 2(2α−1)
2−α

 .

Finally, for 1
2
< α < 1, we consider the second term in (7)

uα(t) =
1

2απi

∫
Q(ε,µ)

exp(−itλ
1
α ) (λI − (−i)αA)−1 vdλ

and the corresponding approximation

uα(t) =
1

2απi

∫
Q(ε,µ)

exp(−itλ
1
α )
(
λI − (−i)αA

)−1
vdλ.

Proposition 6. Let 1
2
< α < 1 and K = Km+1(Z, v), for m ≥ 1 and δ = a. Then, for

any t > 0,

‖uα(t)− uα(t)‖ ≤ C
‖Av‖
a

exp

(
t
(a

2

) 1
α

)(
3−m + exp(−f(rm))

)
,

where, for r ≥ 1/2, f defines the function f(r) = t(ar)
1
α +mr−1/8 and

rm = max

[(
αm

8ta
1
α

) α
α+1

,
1

2

]
.

Proposition 7. Let 1
2
< α < 1 and K = Km+1(A, v), for m ≥ 0. Assume that σ(A) ⊂

[a, b] and set R = (b− a)/a. Then, for any t > 0,

‖uα(t)− uα(t)‖ ≤ C
‖Av‖
a

exp

(
t
(a

2

) 1
α

)
exp

(
−m

√
2

R

)
.

Concerning the SKM, which in general can be defined only in the matrix case, Proposi-
tions 5 and 7 point out that the convergence may dramatically depend on the conditioning
of A, whilst in the case of the SIKM it is again independent of A, even if the bounds depend
on ‖A2v‖ and on ‖Av‖ (see Propositions 4 and 6).

If we look to A as the abstract operator in (3), the corresponding regularity conditions
on the data, namely v ∈ D(A2) and v ∈ D(A), have to be assumed.

Error bounds like (14) can be proved also for 0 < α ≤ 1
2
. Their proof needs however

further technicalities and we do not report them here; we plan to discuss on these points
in a forthcoming paper. We just note here that, if 1

k
< α ≤ 1

k−1
, for some k ≥ 2, then we

must assume that v ∈ D(Ak) in the case of abstract operators.
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5 Numerical experiments

For the numerical tests we consider a dimensionless system (i.e., } = m̂ = Tp = 1) in a
finite potential well which is null in a subdomain Ωp ⊂ Ω and rises abruptly to a certain
value V0 > 0 outside and on the boundary of Ωp. From a formal point of view it is

V (x) =


0 x ∈ int(Ωp)

V0 x ∈ cl(Ω\Ωp)

where int(Ωp) is the interior of Ωp and cl(Ω\Ωp) the closure of Ω\Ωp. A Gaussian initial
distribution ψ(0, x) = e−|x|

2/(2L2) is assumed at t = 0.
We restrict ourself to a 2-dimensional square domain Ω = (−2L, 2L)× (−2L, 2L) with

a square well Ωp = [−L,L]× [−L,L].
We perform a spatial discretization of the Laplacian ∇2

x by means of standard central
differences on some mesh–grids, which we assume equispaced along both dimensions of
Ω. The values L = 1 and V0 = 10 are assumed in all the experiments.

All the forthcoming experiments are carried out in Matlab, version 7.9.0.529, on a
computer equipped with the Intel Dual Core E5400 processor running at 2.70 GHz under
the Windows XP operating system.

To evaluate the ML function on matrix arguments we use a suitably modified version of
the algorithm presented in [45] (based on the numerical inversion of the Laplace transform)
extended to matrix arguments via Schur decomposition.

5.1 Comparison of convergence between polynomial and ratio-
nal Krylov methods

To compare the convergence behavior of the SKM with that of the SIKM (for clarity
denoted respectively as polynomial and rational Krylov methods), we introduce a dis-
cretization with 50 × 50 grid–points, thus generating a system with a 5-point stencil of
size N = 2, 500.

The computation of eα,1(t; (−i)ηA)v at some time t is performed for η = 1 and η = α
until a very small error is achieved or the maximum number of 200 iterations is reached.
For the fractional orders α = 0.7 and α = 0.9, the error, with respect to a reference solu-
tion, is hence plotted against the number of iterations (i.e., the size of Krylov subspace).

