
 

 
 

A Multivocal Literature Review on the Benefits and 

Limitations of Industry-Leading AutoML Tools 

Luigi Quarantaa, Kelly Azevedob, Fabio Calefatoa, Marcos Kalinowskib 

aUniversity of Bari, Bari, Italy 
bPUC-Rio, Rio de Janeiro, Brazil 

 
 
 
 

Abstract 

Context . Rapid advancements in Artificial Intelligence (AI) and Machine 
Learning (ML) are revolutionizing software engineering in every application 
domain, driving unprecedented transformations and fostering innovation. 
However, despite these advances, several organizations are experiencing fric- 
tion in the adoption of ML-based technologies, mainly due to the current 
shortage of ML professionals. In this context, Automated Machine Learning 
(AutoML) techniques have been presented as a promising solution to democ- 
ratize ML adoption, even in the absence of specialized people. 
Objective . Our research aims to provide an overview of the evidence on the 
benefits and limitations of AutoML tools being adopted in industry. 
Method . We conducted a Multivocal Literature Review, which allowed us 
to identify 54 sources from the academic literature and 108 sources from the 
grey literature reporting on AutoML benefits and limitations. We extracted 
explicitly reported benefits and limitations from the papers and applied the 
thematic analysis method for synthesis. 
Results. In general, we identified 18 reported benefits and 25 limitations. 
Concerning the benefits, we highlight that AutoML tools can help streamline 
the core steps of ML workflows, namely data preparation, feature engineering, 
model construction, and hyperparameter tuning—with concrete benefits on 
model performance, efficiency, and scalability. In addition, AutoML empow- 
ers both novice and experienced data scientists, promoting ML accessibility. 
However, we highlight several limitations that may represent obstacles to the 
widespread adoption of AutoML. For instance, AutoML tools may introduce 
barriers to transparency and interoperability, exhibit limited flexibility for 
complex scenarios, and offer inconsistent coverage of the ML workflow. 
Conclusions. The effectiveness of AutoML in facilitating the adoption of 
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machine learning by users may vary depending on the specific tool and the 
context in which it is used. Today, AutoML tools are used to increase human 
expertise rather than replace it and, as such, require skilled users. 

Keywords: multivocal literature review, automl, autoai, benefits, 
limitations 

 

 

1. Introduction 

Over the last decade, the technological landscape has undergone a sig- 
nificant transformation driven by advances in Artificial Intelligence (AI) and 
Machine Learning (ML). These innovations have revolutionized a wide range 
of industries, including automotive, business, and healthcare [1, 2]. The 
widespread adoption of machine learning has profoundly transformed data 
analysis and decision-making processes in various sectors. Furthermore, it 
has significantly impacted software engineering, giving rise to a new disci- 
pline called AI Engineering. This emerging field lies at the intersection of 
Software Engineering and Artificial Intelligence and is focused on the design, 
implementation, management, and maintenance of AI-enabled systems. 

Despite these advances, numerous organizations still struggle to imple- 
ment vital machine learning initiatives, primarily due to the dependency on 
highly specialized expertise [3, 4, 5]. Indeed, the demand for machine learn- 
ing experts and AI engineers has dramatically increased [6] but there are not 
enough skilled professionals to cover these roles. This phenomenon limits 
industrial progress and slows down innovation. 

AutoML represents a promising approach to reduce the dependence of in- 
dustry on machine learning professionals, enabling organizations to efficiently 
adopt ML technologies [7]. Through automation, AutoML tools streamline 
the execution of several tasks in ML project development – including data 
cleaning, feature engineering, model selection, and hyperparameter tuning 
– typically offering faster (and sometimes better) outcomes than manually 
devised approaches. Hence, AutoML solutions can be crucial in driving ma- 
chine learning progress by helping organizations integrate ML capabilities 
into their products. Moreover, AutoML has the potential to support AI en- 
gineers in ensuring crucial non-functional requirements of AI systems and 
their associated development processes, including reproducibility, maintain- 
ability, scalability, and reliability. For instance, integrating AutoML into 
production ML pipelines could enable real-time, autonomous retraining of 
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ML models, mitigating performance degradation phenomena and ensuring 
optimal system reliability. 

Leading IT giants such as AWS1, Google2, IBM3, and Microsoft4 have 

acknowledged the growing business need for the AutoML technology and 
have created their own AutoML platforms. This increased focus highlights 
the importance of AutoML as a disruptive technology, which could drastically 
improve the development and deployment processes of AI-enabled systems. 

In this work, our objective is to explore the evidence available on AutoML 
technologies, synthesizing their reported benefits and limitations. In partic- 
ular, we aim to focus on the reported experiences with AutoML solutions 
currently deployed or under consideration in the software industry. Rather 
than reviewing AutoML research prototypes, our aim is to conduct a compre- 
hensive analysis of the AutoML state-of-practice. The ultimate goal of this 
research is to equip practitioners with the knowledge necessary to make in- 
formed decisions regarding the integration of AutoML and AutoML-derived 
products into their development processes. 

To this end, we conducted a Multivocal Literature Review (MLR), i.e., a 
form of systematic literature review that includes the analysis of non-peer- 
reviewed articles (the so-called ‘grey literature’) along with the academic 
literature (also known as ‘white literature’). In particular, this study aims 
to contribute by identifying: 

• The benefits revealed in scientific investigations on industry-relevant 
AutoML solutions and the perceived benefits reported by practitioners 
and companies that have embraced AutoML tools according to grey 
literature sources. 

• The limitations revealed in scientific investigations on industry-relevant 
AutoML solutions and the perceived limitations reported by practi- 
tioners and companies when using AutoML tools according to grey 
literature sources. 

To identify informative sources on industry-leading AutoML solutions, 
we narrowed our search to white and grey literature that mentions at least 

 
 

1https://aws.amazon.com/machine-learning/automl/ 
2https://cloud.google.com/automl 
3https://www.ibm.com/topics/automl 
4https://learn.microsoft.com/azure/machine-learning 

http://www.ibm.com/topics/automl
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one of the AutoML leaders identified in the Gartner Magic Quadrant for 
Cloud AI Developer Services [8]. These leaders include the aforementioned 
Microsoft, Google, IBM, and Amazon Web Services (AWS). 

By conducting a thorough thematic analysis of the retrieved sources, we 
have identified 18 benefits and 25 limitations of currently adopted AutoML 
solutions. The findings highlight that AutoML tools streamline machine 
learning workflows, simplify various development tasks, and can improve the 
performance of ML models. They enhance efficiency and scalability and 
accelerate prototyping, yet face challenges such as limited coverage of the 
typical ML workflow, insufficient replacement of human expertise, issues with 
transparency, and handling diverse data. While AutoML can bolster human 
capabilities, it does not replace the need for skilled ML professionals. A 
comprehensive understanding of AutoML tools is crucial for their effective 
application in industry. 

The literature review presented in this paper represents a significant ad- 
vancement in the field of AutoML, being the first secondary study to apply 
the MLR methodology to this emerging technology. Our systematic approach 
thoroughly examines the advantages and disadvantages of AutoML, synthe- 
sizing a wide range of sources from academic and grey literature published 
between 2017 and 2022. By complementing peer-reviewed scientific evidence 
with insights from non-peer-reviewed articles such as technical blogs, we offer 
a comprehensive and nuanced analysis of the AutoML field as a whole. As 
a result, this MLR addresses a significant knowledge gap in the literature 
by providing a multifaceted and in-depth exploration of the challenges and 
advancements in AutoML. Our analysis covers a wide range of perspectives, 
presenting a thorough examination of the reported benefits and limitations of 
AutoML. This comprehensive review aims to serve as a valuable resource for 
researchers, practitioners, and industries, fostering a deeper understanding 
of the current state and potential of AutoML. In doing so, we contribute to 
the foundation for future research and development in this rapidly evolving 
field. 

The remainder of this paper is structured as follows. In Section 2, we 
briefly summarize the existing landscape of ML and AutoML, and in Section 3 
we discuss related work. In Section 4, we describe the protocol followed to 
carry out our MLR of articles on AutoML. In Section 5 we present the study 
results, which are then discussed in Section 6. Finally, in Sections 7 and 8, 
we present the limitations of our research and draw conclusions. 
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Figure 1: Representation of a simplified Machine Learning workflow (adapted from – “The 

nine stages of the machine learning workflow” by Amershi et al. [9]). 

 
 

2. Background 

Industries worldwide are seeing a significant shift, driven by the rapidly 
growing science of machine learning [1, 2]. This technology has enabled the 
possibility of automation, optimization, and data-driven insights, enabling 
computers to acquire knowledge and make predictions or judgments without 
explicit programming. This section will delve into the concepts of machine 
learning workflow and automated machine learning and summarize the per- 
tinent existing research in this field that is related to this study. 

 

2.1. Machine Learning Workflow 

Machine Learning (ML) workflows are systematic processes that trans- 
form raw data into trained models capable of making informed predictions or 
decisions. These workflows are key to numerous applications, and a typical 

ML workflow consists of several key steps. In [9], Amershi et al. present a 

nine-stage machine learning workflow, including both data-centric (collect- 
ing, cleaning, labeling) and model-centric (requirements, feature engineering, 
training, evaluation, deployment, monitoring) stages. The study highlights 
the importance of having several feedback loops, suggesting that the assess- 
ment and surveillance of models might impact any previous step. Based on 
this nine-stage ML workflow and the CRISP-DM industry-independent pro- 
cess model phases [10], we abstracted six generic stages characterizing typical 
machine learning workflows (Figure 1). 

Data collection and data pre-processing are the initial steps. Data is col- 
lected, cleaned, and prepared for analysis (e.g., labeled, transformed) during 
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these steps. The quality of data in this phase can significantly impact the fi- 
nal model’s performance. The data pre-processing stage also includes feature 
engineering, which is a creative and knowledge-intensive task involving the 
selection, transformation, and even creation of features from the training 
dataset. This process enhances the model’s ability to make accurate predic- 
tions by making the data more informative and relevant. 

The next critical step is model training, which starts with the selection 
of the ML algorithm that is best suited to solve a particular problem. The 
decision takes into account the nature of the data and the specific task, 
whether it is classification, regression, clustering, or another application. The 
chosen algorithm establishes the foundation for the entire workflow. 

With the algorithm selected, the actual training of a model begins. Here, 
the algorithm learns patterns and relationships within the data; it adjusts its 
internal parameters to better represent the underlying patterns in the data. 
After each training iteration, the resulting model is evaluated. Evaluating 
the model is essential to understand how well it is likely to perform on unseen 

data. Various metrics, depending on the problem (e.g., accuracy, precision, 

recall, or F1 score could be used for classification problems while the mean 
squared error and R-squared could be used for regression problems), are used 
to assess the model’s performance. 

The model can be improved by adjusting the hyperparameters. The 
model does not learn hyperparameters, and they must be configured before 
training. This step, called hyperparameter tuning, is an iterative process 
to optimize the hyperparameters of the model. This fine-tuning step opti- 
mizes the model’s performance, and techniques such as grid search or random 
search are commonly employed. 