For η = 1, i.e. for the TFSE (1), the results are shown in Figure 4 for t = 1 (left plot)
and for t = 10 (right plot). Bullet symbols are used to denote the error obtained with the
polynomial Krylov method while diamonds denote the outcomes of the rational Krylov
method. Different values of the order α are identified by means of white and black colors
according to the legend in the corresponding plot.

As we can clearly see, the plots in Figure 4 are in a satisfactory agreement with
the results from the theoretical investigation in Section 4. The rational Krylov method
converges in a definitely faster way with respect to the polynomial counterpart. As we
can see, projection onto a subspace of very reasonable dimension (namely less than 10)
is sufficient to provide an accurate approximation with an error close to the precision
machine; in this case the solution of the TFSE is expected to be affected fairly by just
the error in the spatial discretization.

In all the above experiments the same value δ = 0.5 has been used in the rational
Krylov method. As discussed in [46, 19], a suitable selection of the parameter δ can
accelerate the convergence. Anyway, since accurate enough results are obtained with a
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Figure 4: Errors in eα,1(t;−iA)v by polynomial and rational Krylov methods for the 2D
problem (N = 2, 500) at t = 1 (left plot) and t = 10 (right plot).

very small number of iterations, we think that a further investigation of optimal values
for δ can be unnecessary in this case.

When the formulation (2) of the TFSE is considered, and hence η = α, a more
complicated situation is involved. As we can see from the error plots in Figures 5, the
convergence is very slow both for the polynomial and the rational method.
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Figure 5: Errors in eα,1(t; (−i)αA)v by polynomial and rational Krylov methods for the
2D problem (N = 2, 500) at t = 1 (left plot) and t = 10 (right plot).

This bad performance is mainly due to the highly oscillating character of the ML
function in z = (−i)αλ, as it can be inferred from the analysis in Section 3, and in

particular to the presence of the oscillating and non vanishing term F
(2)
α,1(t; (−i)αλ).

Since the operator A resulting from the discretization of the Hamiltonian H(x) has
eigenvalues with large modulus (especially when a fine spatial mesh–grid is used), there
result very high frequency oscillations which are badly approximated both by polynomials
and rational functions. Conversely, in the case η = 1 large eigenvalues are damped in a
fast way and this is the reason for the appreciable results with the TFSE (1).

5.2 An alternative approach

The above discussion on the fast converge of Krylov subspace methods when η = 1 but
not when η = α suggests an alternative approach in order to overcome some of these
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difficulties.
According to the analysis carried out in Subsection 3.3, and in particular by applying

(9) to matrix arguments, the solution yα(t) = eα,1(t; (−i)αA)v of the TFSE can be split
into the two components

yα(t) = ŷα(t) + ỹα(t), ŷα(t) = F
(1)
α,1(t; (−i)αA)v, ỹα(t) =

1

α
e−itA

1/α

v.

Since the smooth behavior of the function F
(1)
α,1, the approximation of ŷα(t) by means

of Krylov subspace methods does not pose any particular difficulty. Indeed, convergence
of polynomial and rational Krylov methods for the case η = α is as fast as the convergence
for eα,1(t;−iA), as we can observe in Figure 6 (the same value δ = 0.5 has been used).

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations

E
rr

o
r

 

 

Polynomial α = 0.7
Polynomial α = 0.9
Rational α = 0.7
Rational α = 0.9

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iterations

E
rr

o
r

 

 

Polynomial α = 0.7
Polynomial α = 0.9
Rational α = 0.7
Rational α = 0.9

Figure 6: Error of polynomial and rational Krylov methods for F
(1)
α,1(t; (−i)αA1/α)v for the

2D problem (N=2500) at t = 1.0 (left plot) and t = 10.0 (right plot).

The evaluation of the term ỹα(t) is more difficult for the presence of high frequency
oscillation modes. In particular, when a large or moderately large time t is requested,
both the polynomial and rational approximations of Krylov subspace methods are no more
suitable to provide accurate approximations and the resulting convergence is extremely
slow.