After successful training and validation, the model is ready for deploy- 
ment in a real-world setting. Model deployment can take the form of APIs, 
embedded systems, or cloud-based services, enabling it to make predictions 
or automate decisions. 

After deployment, a model requires continuous monitoring in produc- 
tion. Model performance can degrade over time due to phenomena like data 
drift, where the distribution of production data shifts relative to the training 
data. Timely detection of such performance degradation and triggering of a 
new iteration of the ML workflow is essential to maintain the reliability of 
production-grade ML systems. 

ML workflows come with a set of challenges. Nahar et al. [11] col- 
lected and organized overall challenges related to building products with ML- 
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components, some of which are directly related to the ML workflow itself. For 
instance, data quality is a critical issue, as poor quality data can significantly 
impact model performance, introducing biases, inaccuracies, and decreasing 
overall accuracy. Furthermore, effective feature engineering requires domain 
expertise and an in-depth understanding of the data, making it a complex 
and creative process. Model selection can also be challenging, as different 
algorithms perform differently based on the data and task, requiring a deep 
understanding of the field. Balancing model complexity and generalization 
is a common challenge, as complex models may overfit training data, while 
simple ones may underfit, both resulting in poor generalization. Addition- 
ally, privacy and security concerns may arise, particularly when handling 
sensitive information. Scalability may become an issue as datasets grow, re- 
quiring additional computational resources. Moreover, complex “black-box” 
models can be difficult for stakeholders or regulatory bodies to comprehend, 
which is crucial in sensitive applications like healthcare or finance. 

In summary, ML workflows encompass well-defined phases, each associ- 
ated with its particular set of challenges. Effectively addressing these chal- 
lenges is essential to successfully deploy ML solutions in real-world applica- 
tions and derive meaningful insights from the data. 

 

2.2. Automated Machine Learning 

Automated machine learning (AutoML) solutions have emerged as a re- 
sponse to the growing demand for machine learning, aiming at simplifying 
and expediting the model generation process. 

AutoML solutions have significantly streamlined the complex landscape 
of machine learning processes. These tools promise to empower users to build 
high-quality machine learning models with minimal manual effort, overseeing 
everything from data pre-processing to hyperparameter optimization [12, 13, 
14, 15, 16, 17]. AutoML technologies aim to democratize the field by making 
machine learning more accessible, even to individuals with limited coding or 
data science experience [18, 19, 13, 20, 21, 15, 22, 23]. 

They perform these tasks using a blend of statistical methods and opti- 
mization algorithms, which not only save time but also diminish the need for 
manual intervention. Additionally, some AutoML tools extend their offerings 
to include features such as model deployment, scaling efficiency [13, 24], and 
improving efficiency and productivity [19, 21, 14, 15, 17]. 

The wide variety of AutoML tools and the range of user needs they ad- 
dress are clear indicators of their adaptability. Some tools focus on providing 
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APIs and libraries that work well with R and Python, while others provide 
graphical user interfaces to enable the creation of machine learning models 
without scripting. Open-source AutoML frameworks also give users a lot of 
freedom to adapt to their needs. Commercial AutoML solutions introduce 
advanced features, including enhanced scalability and automated model de- 
ployment. 

By automating routine tasks and allowing the potential elevation of model 
performance, AutoML tools have the potential to change the game when it 
comes to machine learning. They are constantly improving and adding new 
features to allow organizations and individuals to take advantage of machine 
learning capabilities. 

 
3. Related work 

Our MLR is a significant effort to provide a comprehensive overview of 
the field of AutoML research, separating itself from previous studies by its 
systematic protocol, consolidating key advantages and difficulties of AutoML. 
In the following, we review the related work in the field of AutoML. 

 

3.1. Practical Challenges and Historical Perspectives 

Several researchers have focused on examining the practical challenges of 
implementing AutoML and providing historical context for its development. 
These studies offer valuable information on the evolution and current state 
of AutoML technology. 

Elshawi and Sakr [25] provide useful information on the practical chal- 
lenges of AutoML execution. The authors highlight key issues in the deploy- 
ment of AutoMLsolutions, such as scalability, optimization techniques, time 
budgeting, and user-friendliness. Escalante [26] presents a historical perspec- 
tive on AutoML and its development over the past decade. The authors also 
emphasize the role of academic challenges in the advancement of the field. 
The paper concludes by identifying open issues and research opportunities in 
AutoML, including explainability, feature engineering, handling non-tabular 
data, and large-scale applications. Santu et al. [21] introduce a seven-tier 
classification for AutoML systems based on autonomy levels, highlighting the 
limitations of current solutions that still require significant human involve- 
ment. The authors propose a roadmap towards fully autonomous AutoML 
systems, which would allow domain experts to directly engage with machine 
learning. The key challenges identified include developing a formal language 
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for the expression of prediction tasks, methods to identify promising tasks, 
and approaches to the summary and recommendation of results. The pa- 
per emphasizes the need for interdisciplinary research to advance AutoML 
towards complete automation of the end-to-end machine learning process. 

 

3.2. Focused Reviews and Analyses 

Some studies have reviewed AutoML in specific domains or aspects of the 
machine learning pipeline. These reviews offer valuable insights but lack a 
comprehensive overview of the benefits and limitations of AutoML. 

Thirunavukarasu et al. [27] compile a list of the clinical uses of AutoML, 
look at the strengths and weaknesses of the platforms that were used, judge 
the reliability of the research that tested AutoML, and compare the perfor- 
mance of these platforms with models traditionally created. However, their 
focus is limited to healthcare. Branco et al. [28] investigated the application 
of AutoML to electrical biosignal problems, scrutinizing articles from six 
databases centered on technology and machine learning from 2018 to 2022. 
They highlight the current challenges in the field, offer insights into biosig- 
nal comprehension, and pinpoint the top AutoML solutions. Nonetheless, 
their focus remains restricted to healthcare. Baymurzina et al. [29] exam- 
ine the most current research on Neural Architecture Search (NAS), which 
represents a very specialized field of AutoML tools, and highlight various 
important concepts and issues that are associated with this topic. Hence, 
their focus is specifically on NAS algorithms and tools. Valle et al. [30] aim 
to discover and evaluate AutoML research in the context of multi-label clas- 
sification and multi-target regression through a systematic literature review. 
However, their research questions do not involve the benefits and limitations 
of AutoML tools as a whole. Wen and Li [31] answer questions related to 
the benefits and limitations of AutoML, but in the area of spatial decision 
support systems. The main goal of their paper is to analyze the benefits of 
using AutoML tools in spatial decision support systems. 

 

3.3. Broader Reviews and Analyses 

Some studies have attempted to provide a broader perspective on AutoML. 
Nagarajah and Poravi [32] review the current state of AutoML, hyperpa- 

rameter tuning, and meta-learning. They analyze many methods and eval- 
uate them based on the algorithms they support, the features they provide, 
and how well they work in practice. However, they did not use a system- 
atic approach when conducting the research. Khalid et al. [33] conducted 
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a systematic literature review of the challenges related to declarative ma- 
chine learning AutoML solution (which allow users to express their intents 

through high-level abstractions). They included only ‘white’ literature (i.e., 

official peer-reviewed articles published in academic journals or conference 
proceedings) published until May 2022. They used a database-only search 
strategy, excluded AutoML solutions that were not declarative and provided 
limited details on their analysis procedures. Barbudo et al. [34] review the 
literature on AutoML from 2014 to 2021. The exclusion criteria filtered out 
papers lacking clear evidence of a blind, peer-review process and those not 
published in conferences ranked A* or A by the CORE ranking system, as 
well as papers from non-JCR indexed journals. This study has four research 
questions. Initially, it seeks to identify commonly used AutoML terms from 
original research. Secondly, the article takes a quantitative look at the re- 
search trajectory inside AutoML to see how it has evolved. Third, it explores 
the various phases of the knowledge discovery process covered by different 
AutoML tasks and the various techniques used. Finally, the study identifies 
emerging trends and unexplored areas, thereby pinpointing potential paths 
for future research within AutoML. Their study does not focus on revealing 
the reported benefits and limitations. 

 
4. Methodology 

4.1. Goal and Research Questions 

The goal of this work is to synthesize evidence on the benefits and limita- 
tions of AutoML solutions, focusing on those currently adopted in industry. 
Accordingly, the research questions addressed by this study are: 

 

RQ1: What are the main benefits of state-of-the-practice AutoML tools? 

RQ2: What are the main limitations of state-of-the-practice AutoML tools? 
 

To address RQ1 and RQ2, we conducted a multivocal literature review 
[35]. The result of this literature analysis is a comprehensive catalog that 
highlights the most frequently cited drawbacks and advantages of using AutoML 
tools. 
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4.2. Multivocal Literature Review 

A multivocal literature review includes both peer-reviewed academic pub- 
lications (white literature) and informal documents (grey literature) such as 

whitepapers and blog posts. Garousi et al. [35] showed the benefits of adding 

grey literature to Systematic Literature Reviews (SLRs) in software engi- 
neering. Software engineers rely heavily on grey literature to remain current 
in their field and share their expertise. Consequently, restricting reviews to 
academic publications may overlook valuable insights from practitioners. For 
this reason, we have decided to include grey literature in our research. We 
will explain our MLR protocol in the following sections. 

4.3. MLR protocol 

In May 2023, we searched for articles in three distinct search engines. To 
obtain scientific publications, we applied the strategy described by Wohlin et 

al. [36], which has shown successful in identifying relevant primary studies in 
several investigations [37, 36]. This strategy consists of conducting a database 
search on Scopus1, applying the study selection process to retrieved candidate 

papers to gather a fair and representative seed set, and then complementing 
the primary study identification with iterative snowballing until saturation 
is reached. To get the grey literature, we conducted an online search using 
the Google2 search engine and the Gartner3 knowledge database. 

Hereafter, we provide detailed description of the entire MLR protocol, 
including the search strategy, selection criteria, data collection, data extrac- 
tion, and data analysis. 

4.3.1. Search strategy 

Our MLR adopted two distinct search approaches to cover both white 
and grey literature. These approaches were designed to ensure a thorough 
exploration of the investigated topic. In the following, we outline the specific 
strategies we used for each type of literature. 

 
Search strategy for the white literature 
For the white literature, we followed the search strategy combining database 
search with snowballing described by Wohlin et al. [36]. Hence, we defined a 

 
 

1https://www.scopus.com/ 
2https://www.google.com/ 
3https://www.gartner.com 

http://www.scopus.com/
http://www.google.com/
http://www.gartner.com/
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concise search string to be applied on Scopus in order to retrieve a representa- 
tive seed set for snowballing. Given that we wanted to retrieve investigations 
related to AutoML and observe benefits and limitations, the search string 
for the white literature was defined as shown in Figure 2. 

 

 
Figure 2: Final search query for the white literature. 

 
It is noteworthy that, as suggested by the adopted search strategy [36], 

the string intentionally aimed at representativeness and not completeness, 
as we wanted to identify a seed set to make use of forward and backward 
snowballing iterations. This strategy has shown itself effective in identifying 
relevant primary studies [36]. 