Since ỹα(t) is the solution of an integer–order ordinary differential equation (ODE),
the use of some suitable method for oscillating ODEs can be particularly attractive in
this case. We must however observe that the preliminary evaluation of A

1
α , which can

be performed by methods based on the Schur decomposition [47, 48] or contour integrals
[49, 50], can be prohibitively expensive with matrices of large size.

In the presence of large size problems, it can be preferable to exploit the semigroup
property of the exponential and evaluate ỹα(t) with Krylov subspace methods in a step-
by-step fashion, as

ỹn+1 = e−ihA
1/α

ỹn, ỹ0 =
1

α
v.

Once the matrix A has been projected into a suitable Krylov subspace, only the action
on the vectors ỹn of the function exp(−ihx1/α) with a matrix argument of small size is
required, thus to streamline the procedure. Indeed, by considering a sufficiently small
step–size h, the frequency of the oscillations is reduced and hence it is possible to obtain
a relatively fast convergence, resulting in the use of a small Krylov subspace.

Preliminary tests on this procedure seem to confirm its value especially when a mod-
erate step–size is selected; as we can observe from Figure 7 an accuracy of 10−6 (smaller
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than the error introduced by the spatial discretization) is achieved by subspaces of mod-
erately small size as compared to the dimension N = 2, 500 of the problem. As expected,
convergence degrades when the order α decreases since the width of the spectrum of the
operator A1/α increases. At the same time, an acceleration of the convergence is appreci-
ated with the reduction of the step–size, due to the reduced frequency of the oscillations
in the exponential.
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Figure 7: Error of polynomial and rational Krylov methods for exp(−ihA1/α)v for the 2D
problem (N=2500) at h = 0.0005 (left plot) and h = 0.0001 (right plot).

We are however aware that some aspects deserve a deep analysis, like the possibility
to build in an effective way the spaces Km(A, yn) or Km((δI + A)−1, ỹn), the optimal
balance between step–size and dimension of the Krylov subspace as well as developing
a posteriori–error estimates. Our experimental observations have moreover shown that
an accurate choice of the shift parameter δ can be of great help to improve efficiency (in
the tests of Figure 7 we selected, on an experimental basis, the values δ = 200, 000 and
δ = 4, 000 respectively for α = 0.8 and α = 0.9 with h = 0.0005 and the values δ = 5, 000
and δ = 2, 000 for h = 0.0001).

Motivated by these observations and by the fact that the numerical computation of
exp(−itA1/α) is inherently an interesting topic, we intend to devote a forthcoming paper
to this subject.

We just remark here the possibility of splitting the original problem in two subprob-
lems: the first of fractional nature and still suffering from memory issues but which can
be easily solved by means of Krylov subspace methods; the latter of integer order, and
hence with a memory–free character, but whose difficulties are related to the oscillating
nature. We think that new scenarios open up for the development of new and alternative
strategies in which different approaches are used to handle with the particular nature and
difficulties of each subproblem.
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A Proofs of the convergence properties

In this Appendix we collect the proofs of the propositions presented in Section 4 together
with some preliminary results.

From now on, for ξ( 6= 0) 6∈ [a,+∞), we set

D(ξ) = (ξI − A)−1 − (ξI − A)−1P. (15)

The following lemmas hold in the light of the identity

D(ξ)(ξI − A)b = 0, for b ∈ K. (16)

Lemma 8. Let K = Kk(A,w), for k ≥ 0. Then for every pk ∈ Πk it is

D(ξ)w = D(ξ)
pk(A)w

pk(ξ)
.

Lemma 9. Let K =Kk(Z,w), for k ≥ 2, with Z = (δI +A)−1. Then for j = 0, 1 and for
any pk−1 ∈ Πk−1 it is

D(ξ)w = D(ξ)
pk−1(Z)Ajw

ξjpk−1((ξ + δ)−1)
.

Proof. Use (16) with b = pk−2(Z)Zw for any pk−2 ∈ Πk−2 and the identity AZ = (I −
δZ).

Here and for the sequel we define

Φ(κ) = κ +
√
κ2 − 1, κ ≥ 1.

The following two lemmas follow by a result given in [51, Theorem 1].