 
Search strategy for the grey literature 
For the grey literature, we used Google Search with a more comprehensive 
search string compared to the one used for the white literature. This ap- 
proach was necessitated by the inherent challenges of applying snowballing 
techniques to the grey literature, which often lacks structured citations and 
is not systematically indexed. To compensate for these limitations and en- 
sure a thorough exploration of relevant content, we broadened the scope of 
our search terms by including a wider range of synonyms. Moreover, to 
focus our search on industry-relevant AutoML solutions, we extended our 
query to include specific mentions of the AutoML leaders identified in the 
Gartner Magic Quadrant for Cloud AI Developer Services [8], namely Mi- 
crosoft, Google, IBM, and AWS. This addition helped filter search results 
towards discussions of established, industry-ready AutoML solutions, while 
also excluding content primarily focused on experimental tools that would fall 
outside the scope of our study. The final search query for the grey literature 
can be seen in Figure 3. 

To complement our grey literature search, we also queried the database 
of articles offered by Gartner, a well-known research and advisory firm. For 
this database, we employed a very simple query string, “automl”, because 
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Figure 3: Final search query for the grey literature. 

 
 

we noticed that the number of search results did not change when we used a 
more detailed query. 

By implementing these distinct search strategies, we aimed at creating a 
well-rounded and exhaustive review of both white and grey literature on the 
benefits and limitations of industry-relevant AutoML tools. 

 

4.3.2. Selection criteria 

Aligned with our research objective, we aimed to include in our review 
both white and grey literature discussing the benefits and limitations of 
industry-relevant AutoML solutions —i.e., AutoML tools currently adopted 
in industry or considered for adoption in real-world industrial applications. 
To select relevant material for subsequent analysis, we defined a list of ex- 
clusion criteria (EC), to be applied to the search results. These criteria are 
reported in Table 1, along with their rationale. 

Among the various exclusion criteria, EC5 deserves a more in-depth ex- 
planation. To ensure the industrial relevance of the analyzed material, we 
decided to base our study on articles mentioning at least one of the lead- 
ers in the field of AutoML. To identify these leaders, we took advantage of 
the Gartner Magic Quadrant, which is both a research method and a graphic 
representation to rank companies in certain technology markets. It rates ven- 
dors based on how well they understand and can implement their vision in 
a certain industry or sector. In the Magic Quadrant, vendors are collocated 
into a two-dimensional grid with their ability to execute on the y-axis and 
their completeness of vision on the x-axis. The quadrant defines four groups: 
Leaders, Challengers, Visionaries, and Niche Players. The leaders are ven- 
dors who usually have a clearly defined vision and are good at putting it 
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Search Results Exclusion Criteria 
 

 
Criterion Rationale 

EC1 Not published between 2017 and 2022. This criterion narrows the literature 
  down to recent sources, ensuring rel- 

  evance and up-to-date information. 

EC2 Not written in English. This ensures that the literature re- 
  viewed is in a language accessible to 

  most researchers. 

EC3 Not a journal article, conference pa- This restriction ensures the inclusion 
 per, book chapter, blog post,* PhD of comprehensive, substantive content 
 thesis,* technical report,* business re- from reputable academic and profes- 
 port,* white paper,* or another form sional sources. It excludes superficial 
 of substantial technical written con- or brief mentions of AutoML tools, 
 tent.* such as those found in social media 
  posts or marketing blurbs. Moreover, 
  it excludes all forms of non-written 

  content, such as videos, podcasts, etc. 

EC4 Document not available for This criterion helps in streamlining 
 our institutions. the literature review process by focus- 
  ing on sources that the researchers can 

  readily access. 

EC5 It does not include Google, Amazon, This specific criterion ensures that the 
 Microsoft, or IBM AutoML tools. literature reviewed is aligned with the 
  major AutoML vendors, as per the 
  Gartner Magic Quadrant for Cloud AI 

  Developer Services. 

EC6 Other AutoML-related publications Our focus is on the benefits, chal- 
 that do not emphasize AutoML lenges, and limitations of using 

 benefits, challenges, and limitations. AutoML tools. 

Table 1: The exclusion criteria and their rationale. Items marked with an asterisk (‘*’) 

apply to grey literature only. 

 

into action. People see them as market leaders because they consistently set 
new standards and develop new ideas. According to this categorization, in 
our review, we specifically considered the four leaders emerged in the Cloud 
AI Developer Services magic quadrant [8], i.e., Google, AWS, IBM, and Mi- 
crosoft (see Figure 4). Our assumption was that articles mentioning at least 
one of the AutoML solutions from these leaders are more likely to discuss or 
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Figure 4: Gartner Magic Quadrant for Cloud AI Developer Services [8]. 

 
 

compare state-of-the-practice AutoML solutions. 
 

4.3.3. Data collection 

For the white literature, we applied the query search in the Scopus database 
and applied the exclusion criteria. From the remaining articles, we started 
applying forward and backward snowballing. We applied a hybrid approach 
(i.e., a combination of database search and snowballing technique) involv- 
ing backward and forward snowballing iterations to curate our selection of 
relevant studies. As mentioned by Wohlin et al. [36], the hybrid search strat- 
egy is of significant importance in systematic literature studies due to its 
effectiveness. 

Our approach extended beyond Scopus, encompassing Semantic Scholar1 
 
 

1https://www.semanticscholar.org/ 

http://www.semanticscholar.org/
http://www.semanticscholar.org/
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and Google Scholar2 for the snowballing process. We started by using Google 

Scholar for citation retrieval, as it consistently offered a more extensive range 
of citations than Scopus and Semantic Scholar. After the first round of snow- 
balling, we transitioned to Semantic Scholar because it allows data access 
through an API, which streamlined the data collection process. 

In total, we conducted three rounds of snowballing. We concluded our 
search in the third round, as no additional articles that met our criteria 
could be identified, reaching snowballing saturation. Our initial pool of arti- 
cles comprised approximately 5,700 papers, which can be found in our online 
open-science repository [38]. Before implementing our exclusion criteria, we 
performed a validation check on the papers. This entailed checking for dupli- 
cates, inspecting references classified as grey literature, and verifying that ref- 
erences or citations contained the keywords “automl”, “automated machine 
learning” or “automatic machine learning” within their titles, abstracts, or 
keywords. 

During the snowballing process, we excluded grey literature, recognizing 
that a separate Google Search was concurrently conducted to address this 
specific category of sources. Additionally, to maintain the focus on AutoML, 
we eliminated papers that did not feature the designated keywords in their 
title, abstract, or keywords. This decision was motivated by the observation 
that several articles under analysis pertained to general Machine Learning 
topics rather than Automated Machine Learning. 

For the grey literature, we employed the Google Search query outlined in 
Section 4.3.1. Upon analyzing the results, we evaluated the exclusion criteria 
and determined that we would stop the search after three consecutive pages 
– each containing ten results – with no articles being selected. 

 

4.3.4. Data extraction 

We carefully extracted the data to understand the pros and cons of 
AutoML tools. Part of the process involved collecting pertinent data and 
evaluating each research article. Here we detail the main data we collected 
from each article: 

Code: We introduced a source tracking identification code, which al- 
lowed us to easily link the extracted data to the specific article from which 
it originated. This code served as a critical reference point for the origin of 

 
 

2https://scholar.google.com/ 
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our findings. 
Title: The title of each article to quickly identify them. 
Year: We kept track of the year each article was published so we could 

see how AutoML tools have changed over time and see if any limitations or 
benefits have become more apparent. 

Extract: Parts of the articles’ text that address the strengths and weak- 
nesses of AutoML tools. Our subsequent qualitative analysis relied on these 
extracted passages. 

Type of AutoML tool: We categorized the mentioned AutoML tools as 
either commercial, open source, a combination of both, or unspecified. This 
categorization provided valuable context on the accessibility/availability of 
the tools and their main benefits and challenges. 

Method: We distinguished between articles that made unsupported 
claims about AutoML tools and those that provided evidence-based assess- 
ments. This differentiation allowed us to assess the rigor and credibility of 
the information. 

Examples of referenced tools: We compiled a list of AutoML tools 
that were referred to or discussed for each article – this list of tools served 
as a reference point for identifying trends and popular choices in the field. 

By capturing this information from each article, we were able to compile 
a dataset that forms the foundation of our analysis. The extracted data is 
also available in our online open-science repository [38]. 

 

4.3.5. Data analysis 

To improve our catalog, we conducted a thematic synthesis [39] of the 
advantages and disadvantages of AutoML tools. More precisely, we assigned 
codes to each recognized advantage and drawback. Each code was designed 
to represent snippets with similar characteristics, making it easier to clas- 
sify them into broader topics. The process of translating codes into themes 
required careful consideration of how codes could be combined to create com- 
prehensive overarching themes. As we moved further away from the text, the 
level of abstraction increased, which improved the ability to apply the con- 
cepts to a wider range of situations. 

This was not a single step; instead, it was an iterative process. During the 
various iterations, certain codes defined in previous cycles were incorporated 
into other codes, reclassified, or eliminated. Advancing in the translation 
process required rearranging and reclassifying encoded material into various, 
and occasionally innovative, codes. The process ended once the saturation 
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point was reached in identifying the potential themes that emerged from the 
data. Mind maps were used to organize the many codes into coherent themes. 

The article’s second author conducted the initial coding and thematic 
analysis. The resulting collection of codes and themes was independently 
peer-reviewed by the other three authors (each one reviewed one-third of the 
codes) and afterward subjected to collaborative discussion and improvement, 
including contributions from all authors. The ultimate codes and themes 
were established by reaching a consensus among the four authors. 

 

4.4. MLR protocol application 

Our initial query on the Scopus database with the defined search query 
for the white literature got 274 results. After applying the exclusion criteria, 
24 articles remained. Then, we started the first snowballing iteration. For a 
comprehensive overview of our three snowballing rounds and the systematic 
application of our exclusion criteria, refer to Figure 5. 

After the first round of snowballing, we had 2,620 articles, of which 1,665 
were excluded for being duplicated, grey literature (intentionally not collected 
during the white literature search strategy), or because they did not contain 
the word “AutoML” in the title, abstract, or keywords sections. We applied 
the exclusion criteria in this phase for 955 articles and 23 articles remained. 

After the second round of snowballing, we had 2,342 articles, of which 
1,461 were excluded because they were duplicated, grey literature, or did not 
contain the word “AutoML” in the title, abstract, or keywords sections. In 
this phase, we applied the exclusion criteria for 881 articles and 7 articles 
remained. 

After the third round of snowballing, we had 654 articles, of which 540 
were excluded because they were duplicated, grey literature, or did not con- 
tain the word “AutoML” in the title, abstract, or keywords sections. We 
applied the exclusion criteria in this phase for 114 articles and as we in- 
cluded no additional studies, snowballing saturation was reached. In total, 
54 white literature studies passed our selection phase. 

For the grey literature, Google Search retrieved 737,000 results (in May 
2023). We analyzed 199 items from this total to check the exclusion criteria, 
and we stopped searching further after analyzing three consecutive search 
pages (with ten items per page) with no relevant articles. A total of 41 
items passed the selection process. For the grey literature from the Gartner 
database, we retrieved 184 articles, of which 117 were excluded after checking 
for duplicates and the exclusion criteria. 67 articles passed this selection 
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Figure 5: Application of the exclusion criteria in the Scopus search results and snowballing. 
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process. Therefore, a total of 108 grey literature sources passed our selection 
phase. Details on the number of search results retrieved from each search 
engine for the grey literature are reported in Figure 6 and Table 2. 

 

 
Figure 6: Application of the exclusion criteria in the grey literature (Google Search and 

Gartner knowledge database). 

 

 
 

5. Results of the Multivocal Literature Review 

5.1. Overview of the selected articles 

In this MLR, various articles covering different years were included. The 
increase in the number of publications on AutoML indicates how popular and 
useful AutoML tools have become in academia and industry, particularly in 
recent years. The distribution of the articles analyzed per year is illustrated 
in Figure 7. To ease the understanding of what kind of evidence we are 
referring to, in this results section, we cite papers from the white literature 
with a W prefix and papers from grey literature with a G prefix. 

The scientific articles from the white literature examined cover a wide va- 
riety of AutoML application domains, demonstrating how versatile AutoML 
is across various scenarios. Among the several domains covered, we highlight 
the following. 
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Number of excluded articles for each criterion 
 

 
Criterion 

 
Excluded 
Google 

Excluded 
Gartner 

EC1 Not published between 2017 and 2022 
 

89 18 

EC2 Not written in English.  - - 

EC3 Not a blog post, article, conference paper, 

chapter. 

or book 55 - 

EC4 Document not available for our institutions.  - - 

EC5 It does not include Google, Amazon, Microsoft, or 

IBM AutoML tools. 

9 78 

EC6 Other AutoML-related publications that do not em- 5 1 

phasize AutoML benefits, challenges, and limitations. 

Table 2: The exclusion criteria and the number of articles excluded from the grey literature. 

 
 

 

Figure 7: Distribution of the included articles per year. 



22  

 

 
 

Healthcare: Many of the reviewed articles are related to healthcare 
analytics, pathology, and clinical decision-making processes, suggesting a 
strong emphasis on the use of AutoML for these tasks [W40, W18, W41, 
W42, W24, W43, W44, W16, W45, W22, W23]. 

Computer vision: Demonstrating the application of AutoML algo- 
rithms to tasks that involve image analysis, object detection, and picture 
recognition in different settings [W24, W16, W46]. 

Manufacturing: Showing how AutoML can improve production pro- 
cesses, quality assurance, and preventive maintenance [W47, W14, W48]. 

Water quality: A domain that showcases the use of AutoML in en- 
vironmental science, emphasizing data-driven approaches to water quality 
problems [W49]. 

Internet of Things (IoT): Using AutoML to detect anomalies and per- 
form predictive analytics in IoT applications, for example, smart grids, intel- 
ligent vehicles, smart homes, smart agriculture, and smart healthcare [W17]. 

Anomaly detection: Showing how AutoML can be employed for tasks 
such as fraud detection, intrusion detection, and healthcare system monitor- 
ing [W50]. 

Sentiment analysis: Demonstrating the versatility of AutoML method- 
ologies to comprehend and evaluate textual data for sentiment-related tasks 
[W51]. 

 
 

5.2. AutoML tools 

To provide a more comprehensive overview of the AutoML landscape, in 
Table 3 we offer a detailed comparison of the most relevant AutoML solutions 
mentioned in our literature review, including both commercial and open- 
source offerings. 

The table breaks down the characteristics of each tool in several dimen- 
sions, including infrastructure support, solution type, supported data types, 
and various stages of the machine learning pipeline. This comparison reveals 
similarities and differences among the tools. For example, while all tools sup- 
port data cleaning, feature engineering, model training, and evaluation, there 
are notable differences in areas such as data labeling and model monitoring. 

Cloud-based solutions from major providers like Google, Microsoft, and 
IBM tend to offer more comprehensive features, including model deployment 
and monitoring capabilities. These platforms also typically provide web- 
and API-based interfaces, enhancing their accessibility for different types of 
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Table 3: A breakdown of the characteristics of the most relevant AutoML solutions men- 

tioned in the literature review (* marks open source solutions). 
 

Tool 
Infra  

Solution 
Data Data Data Feature Model Model Model Model 

struct. types clean. label. engin. traninig eval. deploym. monitor. 

img, tab, 
AutoGluon* On prem. API ✓ 

time series, txt 

  

✓ 

 

✓ 

 

✓ 

 

✓ 
 

AutoKeras* On prem. API img, tab, txt ✓  ✓ ✓ ✓   

tab, time 
Auto-sklearn* On prem. API ✓ 

series, txt 

  

✓ 

 

✓ 

 

✓ 
  

Amazon SageMaker API, tab, time 
Cloud ✓ 

AutoPilot / Canvas Web series, txt 

  

✓ 

 

✓ 

 

✓ 

 

✓ 
 

Google API, img, tab, time 
Cloud ✓ 

Cloud AutoML Web series, txt, vid 

 

✓ 

 

✓ 

 

✓ 

 

✓ 

 

✓ 

 

✓ 

H20 Cloud, API, 
img, tab, txt ✓ 

Driverless AI On prem. Web 

  

✓ 

 

✓ 

 

✓ 

 

✓ 
 

IBM 

Watson 

AutoAI 

 
Cloud, 

On prem. 

 
API, 

Web 

 
tab, time 

series, txt 

 

✓ ✓ ✓ ✓ ✓ ✓ 

Ludwig AI 

AutoML* 

 
On prem. 

API, 

CLI 

audio, img, tab, 

time series, txt 

 

✓ ✓ ✓ ✓ ✓ 

MS Azure 

AutoML 

 
Cloud 

API, 

Web 

img, tab, 

time series, txt 

 

✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

TPOT* On prem. API 
tab, time 

series, txt 

 

✓ ✓ ✓ ✓ 

 

 

users. In comparison, open-source solutions like AutoGluon, Auto-sklearn, 
and TPOT, while robust in core ML tasks, generally have more limited de- 
ployment and monitoring features. 

Interestingly, the table highlights a trade-off between flexibility and com- 
pleteness. On-premises solutions offer greater control and customization, but 
may lack some of the end-to-end capabilities of cloud-based alternatives. For 
example, Google Cloud AutoML and Microsoft Azure AutoML stand out for 
their comprehensive coverage across all analyzed dimensions, including data 
labeling and model monitoring, which are less common among other tools. 
Additionally, we note that, while some features may not be directly integrated 
into AutoML products, they are often available as separate but complemen- 
tary services within the same ecosystem. For example, although Amazon 
SageMaker AutoPilot does not include any support automated data labeling 
or model monitoring, these functionalities are available through other prod- 
ucts in the SageMaker suite (i.e., SageMaker Ground Truth for data labeling 
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and SageMaker Model Monitor for monitoring). This modular approach al- 
lows greater flexibility and customization in the building of end-to-end ML 
pipelines. 

This analysis provides insight into the current state of AutoML tools, 
their strengths, and potential areas for improvement. It also underscores the 
diversity of the AutoML ecosystem, with different tools catering to various 
needs and use cases. 

 
5.3. AutoML benefits 

The codes and themes that emerged from our thematic analysis of the 
benefits of AutoML are schematically represented in Figure 8. In the follow- 
ing paragraphs, we will go through each theme and provide a description and 
a few examples for each underlying code. 

 

5.3.1. Infrastructure 

This first theme highlights the ability of AutoML solutions to adapt to 
different computational needs and seamlessly integrate into various infras- 
tructure setups, enabling organizations to deploy and scale their ML initia- 
tives efficiently. 

Provide scaling efficiency. This code is supported by nine articles, five 

from the white literature [W52, W43, W24, W13, W53], and four from the 
grey literature [G54, G55, G56, G57]. AutoML facilitates efficient scaling 
of machine learning initiatives, making it easy to handle larger datasets 
and more complex models. For instance, Das et al. [W13] highlighted that 

Autopilot streamlines the model building process by offering an automatic 
hardware recommendation feature; this dynamic allocation of computational 
resources for each algorithm, dataset, and feature preprocessing pipeline aims 
to mitigate out-of-memory errors, ensuring seamless operations. By the same 
token, Ghosh et al. [W43] noted that AutoML platforms offer scalability and 
enable users to enhance existing models by adding complexity to classifiers. 
This scalability is especially helpful when updating models to accommodate 
changing needs and complicated data. Furthermore, as mentioned by Elshawi 
et al. [W53], AutoML provides users with the flexibility to use the service 
locally or take advantage of the performance and scalability offered by cloud 

services. Similarly, in the study by Noshiri et al. [W52], Microsoft Azure 
ML Studio is recognized for its high scalability, allowing the deployment of in- 
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Figure 8: The benefits of using Automated Machine Learning tools. The bold text refer- 

ences are evidence-based extractions; non-bold references indicate unsupported claims. 
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stances on AWS as well as on-premises. This multi-faceted scalability ensures 
seamless AutoML operation across various computational environments. 

Allow easy API integration. Three articles underpin this code, two from 
the grey literature [G58, G59] and one peer-reviewed paper [W23]. AutoML 
tools can offer easy integration with various APIs, facilitating the incorpora- 
tion of ML models into existing workflows and software systems. As detailed 
by Touma et al. [W22], trained models can be quickly integrated into vari- 
ous applications, including online and mobile apps, without the need for a 
complex or lengthy setup. 

 

5.3.2. ML workflow 

This theme captures how AutoML tools streamline and enhance the en- 
tire machine learning workflow, automating a wide range of tasks from data 
selection to feature engineering and hyperparameter tuning. 

Help building the ML pipeline. Twelve articles contribute to this code: 

six scholarly sources [W25, W52, W46, W13, W53, W60] and six grey liter- 
ature items [G61, G8, G59, G62, G57, G63]. AutoML can help build end- 
to-end machine learning pipelines, from data pre-processing to model de- 
ployment. This comprehensive support ensures a systematic and integrated 
approach to machine learning development. According to Xin et al. [W15], 
AutoML tools not only standardize the ML workflow, but also enhance repro- 
ducibility, code maintainability, and knowledge sharing, streamlining collabo- 
rative efforts in machine learning projects. For example, as articulated by Das 

et al. [W13], platforms such as Amazon SageMaker Studio provide data sci- 
ence teams with a unified web-based visual interface, consolidating all the 
steps of the machine learning process in a single environment. Furthermore, 
as highlighted by Baker et al. [64], AutoML services play an integral role in 
the construction of fully integrated MLOps pipelines, reducing the burden 
on developers to integrate disparate tools and ensuring seamless compati- 
bility among components. Such automated pipelines significantly increase 
developers’ productivity, expediting the delivery of new and enhanced appli- 
cation functionalities. As mentioned by Bonderud [65], AutoML streamlines 
the complexities associated with building, testing, and deploying novel ML 
frameworks, thereby simplifying the processes essential for addressing line- 
of-business challenges. Touma et al. [W22] even found that ophthalmology 
residents and fellows without coding skills could build effective deep learn- 
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ing models using AutoML. Interestingly, these AutoML-generated models 
outperformed custom models built by AI specialists. 