Lemma 10. Under our assumptions on A, there exists pk ∈ Πk such that∥∥∥∥ pk(Z)

pk((ξ + δ)−1)

∥∥∥∥ ≤ 2

Φ(ω)k
, ω ≡ ω(ξ) =

δ + a+ |ξ − a|
|ξ + δ|

.

Lemma 11. Let the spectrum of A be contained in the interval [a, b]. For any λ /∈ [a, b]
there exists pk ∈ Πk such that∥∥∥∥pk(A)

pk(λ)

∥∥∥∥ ≤ 2

Φ
(
κ(λ)

)k , κ(λ) =
|b− λ|+ |a− λ|

b− a
.

Lemma 12. For any ν > 1, σ > 1, c ≥ 1 and d ≥ 1 it is∫ +∞

1

r−ν exp

(
−σ

1 + rcd

)
dr ≤ C

(σ
d

) 1−ν
c
.

Proof. The proof follows, after simple computation, by applying formulas 13.2.1 and 13.1.5
in [52].

Lemma 13. There exists a constant C such that for every symmetric and positive definite
matrix L and for any vector w, it is∫ ∞

−∞

∥∥((1 + is)I ± iL)−1w
∥∥2
ds ≤ C ‖w‖2 .
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Proof. The result follows from Plancharel’s Theorem (see e.g. [53]).

Proof of Proposition 2. For 1
2
< α < 1, let ε > 0 and µ = (1 + α)π/4. We observe that,

by the representation (6) and owing to Cauchy theorem, yα(t) can be expressed as

yα(t) = − 1

2απ

∫
Γ(ε,µ)

exp(tλ
1
α )(iλI − A)−1v dλ , (17)

where Γ(ε, µ) = Γ1(ε, µ) ∪ Γ2(ε, µ) with Γ1(ε, µ) the vertical segment

Γ1(ε, µ) = {λ : λ = ε+ iρ, −ε tanµ ≤ ρ ≤ ε tanµ}

and
Γ2(ε, µ) = {λ : λ = εr exp(±iµ), r ≥ 1/ cosµ} .

Moreover, for convenience we write

‖yα(t)− yα(t)‖ ≤ I1 + I2, (18)

where by (17) we set

Ik =
1

2απ

∥∥∥∥∫
Γk(ε,µ)

exp(tλ
1
α )D(iλ)vdλ

∥∥∥∥ , k = 1, 2,

and each integral represents the contribute of the corresponding part of the contour to
the whole integral on Γ(ε, µ). Thanks to Lemma 9, with j = 1,

Ik =
1

2απ

∥∥∥∥∥
∫

Γk(ε,µ)

exp(tλ
1
α )D(iλ)pm(Z)Av

λ pm((iλ+ δ)−1)
dλ

∥∥∥∥∥ , k = 1, 2,

for any pm ∈ Πm. We note that (18) can be extended, by letting α → 1, since the
well-known representation (see [53, p. 234])

y1(t) =
1

2πi
lim

n→+∞

∫ ε+in

ε−in
exp(tλ)(λI + iA)−1vdλ.

Let us set ε = δ. For I1 observe that
∣∣exp(tλ

1
α )
∣∣ = exp(tδ

1
α (1+s2)

1
2α cos(α−1 arctan s)),

where s = ρ/δ. Since (1 + s2)
1
2α cos(α−1 arctan s) ≤ 1, we have∣∣∣exp(tλ

1
α )
∣∣∣ ≤ exp

(
tδ

1
α

)
(19)

and, moreover, by Lemma 13 it is∫ tanµ

− tanµ

‖D(1 + is)w‖2 ds ≤ C ‖w‖2 . (20)

In order to apply Lemma 10, we observe that

ω(iλ) =
δ + a+ |iλ− a|
|iλ+ δ|

≥ δ + |λ|
|iλ+ δ|

and therefore, for any λ ∈ Γ1(δ, µ) we get

ω(iλ) ≥ ω∗(s) =
1 +
√

1 + s2√
1 + (s+ 1)2

(21)
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and hence Φ(ω(iλ))−1 ≤ q = Φ(ω̃)−1. Accordingly, by Lemma 10, and taking into account
of (20), (19) and the Schwarz’s inequality, we obtain

I1 ≤
C exp(tδ

1
α )q−m ‖Av‖
δ

(∫ tanµ

0

(1 + s2)−1ds

) 1
2

and hence we can conclude that

I1 ≤
C exp(tδ

1
α ) ‖Av‖ qm

δ
. (22)

Now let us consider λ ∈ Γ2(δ, µ). As ε = δ, we get ω(iλ) ≥ ω∗(r), where ω∗(r) =
(1 + r)/(

√
r2 + 1 + 2r sinµ), for r ≥ 1/cosµ. Thus

Φ(ω(iλ)) ≥ Φ(ω∗(r)) =
1 + r +

√
2r(1− sinµ)√

r2 + 1 + 2r sinµ

and by a simple computation one verifies that Φ(ω∗(r))2 ≥ 1 + 2r−
1
2 cosµ and hence

Φ(ω∗(r))−2 ≤ exp

(
−2 cosµ√

r

)
. (23)

Now we claim that for every vector w it holds that∫ ∞
1

cosµ

∥∥(r exp(iµ)I − iδ−1A)−1w
∥∥2
dr ≤ C ‖w‖2 . (24)

Indeed, for r ≥ 1/cosµ, first set η = r sinµ. From

((r cosµ+ iη)I − iδ−1A)−1 − ((1 + iη)I − iδ−1A)−1

= ((r cosµ+ iη)I − iδ−1A)−1(1− r cosµ)((1 + iη)I − iδ−1A)−1,

and since ‖((r cosµ+ iη)I + iδ−1A)−1‖ ≤ 1/(r cosµ), we easily obtain∥∥((r cosµ+ iη)I − iδ−1A)−1
∥∥ ≤ (2− 1

r cosµ
)
∥∥((1 + iη)I − iδ−1A)−1

∥∥ .
By this inequality we get∫ ∞

1
cosµ

∥∥(ir exp(iµ)I + δ−1A)−1w
∥∥2
dr ≤ C

∫ ∞
tanµ

∥∥((1 + iη)I − iδ−1A)−1w
∥∥2
dη

and (24) follows from Lemma 13. A similar inequality clearly holds by replacing A with
A as well as by replacing µ with −µ. Therefore we deduce that for λ ∈ Γ2(δ, µ) it is∫ ∞

1
cosµ

‖D(iλ)w‖2 dr ≤ Cδ−2 ‖w‖2 . (25)

Since cos(µ/α) < 0, by applying Lemma 10 and the Schwarz’s inequality, from (23)
and (25)) we get

I2 ≤ C
‖Av‖
δ

(∫ ∞
1

cosµ

r−2 exp (−f(r)) dr

) 1
2

. (26)
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By a simple analysis of the function f(r) one finds that, for r ≥ 1, f(r) ≥ f(rm).
Therefore, from (26) we get

I2 ≤ C
‖Av‖
δ

exp

(
−f(rm)

2

)
√

cosµ (27)

and after combining this inequality with (22) and (28), by (17) it is possible to prove (11).
In order to study what happens as α → 1, let us reconsider I1. We observe that by

referring to (21), it is possible to observe that when s ≤ 1 it follows Φ(ω∗(s))−1 ≤ q̄.
Moreover, it is not difficult to see that, for s ≥ 1 we have Φ(ω∗(s)) ≥

√
1 + s−3/2 and

hence Φ(ω∗(s))−2 ≤ exp(−1/(1 + s3/2)). By this bound, and by arguing as before, we
obtain

I1 ≤
C exp(tδ

1
α ) ‖Av‖
δ

[
q̄m−1 +

(∫ tanµ

1

(1 + s2)−1 exp

(
−m

1 + s3/2

)
ds)

) 1
2

]
.

We now apply Lemma 12 to obtain∫ +∞

1

(1 + s2)−1 exp

(
−m

1 + s3/2

)
ds ≤ Cm−

2
3

and therefore we get

I1 ≤
C exp(tδ

1
α ) ‖Av‖
δ

(q̄m +m−
1
3 ) (28)

and now (12) follows from (28) and (27), since µ = (1 + α)π/4.