Automate hyperparameter tuning. This code is backed by twelve refer- 
ences: 6 from the white literature [W15, W52, W17, W45, W16, W12] and 6 
from the grey literature [G66, G67, G68, G54, G69, G70]. Xin et al. [W15] 
found that participants in their study commonly use AutoML for tasks such 
as hyperparameter tuning and model selection during the modeling phase 
of the ML workflow. Mullen et al. [G58] noted that AutoML services can 
automatically improve model performance and accuracy by fine-tuning their 

hyperparameters. According to Wan et al. [W16], AutoML Vision harnesses 
Google’s neural architecture search technology to automatically identify the 
most effective neural network architecture and hyperparameters, streamlin- 
ing the model optimization process. Likewise, Schwen et al. [W45] noted that 

tools such as AutoGluon enable users to define network architectures as well 
as a thorough parameterization of hyperparameters, offering optimal control 
over model configurations. In a case study assessing the impact of AutoML 
at GNP Seguros – an insurance company – the experimented AutoML tool 
achieved an exceptional success rate of 99.2% by adeptly selecting the most 
suitable classification algorithm and fine-tuning its hyperparameters, as de- 
tailed by Chauhan et al. [W12]. 

Streamline model creation. Eight sources support this code: one aca- 

demic publication [W52] and seven grey literature articles [G58, G66, G67, 
G54, G71, G69, G72]. AutoML streamlines the complex process of develop- 
ing machine learning models, empowering users to build, validate, and deploy 
them with minimal manual intervention. For instance, Mullen et al. [G58] 
state that AutoML services make it easier to create datasets for model train- 
ing; once these datasets are ready, AutoML services rapidly evaluate various 
ML methods to find the best one for building the desired ML model. By 
the same token, Baker et al. [G66] noted that AutoML tools analyze data to 
select optimal methods for model building and improvement. 

Deal with data preprocessing. This code is supported by four articles: 

three peer-reviewed sources [W14, W17, W13] and one grey literature piece [G73]. 
AutoML streamlines various data preprocessing tasks, encompassing the 
management of missing values, feature scaling, and categorical variable en- 
coding. This not only expedites the process, but also guarantees a uniform 
and error-free input for machine learning models. As highlighted by Krauß 
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et al. [W14], the use of Auto-sklearn substantially reduced data prepa- 
ration efforts, requiring only basic data cleaning such as handling NaNs, 
null columns, and type conversion. Similarly, Das et al. [W13] report that 

Amazon SageMaker Autopilot adeptly identifies imbalanced binary classifi- 
cation datasets and adjusts the ML pipeline accordingly, resulting in notable 
improvements in prediction accuracy. 

Add standardization to AI. A couple sources support this code, one from 
the white literature [W15] and one from the grey literature [G55]. AutoML 
platforms can help standardize the machine learning (ML) workflow. Ac- 
cording to Xin et al. [W15], AutoML “Standardizes the ML workflow for 

better reproducibility, code maintainability, knowledge sharing. Another ben- 

efit of the black-box nature of Auto-ML tools is that by having a predetermined 

search space that does not change, there is more standardization of the ML 

development process, leading to better comparisons across models, code main- 

tainability, and effortless knowledge transfer.” 

Accelerate data selection. One source from the grey literature support 
this code [G67]. AutoML can accelerate the data selection process by quickly 
identifying and utilizing relevant datasets. This acceleration is particularly 
valuable when dealing with large and diverse datasets. According to Batchu 

et al. [G67], “today, AutoML offers the following benefits: it reduces the time 

to identify the best data sources and hyperparameter tuning settings.” 

Streamline feature engineering and selection. One source from the 
white literature support this code [W15]. AutoML simplifies the feature 
engineering and selection process, allowing users to identify and incorporate 
relevant features efficiently. This is crucial for optimizing model performance 
by focusing on the most influential variables. According to Xin et al. [W15], 

“feature engineering and feature selection are among the most automated data 

preprocessing tasks.” 
 

5.3.3. Model performance 

This theme encompasses the ways in which AutoML tools contribute to 
enhancing the overall performance and accuracy of machine learning models. 
By automating critical aspects of the modeling process, AutoML technologies 
aim to produce models that are more accurate, robust, and reliable than those 
developed through manual methods alone. 
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Boost model performance. Twenty articles from the white literature sup- 
port this code [W47, W14, W49, W15, W42, W23, W74, W52, W41, W17, 
W16, W24, W22, W12, W40, W20, W48, W75, W60, W76], as well as three 
sources from the grey literature [G68, G71, G69]. AutoML contributes to 
enhanced model performance by automating the selection of optimal algo- 
rithms, features, and configurations, resulting in models that are better suited 
to the underlying data. In the study conducted by Xin et al. [W15], many par- 
ticipants, especially ML engineers, emphasize the capability of AutoML tools 
to rapidly produce superior models. In the study by Unadkat et al. [W23], 
code-free ML systems outperformed traditional ML object detection sys- 
tems by using multiple object identification models and selecting the one 
that exhibits the highest performance. This approach resulted in notable 
performance gains, underscoring the efficiency of AutoML-driven model se- 
lection. Moreover, as detailed by Zeng and Zhang [W24], their AutoML 
Vision model exhibited slight but noteworthy improvements over previously 
published models, demonstrating the continuous evolution and refinement 
achievable through AutoML technologies. In another study documented 
by Touma et al. [W22], the AutoML model showcased exceptional perfor- 
mance metrics, boasting values in recall (81%), precision (71%), and F1 
score (79%), emphasizing its efficacy in achieving a balance between accu- 
racy and robustness. Furthermore, as mentioned by Chauhan et al. [W12], 
an accuracy rate of 98.1% was attained using AutoML, surpassing the per- 
formance of any manually trained models used previously, underlining the 
substantial performance enhancements facilitated by AutoML. In a sepa- 
rate investigation by Luo and Kindratenko [W76], employing IBM Visual 
Insights with AutoML, precision and recall rates reached 90% and 100%, 
respectively, showcasing the exceptional accuracy and reliability achievable 
through AutoML-driven approaches in specific use cases. 

Minimize inaccuracies. This code is supported by a total of five sources, 

one from the white literature [W15] and four from the grey literature [G69, 
G77, G70, G72]. By automating repetitive tasks and leveraging standardized 
procedures, AutoML contributes to the creation of more reliable and precise 
models, ultimately reducing the potential for inaccuracies arising from human 
intervention. This is stated, for instance, in [G78], in which the authors note 
that AutoML significantly minimizes the likelihood of inaccuracies due to 
bias or human errors. 
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Work great for structured data. Four sources underpin this code: one 

peer-reviewed paper [W79] and three grey literature articles [G73, G80, G63]. 
AutoML excels particularly in the management of structured data, highlight- 
ing its effectiveness in supervised learning tasks, particularly with small to 
medium-sized datasets characterized by structured formats. 

Address bias. One grey literature article supports this code [G67]. Some 

AutoML tools incorporate features that address bias in machine learning 
models, contributing to more equitable and fair predictions. As highlighted 
by Batchu et al. [G67], these tools streamline the process by recommend- 
ing the algorithm most suitable for a specific use case while simultaneously 
addressing algorithmic bias. 

5.3.4. People 

This theme explores the human-centric impact of AutoML tools, focusing 
on how these technologies democratize access to machine learning capabilities 
and foster skill development in data science. 

Empower citizen data scientists. This code is supported by 27 sources: 

14 scholarly articles [W25, W21, W14, W15, W23, W79, W45, W13, W22, 
W53, W20, W48, W19, W18] and 13 grey literature items [G66, G67, G68, 
G8, G59, G62, G54, G55, G71, G69, G81, G56, G82].  AutoML empow- 
ers individuals without extensive machine learning expertise, allowing citi- 
zen data scientists to harness the capabilities of ML for their specific use 
cases. Elshawi and Sakr [W25] highlight that Google AutoML facilitates the 
training of a diverse range of machine learning models in various domains, 
offering a user-friendly experience with minimal technical complexity. Ac- 
cording to Santu et al. [W21], increased automation enables domain experts 
to effectively use machine learning technologies. This sentiment is echoed 
by Unadkat et al. [W23], who emphasize Google AutoML’s target users 
from non-technical backgrounds. Moreover, Das et al. [W13] underscore how 

Autopilot demystifies machine learning for end users lacking expertise in the 
field, offering a starting point for applying the predictive capabilities of ML 
to business problems. It helps users understand the tangible value of ML in 
specific scenarios, bypassing the costlier and riskier alternative of hiring pro- 
fessional data scientists. In a study by Schwen et al. [W45], classifiers built 
with AutoML tools performed comparably to the findings in the literature. 
In particular, these classifiers were created using generic presets with minimal 
interaction, diverging from prior work that employed task-specific network 
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architectures and optimized training procedures. Additionally, as described 
by Borkowski et al. [W40], both Google Cloud AutoML and Apple Create 
ML contribute to the democratization of machine learning. These systems 
demonstrated robust performance in trained lung and colon cancer diagnostic 
models. 

Contribute to learning data science skills. Three peer-reviewed pub- 

lications support this code [W15, W13, W19]. AutoML can also serve as an 
educational tool, helping users learn data science concepts and techniques 
through hands-on experience with automated processes. For instance, Xin 
et al. [W15] noted that users who gained access to the search history of 
AutoML tools reported significant learning experiences. This included in- 
sights into new modeling techniques, the implementation of specific ML al- 
gorithms, understanding of model architecture, evaluation of model perfor- 
mance across distinct tasks, and understanding of model resource consump- 
tion. This first-hand exploration through AutoML not only fosters familiarity 
with diverse data science techniques, but also provides valuable insights into 
the practical application of machine learning, contributing significantly to 
users’ skill development in this field. 

5.3.5. Process 

This theme explores how AutoML tools optimize the machine learning de- 
velopment process. By automating time-consuming tasks, facilitating rapid 
prototyping, and offering user-friendly interfaces, these tools streamline work- 
flows and reduce barriers to entry in machine learning projects. 

Enhance productivity. A total of 20 references support this code: ten 

from the white literature [W21, W14, W49, W83, W15, W84, W23, W43, 
W48, W19] and ten from the grey literature [G85, G62, G55, G86, G69, 
G77, G56, G57, G70, G72]. By automating repetitive and time-consuming 
tasks, AutoML can significantly improve overall efficiency and productiv- 
ity in the machine learning development process. As noted by Crisan and 
Fiore-Gartland [W20], people with high technical expertise, such as data sci- 
entists, can use AutoML systems to accelerate routine tasks, thus improving 
the speed and efficiency of their workflows. Furthermore, according to Santu 
et al. [W21], AutoML tools substantially increase the productivity of data 
scientists by automating a considerable portion of manual work, allowing 
them to focus on more complex aspects of model development and analysis. 
This aligns with the observations by Venkata Vara Prasad et al. [W49], who 
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noted that AutoML plays a vital role in democratizing AI by alleviating re- 
dundant human labor, thus improving efficiency in both time and results. 
Xin et al. [W15] emphasized that a primary benefit reported by many par- 
ticipants in their study – especially ML engineers – is the ability of AutoML 
tools to accelerate model-building processes while ensuring superior model 
quality. Likewise, Kramer et al. [W48] observed that AutoML’s ability to sig- 
nificantly reduce the time required for data analysis, algorithm training, and 
optimization further underscores its role in expediting the overall machine 
learning pipeline. 

Allow rapid prototyping. This code is backed by seven articles, six of 

which are academic publications [W14, W15, W23, W20, W48, W19] and only 
one a grey literature piece [G73]. AutoML is particularly advantageous in 
the prototyping phase of an ML project, allowing rapid experimentation and 
iteration in model development. It can potentially reduce deployment costs 
by streamlining the development process, making machine learning more ac- 
cessible without substantial financial investments. According to the findings 

of Krauß et al. [W14], Auto-sklearn serves as an initial platform for data sci- 
entists, offering both a foundational groundwork for manual implementation 
and a springboard for further enhancements to their solutions. Addition- 
ally, as highlighted by Xin et al. [W15], AutoML’s influence has significantly 
reduced the entry barrier by empowering users to develop prototypes fast. 
These prototypes serve as invaluable tools for assessing the feasibility and 
potential impact of machine learning applications. In a study conducted 
by Crisan and Fiore-Gartland [W20], participants actively used AutoML 
technologies to rapidly prototype and design viable solutions for data prepa- 
ration and analysis, underscoring its pivotal role in accelerating the ideation 
phase. Moreover, as mentioned by Kramer et al. [W48], AutoML plays a dual 
role by serving as a prototyping tool while seamlessly integrating into vari- 
ous business processes, demonstrating its versatility and applicability across 
different domains. 

Are easy to use. Evidence supporting this code is drawn from six articles: 

five from the white literature [W23, W87, W43, W45, W16] and one from the 
grey literature [G56]. Thanks to user-friendly interfaces, AutoML tools can 
help make machine learning accessible to a wider audience, fostering collab- 
oration between domain experts and data scientists. As noted by Unadkat 
et al. [W23], code-free ML systems present significant advantages, including 



33  

 
 
 

ease of use, cost-effectiveness, and a visually intuitive interface that displays 
true/false positives and negatives. Furthermore, as highlighted by Hayashi 
et al. [W87], AutoML tools stand out for their user-friendly interfaces, which 
require minimal machine learning expertise to effectively train models. This 
characteristic empowers a wider spectrum of users, allowing them to engage 
in model development and analysis without extensive technical knowledge. 
Consistently, as mentioned by Wan et al. [W16], the user-friendly interface 

of AutoML Vision shows great potential in clinical practice, helping physi- 
cians in decision making processes. The intuitive design and accessibility 
of such tools contribute significantly to their adoption and usability across 
diverse domains, ultimately fostering collaboration between domain experts 
and technical specialists. 

5.4. AutoML limitations 

The codes and themes that emerged from our thematic analysis on the 
limitations of AutoML are schematically represented in Figure 9. In the fol- 
lowing paragraphs, we will go through each theme and provide a description 
and a few examples for each underlying code. 

5.4.1. Data 

This theme explores the limitations of AutoML tools in handling various 
data-related challenges. Despite their many advantages, these tools face con- 
straints when processing large-scale datasets, navigating complex scenarios, 
and supporting certain specialized data types. 

Have data size constraints. This code is supported by seven articles: 

four from the white literature [W25, W17, W53, W26] and three from the 
grey literature [G62, G56, G88]. Challenges arise when dealing with large 
datasets, as AutoML can face limitations in processing large volumes of data 
efficiently. As observed by Escalante [W26], the resolution of large-scale 
problems remains an ongoing challenge for contemporary AutoML solutions. 
As further discussed by Yang and Shami [W17], the application of AutoML 
models to large-scale datasets proves to be challenging due to the need for 
multiple training iterations to identify the optimal solution. 

Do not work well for complex scenarios. This code is supported by 

nine articles, including five academic publications [W14, W49, W15, W42, 
W51] and four grey literature items [G89, G67, G62, G69]. AutoML’s effec- 
tiveness may be limited in complex scenarios, where the intricate nature of 
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Figure 9: The limitations of using Automated Machine Learning tools. The bold text ref- 

erences are evidence-based extractions; non-bold references indicate unsupported claims. 
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data and the lack of clear problem structures entail significant challenges. As 
highlighted by Xin et al. [15], human intervention often compensates for the 
shortcomings of AutoML, thereby improving its overall performance. How- 
ever, these limitations become clear when AutoML confronts non-standard 
use cases and domains, struggling to adapt its predefined frameworks to 
the unique complexities presented in such scenarios. For instance, Waring 
et al. [W42] showed how prevailing AutoML approaches exhibit limitations, 
particularly in managing the scale and diversity of data within biomedical 
environments. 

Do not support image-based tasks (some frameworks). This code 

is supported by a single research paper [W90]. Limited support for image- 
based tasks restricts AutoML’s applicability in image-reliant domains. As 
Siriborvornratanakul [W90] notes, leading AutoML frameworks still lack 
comprehensive support for certain image-based tasks like segmentation. 

 

5.4.2. Infrastructure 

This theme delves into the infrastructure-related challenges that organiza- 
tions face when implementing and operating AutoML solutions. While these 
tools offer significant benefits, they also present notable hurdles in terms 
of resource management, computational requirements, and technological de- 
pendencies. 

Experience time and resource trade-off. Five articles contributed to 

this code: two from the white literature [W25, W91] and three from the grey 
literature [G89, G63, G88]. AutoML processes often involve a trade-off be- 
tween time and computational resources, necessitating careful consideration 
of resource allocation to achieve the desired results efficiently. As articulated 
by Elshawi and Sakr [W25], a larger time budget corresponds to prolonged 
waiting periods and increased consumption of computing resources — which 
in turn results in higher costs, especially when using cloud-based resources. 
In contrast, a smaller time budget reduces waiting periods and costs, but de- 
creases the likelihood of obtaining the optimal recommendation. This trade- 
off necessitates strategic decision-making to balance optimal outcomes and 
computational costs. 

Require computational power. This code is supported by a single article 
from the white literature [W92]. Symeonidis et al. [W92] emphasize that 
AutoML processes require considerable computational resources to function 
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effectively, especially for tasks such as hyperparameter tuning and model 
training. 

Have out-of-memory issues. Also this code is supported by a single re- 
search paper [W15]. Resource consumption challenges extend to memory 
constraints, as large datasets or complex models can lead to memory issues 
during AutoML processes. A prevalent concern of participants in the study 
by Xin et al. [W15] using OSS AutoML solutions is that compute-intensive 
workloads frequently result in system failures. Specifically, participants re- 
ported that encountering limitations in main memory capacity constituted 
one of the primary technical challenges while using AutoML. 

Result on vendor lock-in. Two articles underpin this code, one from the 

white literature [W60] and one from the grey literature[G54]. The potential 
for vendor lock-in emerges as a challenge, with limited interoperability be- 
tween AutoML solutions, restricting organizations from easily transitioning 
between platforms. Xin and Meertens [G54] observed that AutoML solutions 
are often the source of frustrations typically associated with cloud services, 
such as a lack of customizability, susceptibility to vendor lock-in, and an 
opaque operational process. 

 

5.4.3. ML workflow 

This theme explores the limitations of AutoML tools across various stages 
of the machine learning workflow. While these tools excel in certain aspects 
of the ML pipeline, they often fall short in providing comprehensive end-to- 
end solutions. From challenges in data integration and preprocessing to gaps 
in deployment support, model diagnosis, and ongoing monitoring, AutoML 
tools present several areas for improvement. 

Have data integration and data preprocessing challenges. This code 

is supported by four articles, all of which are from the white literature [W14, 
W20, W93, W94]. Integrating data from various sources can be a challenge 
for AutoML, particularly when dealing with heterogeneous datasets that re- 
quire careful preprocessing and harmonization. As highlighted by Krauß 
et al. [W14], the current landscape lacks systems capable of effectively au- 
tomating the data integration phase. Successful integration requires a com- 
prehensive knowledge of the types, structures, and nuances of the data sources 
involved. 
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Lack CI/CD integration. A single academic publication supports this 

code [W25]. Integration challenges with continuous integration/continuous 
deployment (CI/CD) pipelines hinder the incorporation of AutoML into agile 
development workflows. According to Santu et al. [W21], AutoML solutions 
predominantly concentrate on hyperparameter tuning and feature engineer- 
ing, often neglecting comprehensive considerations from a software engineer- 
ing and integration standpoint. 

Lack complete deployment support. Two white literature papers sup- 

port this code [W14, W60]. Often, AutoML tools lack support for deploying 
models in diverse production environments, hindering the transition from 
development to real-world ML applications. Alamin and Uddin [W60] found 
that a significant portion of AutoML practitioners, approximately 13%, en- 
counter difficulties in model deployment. This issue is critical as AutoML is 
also expected to streamline model deployment and mitigate stability-related 
problems in production. 

Lack end-to-end automation. This code is supported by seven articles, 

including four peer-reviewed papers [W21, W15, W53, W20] and three arti- 
cles from the grey literature [G61, G89, G54]. AutoML’s focus on specific 
aspects of the machine learning pipeline results in partial end-to-end sup- 
port, requiring manual intervention for certain stages of model development 
and deployment. Krauß et al. [W14] observe that existing AutoML systems 
encompass various ML pipeline steps, but none of them cover the entire spec- 
trum. Likewise, according to Xin et al. [W15], AutoML focuses mainly on 
automating model training, leaving users responsible for data pre-processing 
and post-processing tasks. 

Lack model diagnosis. A single peer-reviewed paper underpins this code 

[W14]. Diagnosing and understanding model behavior, particularly in com- 
plex scenarios, remains challenging, limiting AutoML-generated models’ trust- 
worthiness. In particular, Krauß et al. [W14] note that the comprehensive 
diagnosis of models remains a challenging area that requires further attention 
and improvement. 

Have limited model monitoring and updating. Two papers from the 
white literature support this code [W17, W94]. AutoML tools often lack 
robust model monitoring and updating mechanisms, crucial for adapting to 
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evolving data patterns and maintaining performance in production environ- 
ments. Wang et al. [W94] note that while AutoML excels in modeling and 
data analysis tasks, it lacks automation for labor-intensive activities like data 
preparation and ongoing model monitoring. 

 

5.4.4. Model performance 

This theme addresses the limitations of AutoML tools in achieving con- 
sistently optimal model performance across various scenarios. Despite the 
promise of automation in machine learning, AutoML systems face several 
challenges that can impact the quality and reliability of the models they pro- 
duce. These issues range from suboptimal performance in certain tasks to 
difficulties in addressing bias and overfitting problems. 