Proof of Proposition 3. Let us start again from formulas (17) and (18). By employing
Lemma 8 we easily obtain

Ik =
1

2απ

∥∥∥∥∥
∫

Γk(ε,µ)

exp(tλ
1
α )

λm
D(iλ)Amvdλ

∥∥∥∥∥ , k = 1, 2. (29)

Let λ ∈ Γ1(ε, µ), then (19) holds with δ = ε and, moreover, ‖D(iλ)‖ ≤ 2/ε. Therefore,
setting s = ρ/ε, we get

I1 ≤ C
exp(tε

1
α ) ‖Amv‖
εm

∫ tanµ

0

(1 + s2)−
m
2 ds. (30)

Now let λ ∈ Γ2(ε, µ). We have ‖D(iλ)‖ ≤ 2/(εr cosµ) and
∣∣exp(tλ

1
α )
∣∣ ≤ exp(−2t(εr)

1
α |cos(µ/α)|)

and, as a consequence,

I2 ≤
C

εm cosµ

∫ +∞

1
cosµ

exp
(
−t(εr)

1
α

∣∣∣cos
µ

α

∣∣∣) r−m−1dr ≤ C
(cosµ)m−1

mεm
. (31)

Therefore, after inserting (30) and (31) in (29) we get

‖yα(t)− yα(t)‖ ≤ C
‖Amv‖
εm

exp(tε
1
α )

and the proof follows after choosing ε = (αm/t)α which minimizes exp(tε
1
α )/εm.
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Proof of Proposition 4. Let us set γ = 1/α. Consider the positively oriented (counter-
clockwise) contour G consisting of the following parts:

G2+ =
{
λ = δr exp(i π

3rγ
), 1 ≤ r < +∞

}
G1 =

{
λ = δ

2
(1 + iρ), −

√
3 ≤ ρ ≤

√
3
}

G2− =
{
λ = δr exp(−i π

3rγ
), 1 ≤ r < +∞

}
and, for the sake of simplicity, we set G2 = G2+ ∪ G2−. Let δ = a. For any t > 0,
the function exp(−itλγ)/λ is analytic in the convex set surrounded by G and, by the
Dunford–Taylor representation theorem [54, p. 601], we realize that

wα(t)− wα(t) =
1

2παi

∫
G

exp(−itλγ)
λ

D(λ)Av dλ

so that ‖wα(t)− wα(t)‖ ≤ I1 + I2, where

Ik =
1

2απ

∥∥∥∥∫
Gk

exp(−itλγ)
λ

D(λ)Av dλ

∥∥∥∥ , k = 1, 2.

By exploiting Lemma 9 we get for any pm ∈ Πm,

Ik =
1

2πα

∥∥∥∥∫
Gk

exp(−itλγ)
λ2

D(λ)pm(Z)A2v

pm((λ+ δ)−1)
dλ

∥∥∥∥ , k = 1, 2. (32)

When λ ∈ G1 we easily verify that∣∣∣∣exp(−itλγ)
λ2

∣∣∣∣ ≤ 4

a2(1 + ρ2)
exp

(
t
π

3α
aγ
)

(33)

and, moreover, referring to (15), we find

‖D(λ)‖ ≤ 4

a
. (34)

Now let us apply Lemma 10. For λ = a
2
(1 ± i |ρ|), it is easy to verify that, for

any 0 ≤ |ρ| ≤
√

3, it holds that ω(λ) ≥ (2δ + 3a)/(2δ + a) and, since δ = a, it is
Φ(ω(λ))−1 ≤ 1/3. Then, taking into account of all the previous inequalities, we obtain

I1 ≤ C̄
‖A2v‖ exp

(
t π

3α
aγ
)

a2
3−m

∫ √3

0

1

1 + ρ2
dρ = C

‖A2v‖ exp
(
t π

3α
aγ
)

a2
3−m. (35)

We proceed in an analogous way for λ ∈ G2. At first one verifies that

|exp(−itλγ)| ≤ exp

(
t
πaγ

3α

)
, (36)

|dλ| ≤ a

(√
1 +

π2

9
r−2γ

)
dr (37)

and

‖D(λ)‖ ≤ 2

ar sin π
3rγ

≤ 1

a
Crγ−1. (38)
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In order to apply Lemma 10, we observe that ω(λ) ≥ ω∗(r), where

ω∗(r) =
1 + r√

r2 + 1 + 2r cos π
3rγ

and hence, by the above inequalities, we obtain

I2 ≤ C
‖A2v‖
a2

∫ ∞
1

r−3+γΦ(ω∗(r))−mdr. (39)

Since

Φ(ω∗(r)) =
1 + r +

√
2r(1− cos π

3rγ
)√

r2 + 1 + 2r cos π
3rγ

,

it is not difficult to see that

Φ(ω∗(r))2 ≥ 1 +

√
1

r

(
1− cos

π

3rγ

)
≥ 1 +

1

2
r−

1
2
−γ

and, hence, Φ(ω∗(r))−2 ≤ exp(−(1 + 2r
1
2

+γ)−1). Therefore we get

∫ ∞
1

r−3+γΦ(ω∗(r))−mdr ≤
∫ ∞

1

r−3+γ exp

 −m

2
(

1 + 2r
α+2
2α

)
 dr

thanks to which Lemma 12 leads to∫ ∞
1

r−3+γΦ(ω(r))−(m−1) ≤ C

(
4

m

) 2(2α−1)
α+2

and the result follows from Equations (32), (35) and (39).

Proof of Proposition 5. Let us consider again the contour G previously introduced and,
owing to Lemma 8, we easily realize that ‖wα(t)− wα(t)‖ ≤ I1 + I2, where for any pm ∈
Πm it is

Ik =
1

2απ

∥∥∥∥∫
Gk

exp(itλγ)

λ2

D(λ)pm(A)A2v

pm(λ)
dλ

∥∥∥∥ , k = 1, 2.

We observe that, for λ ∈ G1

κ(λ) =
|b− λ|+ |λ− a|

b− a
≥ b

b− a

and, accordingly, by using Lemma 11, (33) and (34), we obtain

I1 ≤ C
‖A2v‖
a2

exp

(
t
πaγ

3α

)
Φ

(
R + 1

R

)−m
.

Since, for x ≥ 0, it holds that

Φ(1 + x)−n = O(exp(−n
√

2x)), (40)

we get

I1 ≤ C
‖A2v‖
a2

exp

(
tπaγ

3α

)
exp

(
−m
√

2√
R

)
. (41)
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For λ ∈ G2 we observe that

κ(λ) =

√
(R + 1)2 + r2 − 2(R + 1)r cos π

3rγ
+
√

1 + r2 − 2r cos π
3rγ

R

≥ 1 +
r

R

(
1− cos

π

3rγ

)
and, since r(1− cos π

3rγ
) ≥ r1−2γ/4, by (40) it follows

Φ(κ(λ))−m ≤ C exp

(
−mr 1−2γ

2

√
2R

)
.

Therefore, by (36), (37), (38) and Lemma 11, it holds that

I2 ≤ C
‖A2v‖
a2

exp

(
tπaγ

3α

)∫ +∞

1

r−3+γ exp

(
−m

√
2Rr

2γ−1
2

)
dr

and by Lemma 12 we obtain the inequality

I2 ≤ C
‖A2v‖
a2

exp

(
t
πaγ

3α

)(√
2R

m

) 2(2α−1)
2−α

which, together with (41), allows to prove the result.

Proof of Proposition 6. Referring to (7) let us consider the contour Q = Q(a
2
, απ), 1

2
<

α < 1. From (6) and (15) we have

‖uα(t)− uα(t)‖ ≤ I1 + I2, (42)

where

Ik =
1

2απ

∥∥∥∥∫
Qk

exp(−itλ
1
α )D(iαλ)vdλ

∥∥∥∥ , k = 1, 2,

with Q1 =
{
λ : λ = a

2
exp(i arg λ), −µ ≤ arg λ < µ

}
and Q2 = Q\Q1. Then, by Lemma

9, for any pm ∈ Πm it is

Ik =
1

2απ

∥∥∥∥∥
∫
Qk

exp(tλ
1
α )

λ

D(iαλ)pm(Z)Av

pm((iαλ+ δ)−1)
dλ

∥∥∥∥∥ , k = 1, 2. (43)