Have performance issues. Evidence for this code is supported by ten 
articles, eight from the white literature [W47, W14, W45, W48, W19, W18, 
W76, W51] and two from the grey literature [G62, G56]. AutoML models 
may not always achieve optimal performance due to suboptimal automated 
choices in various tasks, including algorithm selection, hyperparameter tun- 
ing, and feature selection. For instance, Krauß et al. [W14] found that man- 
ual data preparation performed by data scientists resulted in superior model 
performance. Luo and Kindratenko [W76] observed that specific tasks, such 
as differentiating between images of viral and bacterial pneumonia, pose con- 
siderable challenges for AutoML-generated models, leading to less favorable 
outcomes in performance metrics. Similarly, in the study by Faes et al. [W18], 
AutoML-generated deep learning models exhibited poor performance in cer- 
tain multi-label classification tasks, possibly due to peculiarities within the 
training datasets. 

Have bias challenges. A single grey literature article supports this code 

[G54]. Despite AutoML’s aim to streamline model development, the identifi- 
cation and correction of biases remains an open challenge. Xin and Meertens [G54] 
note that while AutoML providers are taking steps to embed anti-bias pro- 
cesses and explainability, significant improvements are still needed. Reveal- 
ing the model’s inner workings and identifying potential sources of suspect 
outcomes are pivotal in fostering trust and, in case of issues, facilitating reme- 
dial actions. The mere involvement of humans does not ensure the absence of 
bias, so model transparency is essential to mitigate biases in decision-making 
processes. 
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Have overfitting issues. A single paper from the white literature sup- 
ports this code [W14]. Despite automated hyperparameter tuning, AutoML 
models may still be prone to overfitting, especially when dealing with com- 
plex datasets or a limited amount of training data. As noted by Krauß 
et al. [W14], the community reports overfitting as an issue associated with 

Auto-sklearn, often occurring when an excessive amount of time is allocated 
to the training process. 

 

5.4.5. People 

This theme examines how AutoML tools, despite their advantages, can- 
not fully substitute domain-specific expertise, may potentially impact the 
development of technical skills, and do not eliminate the need for skilled 
data scientists. 

Do not substitute domain knowledge. Three sources support this code, 

one from the white literature [W45] and two from the grey literature [G67, 
G82]. AutoML tools do not substitute the need for domain knowledge, and 
successful model development still requires deep understanding of the intri- 
cacies of a problem’s specific domain. For instance, Schwen et al. [W45] 
emphasize that combining domain knowledge with ML expertise remains es- 
sential for connecting diagnostic tasks, assessment metrics, and the associated 
machine learning activities. 

May diminish technical skills. A single academic paper supports this 

code [W19]. Wang et al. [W19] report skepticism about AutoML’s widespread 
adoption potentially weakening data scientists’ technical skills. The partici- 
pants in their study expressed concerns about future professionals overrelying 
on automated tools, potentially undermining the development of essential 
technical competencies. This shift might hinder the development of in-depth 
technical knowledge and skills crucial for innovation in machine learning. 
Balancing the use of automated tools with technical expertise cultivation is 
vital for the sustained advancement and evolution of data science. 

Do not replace data scientists. This code is supported by sixteen arti- 

cles: thirteen from the white literature [W25, W47, W14, W45, W53, W20, 
W75, W19, W51, W91, W95, W94, W90] and three from the grey litera- 
ture [G67, G80, G82]. While AutoML enhances the efficiency and capabil- 
ities of existing data science teams, it falls short of enabling complete ML 
autonomy for companies lacking specialized in-house talent. Its inability to 
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replace ML experts represents a limitation in its potential to democratize AI, 
particularly given the current scarcity of skilled ML professionals. AutoML 
tools cannot replace the role of data scientists; rather, they complement their 
work by automating specific tasks. Skilled data scientists remain essential 
for effective model development and interpretation. As noted by Polzer and 
Thalmann [W75], AutoML primarily serves exploratory purposes, while the 
creation of comprehensive AI systems still largely relies on the expertise of AI 
professionals. Siriborvornratanakul [W90] highlights that the use of human 
knowledge significantly reduces the computational resources and time re- 
quired to obtain a high-performance model from the vast search space consid- 
ered in AutoML solutions. Crisan and Fiore-Gartland [W20] also emphasize 
that the practical use of AutoML in real-world settings requires substantial 
human effort for effective deployment and utilization. Wang et al. [W94] ob- 
served that, in practice, current AutoML systems predominantly target tech- 
nical personas like data scientists and AI/ML Ops engineers. Likewise, Lee 
et al. [W95] acknowledge that, despite the automation provided by AutoML, 
many real-world scenarios still require human supervision. 

 

5.4.6. Process 

This theme explores the process-related challenges that organizations face 
when implementing and using AutoML solutions. From transparency and 
flexibility issues to concerns about long-term costs, inadequate documenta- 
tion, and regulatory compliance, AutoML tools face a range of obstacles in 
their practical application. These challenges underscore the complexity of in- 
tegrating AutoML into existing processes and highlight the need for careful 
consideration in their implementation. 

Lack transparency. A total of sixteen sources support this code, including 
twelve papers from the white literature [W15, W23, W52, W17, W45, W22, 
W60, W19, W18, W26, W90, W96] and four grey literature items [G97, G54, 
G80, G88]. AutoML’s black-box nature poses a significant challenge, as the 
lack of transparency in its decision-making processes limits user understand- 
ing and trust in automated outcomes. As expressed by Xin et al. [W15], the 
lack of configurability and transparency is evident in tools such as Google 

Cloud AutoML. Despite leveraging proprietary Google Research technology to 
enhance model performance, this platform restricts user input on model types 
and fails to offer visibility into model internals, impeding users’ ability to un- 
derstand model functioning. Similarly, as articulated by Touma et al. [W22], 
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the lack of insight into the model architecture and hyperparameters within 
AutoML tools restricts users from understanding the classification mecha- 
nisms or customizing performance parameters. Furthermore, as highlighted 

by Schwen et al. [W45], AutoML Vision lacks logs or reports detailing initial- 
ization, network architecture search, or hyperparameter optimization, adding 
to the opaqueness surrounding model development processes. 

Lack flexibility. This code is supported by seven references: five form the 
white literature [W15, W23, W52, W45, W40] and two from the grey liter- 
ature [G54, G56]. AutoML’s predefined algorithms and workflows may lack 
the flexibility needed for certain specialized tasks or unconventional prob- 
lem domains, limiting its applicability in diverse scenarios. As highlighted 
by Xin et al. [W15], customizability ranks notably low among participants’ 
assessments of AutoML tools. Interestingly, the dissatisfaction with cus- 
tomizability stemmed from both insufficient options for customization and 
an overwhelming degree of flexibility, contributing to the overall lower rating 
in this aspect. Moreover, as elucidated by Schwen et al. [W45], AutoML 

Vision’s limitations are evident in its restrictive approach, allowing users to 
select only one among three presets and specifying a runtime budget based on 
the dataset size. The limited customization options prevent users from tai- 
loring the tool to meet specific requirements of diverse datasets or specialized 
tasks. 

Have high costs for long-term usage. Five papers support this code: 

three academic publications [W23, W45, W53] and two grey literature arti- 
cles [G63, G88]. The adoption of AutoML can incur high costs, both in terms 
of licensing fees and computational resources required, potentially discour- 
aging smaller organizations with limited budgets. As elucidated by Elshawi 
et al. [W53], the user-set time budget emerges as a critical parameter in 
AutoML systems, significantly impacting the system’s ability to explore var- 
ious options within the search space and thereby the likelihood of building 
optimal models. However, a larger time budget amplifies waiting periods 
and escalates computational resource consumption, directly translating into 
higher costs —especially when using cloud-based resources. For instance, 
Unadkat et al. [W23] note that while code-free ML systems are user-friendly 
and demand minimal technical expertise, cost concerns hinder widespread 
adoption among neurosurgeon-scientists, the target population in their study. 
Continuous cloud-based model usage incurs hourly charges, regardless of ac- 
tive training or testing. 
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Have inadequate documentation. A single academic paper supports this 

code [W60]. Insufficient software engineering practices in AutoML chal- 
lenge code maintainability, scalability, and collaborative integration, hinder- 
ing smooth incorporation of AutoML into established development work- 
flows. In particular, in their study, Alamin and Uddin [W60] found that 
widespread API misuse often occurs due to inadequate documentation or 
insufficient expertise of software engineers across all phases of the machine 
learning life cycle. For instance, errors in API calls for the deployment of 
Google AutoML’s natural language model reveal documentation deficiencies. 

Do not provide a universal solution. Five papers support this code, 

all from the white literature [W25, W14, W83, W44, W51]. AutoML tools 
lack universal applicability across all domains, datasets, and ML scenarios. 
Truong et al. [W83] note that no single tool consistently outperforms others 
on multiple tasks, highlighting AutoML’s varying effectiveness across differ- 
ent applications. In line with this observation, Mustafa and Rahimi Azghadi [W44] 
show that AutoML results can vary even when using the same dataset. 

Have compliance regulation issues. This code is supported by three 
articles: two from the white literature [W45, W75] and one from the grey 
literature [G69]. Schwen et al. [W45] highlight potential compatibility issues 

between cloud-based tools like AutoML Vision and local data protection 
regulations. On the other hand, Polzer and Thalmann [W75] stress the 
need for better documentation of insights obtained during the exploration 
of AutoML use cases. In general, ensuring AutoML applications’ regulatory 
compliance remains challenging, requiring more comprehensive measures to 
ensure alignment with evolving standards. 

 
6. Discussion 

6.1. RQ1 – On the Advantages of AutoML tools 

Our analysis of the primary advantages of AutoML tools, as addressed in 
RQ1 (“What are the main benefits of state-of-the-practice AutoML tools?”), 
reveals several impactful benefits associated with their use. AutoML tools 
showcase proficiency in streamlining multiple facets of the machine learning 
workflow, demonstrating their ability to optimize model performance through 
various means. 

Our study presents a comprehensive list of 18 primary advantages asso- 
ciated with the utilization of AutoML tools. This distinguishes it from the 
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aforementioned systematic literature review (SLR) on AutoML tools by Bar- 
budo et al. [34], which explores different research questions, not explicitly 
focusing on reported benefits. 

First, AutoML tools excel at simplifying feature engineering, aiding in 
the identification and integration of pertinent features critical to enhancing 
model performance. In addition, these tools expedite data selection, enabling 
efficient utilization of diverse datasets, which is particularly advantageous 
when handling extensive and varied data sources. 

AutoML significantly contributes to data preprocessing by automating 
tasks such as handling missing values, scaling features, and encoding cate- 
gorical variables. This automation not only saves time but also helps to have 
standardized, error-free data input for models. 

Additionally, AutoML simplifies the overall model creation process by 
automating the building, validation, and deployment stages. It optimizes 
model configurations by automating hyperparameter tuning, consequently 
enhancing model accuracy and efficiency. 

Beyond technical benefits, AutoML tools are pivotal in democratizing 
machine learning by offering user-friendly interfaces and automating com- 
plex processes, enabling individuals without extensive machine learning ex- 
pertise to interact with ML models and perform data analysis. Furthermore, 
these tools incorporate features to mitigate bias in machine learning models, 
contributing to more reliable predictions. 