For λ ∈ Q1 we get

‖D(iαλ)‖ ≤ 4

a
. (44)

We consider now

ω(iαλ) =
δ + a+ |iαλ− a|
|iαλ+ δ|

and for any λ ∈ Q1 it is easy to verify that ω(iαλ) ≥ (2δ + 3a)/(2δ + a) and thus, by
using δ = a, we have Φ(ω(iαλ))−1 ≤ 1/3. Therefore, by Lemma 10 and from (43) we
easily obtain

I1 ≤ C
‖Av‖
a

exp
(
ta

1
α

)
3−m. (45)
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Let λ ∈ Q2, namely λ = ar exp(±iµ), for 1
2
< r <∞. We realize that

ω(iαλ) ≥ 1 + r√
r2 + 1 + 2r cos(±µ+ απ

2
)

and, after observing that cos(±µ+ απ
2
) ≤ 1/

√
2, we get

ω(iαλ) ≥ ω∗(r) =
1 + r√

r2 + 1 +
√

2r
.

Therefore, since ‖D(iαλ)‖ ≤ C/(ar), by applying Lemmas 9 and 10 we obtain

I2 ≤ C
‖Av‖
a

∫ ∞
1

exp(−t(ar) 1
α )

r2
Φ(ω∗(r))−mdr, (46)

where

Φ(ω∗(r)) =
1 + r +

√
(2−

√
2)r√

r2 + 1 +
√

2r
.

One can see that Φ(ω∗(r))2 ≥ 1+1/(2r) and hence we find Φ(ω∗(r))−2 ≤ exp(−1/(1 + 2r)) ≤
exp (−1/(4r)). Therefore, from (46) it follows that

I2 ≤ C
‖Av‖
a

∫ ∞
1/2

exp(−f(r))

r2
dr.

A simple analysis shows that f(r) ≥ f(rm) and we can conclude that I2 ≤ C ‖Av‖
a

exp(−f(rm))
and the result follows by collecting the above inequality with (45).

Proof of Proposition 7. Consider again the contour Q = Q(a
2
, απ) and formula (42),

where, owing to Lemma 8, it holds

Ik =
1

2απ

∥∥∥∥∥
∫
Qk

exp(tλ
1
α )

λ

D(iαλ)pm(A)Av

pm(iαλ)
dλ

∥∥∥∥∥ , k = 1, 2,

for any pm ∈ Πm. Referring to Lemma 11, we observe that for λ ∈ Q1 it is κ(iαλ) ≥
1 + 1/R. Therefore, by recalling (40), we get Φ(κ(iαλ))−m ≤ O

(
exp(−m

√
2/R)

)
and

thus, by (44) and Lemma 11, it is

I1 ≤ C
‖Av‖
a

exp

(
t
(a

2

) 1
α −m

√
2/R

)
. (47)

Now consider λ ∈ Q2. For the corresponding κ(iαλ) one finds

κ(iαλ) =

∣∣b− ar exp(−iαπ
2
)
∣∣+ a

∣∣1− r exp(−iαπ
2
)
∣∣

b− a

and, since cos(−απ/2) ≤ 1/
√

2, it is

κ(iαλ) ≥

√
(R + 1)2 + r2 −

√
2(R + 1)r +

√
1 + r2 −

√
2r

R
. (48)
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By a simple analysis one finds that the right-hand side of (48) attains the minimum
at r =

√
2(R + 1)/(R + 2) and, by a simple computation, we obtain κ(iαλ) ≥ 1 + 1/R

and therefore, thanks to the Equation (40), it is Φ(κ(iαλ))−m ≤ O
(

exp(−m
√

2/R)
)

.

Thus, since ‖D(iαλ)‖ ≤ C/(ar) and
∣∣∣exp(−tλ 1

α )
∣∣∣ ≤ exp(−t(ar) 1

α ), by Lemmas 8 and

Lemma 11, we have

I2 ≤
C ‖Av‖

a

∫ +∞

1

exp(−t(ar) 1
α −m

√
2/R)

r2
dr,

and the result follows from formula (42) after applying the above inequality and equation
(47).
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