The cumulative advantages highlighted underscore the substantial impact 
of AutoML in optimizing the machine learning workflow. These tools serve as 
catalysts for efficiency, accelerating processes, improving model performance, 
increasing productivity, aiding scalability, and facilitating rapid prototyping, 
thus broadening the approachability and effectiveness of artificial intelligence 
methods. 

Practitioners can use the evidence to support more informed decisions on 
adopting AutoML tools. For instance, they could prioritize tools that offer 
customizable feature engineering and robust data preprocessing pipelines. 
Furthermore, tools with advanced hyperparameter tuning capabilities and 
support for diverse data types can be more effective in improving model 
prediction performance. Additionally, selecting AutoML tools that empha- 
size bias mitigation and transparency can be critical in ensuring ethical and 
reliable use in sensitive applications. 
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6.2. RQ2 – On the Limitations of AutoML tools 

AutoML tools play a crucial role in democratizing machine learning, 
but their widespread adoption faces several challenges. In response to RQ2 
(“What are the main limitations of state-of-the-practice AutoML tools?”), 
our analysis of multiple articles uncovered significant obstacles that shed 
light on the complexities and limitations inherent in AutoML. We provide a 
catalog of 25 limitations of AutoML tools qualitatively organized into themes 
(Figure 9). 

One substantial challenge lies in the common lack of transparency and of 
effective bias mitigation within AutoML’s decision-making processes, which 
impacts the understanding and trust in the generated models. Issues such 
as vendor lock-in and limited interoperability may pose additional important 
hurdles. AutoML’s reliance on high-quality input data and struggles with 
diverse datasets and unstructured data compound these limitations. 

Furthermore, Established AutoML algorithms are often constrained in 
their adaptability to specific tasks, potentially leading to reduced effective- 
ness in complex scenarios. Performance deficiencies, including suboptimal 
model outputs and potential overfitting, may undermine the reliability and 
applicability of AutoML-generated models. 

It is crucial to note that AutoML does not replace human expertise but en- 
hances efficiency, necessitating skilled users to leverage its capabilities along- 
side their own expertise and insights. Another related risk is the potential 
erosion of technical skills due to over-reliance on automation, further empha- 
sizing these shortcomings. 

Considering this evidence, practitioners could favor tools that best mit- 
igate the limitations that have the most impact on their specific usage con- 
text. For example, tools that incorporate explainability techniques can help 
overcome transparency challenges by providing insights into model decisions. 
In environments where vendor lock-in and limited interoperability are con- 
cerns, opting for standard-compliant tools can enhance flexibility and facili- 
tate smoother integration, particularly in production environments. 

 

6.3. Future directions 

While our goal was to synthesize evidence, producing (and assessing) 
practitioner tool selection guidelines considering the gathered evidence on 
the potential advantages and limitations for specific scenarios could be part 
of future work. 
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Furthermore, considering the evolution of the AutoML tools, the MLR 
revealed limitations that we hereafter map into potential areas for future 
enhancement and research. 

Scalability and efficient handling of large-scale data. Addressing the chal- 

lenges associated with large datasets is crucial. Future advancements should 
focus on developing innovations that enhance AutoML’s scalability and ef- 
ficiency in processing large-scale data without compromising performance. 
This includes strategies to optimize computational resources, reduce pro- 
cessing times, and streamline iterative model training on large datasets. 

Enhanced support for complex scenarios and diverse domains. Enhancements 

are needed to improve AutoML’s adaptability to complex scenarios and unsu- 
pervised learning tasks. Tailoring AutoML frameworks to effectively handle 
the scale and diversity of data in specialized domains, such as biomedical re- 
search or other complex fields, is important. Further research should aim to 
bridge the gap between predefined frameworks and the unique complexities 
present in diverse domains. 

Expanded capabilities for unstructured data. Advancements in AutoML frame- 

works should prioritize comprehensive support for unstructured data types, 
including but not limited to images and text. While our review particularly 
highlighted the need for improved capabilities in image-based tasks such as 
segmentation, research efforts should focus on augmenting general AutoML’s 
abilities to accommodate and process a wider range of input data types. This 
expansion would enhance AutoML’s applicability across various domains that 
rely on complex, non-tabular data sources. Special attention should be given 
to improving these capabilities in open-source tools, as our review indicated 
a particular need in this area. 

Optimized resource allocation and infrastructure management. Future devel- 

opments should aim to strike a balance between time, computational re- 
sources, and costs in AutoML processes. Innovations in resource manage- 
ment strategies, cost-effective use of computational power, and mitigation of 
out-of-memory issues are essential to streamline AutoML operations. 

Improvements in data integration, preprocessing, and CI/CD integration. In- 
novations in automating data integration from heterogeneous sources, robust 
preprocessing methods, and seamless integration with CI/CD pipelines are 
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crucial. Addressing these challenges requires advanced capabilities to handle 
diverse data sources and frameworks. 

Comprehensive model deployment support and end-to-end automation. En- 
hancements in AutoML should focus on comprehensive support for deploying 
models across diverse production environments. Moreover, efforts are needed 
to achieve more significant steps in end-to-end automation, covering all stages 
of the machine learning pipeline without requiring extensive manual inter- 
vention. 

Enhanced model diagnosis, monitoring, and updating. Future developments 
should prioritize robust mechanisms to diagnose model behavior, real-time 
monitoring, and automated updating. Ensuring that models adapt to evolv- 
ing data patterns is crucial for sustained performance in real-world applica- 
tions. 

Performance optimization and bias mitigation. Research efforts should aim 

to address issues related to suboptimal model performance, overfitting, and 
effective bias mitigation. The achievement of better model generalization 
and fairness in decision-making processes remains critical. 

Balancing technical expertise and automation. Striking a balance between 

leveraging automation and nurturing technical expertise in data science is 
important. Future directions should focus on ensuring that AutoML tools 
complement, rather than replace, the role of skilled data scientists, fostering 
continuous innovation and understanding in the field. 

Enhanced transparency, flexibility, and cost considerations. Improving trans- 

parency in AutoML decision-making processes, improving flexibility for cus- 
tomization, and addressing cost implications are crucial to broader accessi- 
bility and usability across diverse organizations and problem domains. 

Compliance and regulation alignment. Future AutoML developments should 
ensure alignment with evolving regulatory standards, facilitating compatibil- 
ity with various data protection regulations and documentation requirements. 

 
In summary, addressing these specific challenges and prioritizing these 

future directions could significantly improve the efficiency, applicability, and 
ethical implementation of AutoML in various real-world scenarios. 
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7. Threats to validity 

We aimed to cover a broad spectrum of AutoML content from academic 
and non-peer-reviewed literature. Therefore, we employed an efficient search 
strategy for the white literature [36] and described our search strategies for 
white and grey literature in detail, making the details of each filtering step 
available in our open science repository [38]. Despite employing compre- 
hensive search strategies and examining multiple sources, there remains the 
risk of overlooking relevant information. Furthermore, the subjective nature 
of the exclusion criteria may have influenced the completeness of our data 
collection. To mitigate this threat, we peer-reviewed the application of the 
search strategy and the exclusion criteria. 

An additional limitation arises from our decision to include in our results 
only the sources that mention AutoML solutions from Google, Microsoft, 
IBM, and Amazon (see EC5 in Table 1). However, our decision to focus 
on the four leading solutions from Gartner’s Magic Quadrant was only con- 
sidered as an initial selection criterion of the relevant results. In fact, our 
review includes an analysis of the benefits and challenges of any other tools 
mentioned in the selected sources, such as open source solutions. Although 
the goal of this paper was not to provide an exhaustive review of AutoML, 
we acknowledge this as a limitation that may have potentially excluded some 
valuable insights from lesser-known or emerging AutoML solutions. 

Another potential limitation of our study stems from our selection criteria 
for grey literature. We focused exclusively on substantial written materials 
such as blog posts, articles, and white papers, while excluding short-form con- 
tent (e.g., social media posts, advertisement blurbs) and non-written formats 
(e.g., podcasts, videos). This decision was made to ensure depth of analysis, 
maintain consistency with academic literature, and facilitate systematic re- 
view. However, we acknowledge that this approach may have excluded some 
valuable insights, particularly those shared through multimedia channels or 
in more concise formats. 

A further limitation of our study is the exclusion of post-processing steps 
from our analysis of the typical ML workflow. Our simplified ML work- 
flow (see Figure 1), based on Amershi et al.’s 9-stage workflow [9] and the 
CRISP-DM process model [10], does not explicitly include post-processing 
as a distinct stage. Nonetheless, we recognize that post-processing activi- 
ties, such as report generation and result visualization, can play a key role 
in some AutoML applications. Future research could explore the role and 
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importance of post-processing in AutoML, potentially uncovering additional 
benefits and limitations concerning related activities. 

Another threat concerns publication bias. Although negative research is 
important because it demonstrates what does not work, scientific literature 
has a publication bias toward positive results [98]. Negative research is less 
cited, published, and is generally considered less scientifically interesting [98]. 
This threat is inherent in literature reviews and cannot be mitigated. How- 
ever, we still found an expressive number of limitations (25). 

Finally, regarding the data analysis, while conducting the thematic syn- 
thesis on the advantages and limitations of AutoML tools, we recognize some 
constraints that could impact the reliability of our findings. In our thematic 
synthesis, we assigned codes to the benefits and limitations, with the goal of 
transforming them into overarching themes. This process allowed us to con- 
dense a large amount of material into more concise elements. However, this 
process introduced subjectivity and potential biases. To reduce this threat, 
we peer-reviewed all the codes and carefully discussed them, involving the 
entire team of authors. Furthermore, to provide complete transparency and 
enable auditing of our qualitative coding, we made the coded data available 
in our open science repository. 

 
8. Conclusion 

This study investigates the benefits and limitations of AutoML solutions 
identified in the white and grey literature, with a particular emphasis on 
tools being considered for adoption in industry. The study employed compre- 
hensive and transparent search strategies and qualitative thematic analysis 
procedures, revealing 18 reported benefits and 25 limitations. We visually or- 
ganized the benefits and limitations into a catalog grouped by themes using 
mind maps. In general, AutoML tools streamline machine learning work- 
flows, simplify tasks, empower users, improve model performance, increase 
efficiency, scalability, and accelerate prototyping. However, there are still 
ongoing difficulties, including the extent of workflow coverage, the limited 
ability to replace human expertise, problems with transparency and handling 
diverse data, and potential performance drawbacks. 

While AutoML simplifies the process of creating machine learning pipelines, 
the effectiveness and breadth coverage of these tools can vary. One key point 
is that these tools enhance human expertise rather than replace it, requiring 
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skilled users to use their capabilities. Gaining a comprehensive understand- 
ing of the AutoML landscape is essential for optimizing machine learning 
progress and choosing the tools appropriately. 

Hence, the findings can be used by practitioners to consider trade-offs 
between such benefits and limitations to conduct effective evaluations of 
AutoML solution options. Furthermore, they can be used by researchers 
to steer future research addressing the current limitations. 
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