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Abstract

Deep Eutectic Solvents (DESs) are solutions at liquid
state made of hydrogen bond acceptors and donors
mixed together in a specific molar ratio. These
neoteric solvents are highly tunable through vary-
ing the structure or relative ratio of parent com-
ponents and have been evaluated as solvents able
to improve biomolecules’s performance, specifically
their stability and biocatalytic properties. Inspired
by a recent crystallographyc study, we have explored
through molecular dynamics (MD) simulations the
dynamic properties of two different proteins (hen egg-

white lysozyme and the human VH antibody frag-
ment HEL4) in a (20% w/w) hydrated solution of
Choline chloride – Glycerol (1:2). We have devel-
oped proper force fields to account for DES, pro-
tein and DES-Protein interactions, which have been
calibrated using pair distribution function measure-
ments of pure-DES solutions. MD results show that
the presence of DES quenches the protein motion,
increasing the rigidity of the overall protein struc-
ture. Specific interactions among DES components
and protein residues, such as those between choline
ions and two Tryptophan residues of lysozyme, may
amplify the protein-DES interactions, and lead to
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protein crystallization in the presence of hydrated
DES. These findings open new horizons to enhance
or achieve control on protein properties by a proper
choice of hydrated DESs used as solvents.

1 Introduction

The most common solvents used in industry represent
an important source of environmental pollution. The
need of green alternatives to these solvents led to the
search for more sustainable compounds. In this con-
text, Deep Eutectic Solvents (DESs), first presented
by Abbott and coworkers in 2003,[1] have gained con-
siderable attention among the scientific community
thanks to their eco-friendly character and easy prepa-
ration methods.[2] Besides, they show desirable prop-
erties such as low flammability, thermal and chemical
stability and low vapour pressure that make them
advantageous over organic solvents.[3]–[6] DESs are
usually obtained by the right combination of a qua-
ternary ammonium salt (Hydrogen Bond Acceptor
- HBA) and a metal salt or Hydrogen Bond Donor
(HBD). At the proper molar ratio the constituting
species give rise to a eutectic mixture, for which the
eutectic point temperature is lower than that of an
ideal liquid mixture.[7] Depending on the nature of
their constituents, DESs are classified into five main
types (I-V). Most of them fall into types I-IV,[4] while
non-ionic DESs belong to the recently proposed fifth
type.[8]

Type III DESs, formed by Choline chloride and
hydrogen bond donors, are certainly the most stud-
ied so far, mainly due to the ease of preparation,
low cost and high biodegradability of the starting
materials.[9]–[11] Among the HBD molecules stud-
ied to date, amides, carboxylic acids and alcohols
have been often used to engineere deep eutectic sol-
vents.[1], [12], [13] Due to the huge number of possi-
ble formulation, their physicochemical properties can
be highly and easily tailored by choosing both the
nature and the ratio of the constituents.[14] This
has allowed DESs to be succesfully applied in sev-
eral fields of science, such as electrochemistry,[15],
[16] organometallics,[17]–[19] extraction and separa-
tion processes,[20]–[22] and biocatalysis.[10], [23]–[25]

Due to the high viscosity typical of DESs, limiting
their practical application in many of these fields, it
is common to use water as cosolvent in order to over-
come this hindrance. This strategy is particularly
useful in those cases where it would be inappropriate
to work at high temperature. It is well known that
the presence of water has an influence on the physic-
ochemical properties and molecular arrangement of
DESs. As reported in a recent review, many experi-
mental and theoretical investigations were carried out
to study the effect of water on physicochemical prop-
erties and nanostructure of DESs.[26] At low content,
water seems to strengthen the DES’s supramolecular
network, while a higher content appear to weaken it.
In-depth investigations by Edler and coworkers have
shown that the nanostructure of the hydrated reline
DES system is retained up to 42 wt% water.[27] Fur-
ther addition of water brings DES-water systems to
become aqueous solutions of HBA and HBD. [28]–
[30]

The current interest in DESs in biocatalysis arises
from having found them to be nondetrimental when
used as solvents for biomolecules.[31]–[33] This means
that, in principle, these solvents in both their pure
and hydrated forms can be used as alternatives to
the traditional organic solvents in order to carry out
biotransformation processes. In addition, hydrated
DESs were found to allow protein crystallization, also
confering a major stabilization to the risulting crys-
tal.[34] This is very attractive, since the use of sta-
ble crystals containing biomolecules as immobiliza-
tion strategy could be implemented for biotechnolog-
ical applications.[35] Sanchez-Fernandez and cowork-
ers have recently shown that lysozyme remains sta-
ble up to 40 days of storage in pure 1:2 choline
cloride:glycerol at room temperature.[36] Despite the
increased interest and their benign and economically
viable nature, only a limited number of studies on
the effect of pure and hydrated DESs on protein
structures have been carried out so far. To date,
most of the studies performed on DES-protein sys-
tems involve lysozyme, a common globular antimi-
crobial enzyme. Experimental investigations showed
that the presence of water plays a key role in preserv-
ing the protein folding, maintaining the enzymatic
activity.[37], [38] Beyond these observations, there is

2

Page 2 of 19

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 1: Chemical structure of the constituting species
of the studied deep eutectic solvent

much more to know about the specific interactions
between proteins and DESs. As recently reported by
Kumari et al.[39], MD simulations are a powerful tool
to get insights about the impact of pure and hydrated
deep eutectic solvents on protein structure and con-
formation, also predicting their dynamic properties.
However, due to their strong interactions, DESs are
very challanging to describe from a theoretical point
of view, especially as for their dynamic properties.[40]

Nowadays, the most common practice imple-
mented to theoretically reproduce properties of DESs
in a classical mechanics framework, is to apply a scal-
ing factor to the atomic charges defined in the respec-
tive force field (FF). This requires to compute first
partial charges for each species. Atomic charges can
be obtained either from the most stable conforma-
tion in the gas phase of each isolated species or from
the minimal cluster of eutectic composition for each
system.[41]–[45] Recently, Chaumont and coworkers
have shown an alternative method of FF develop-
ment for pure DES solvents, based on Lennard-Jones
(LJ) refinement.[46] This second approach could al-
low to make DES force fields compatible with the
most common force fields used in the last decades
for biomolecules. In the present study, we used a
novel approach to model DES-water-protein interac-
tions by treating separately the LJ parameters for
DES-water/DES-protein interactions and for DES-
DES interactions. Using such scheme, the effect of
the pure Choline chloride – Glycerol DES (see Figure
1) or aqueous solutions of Choline chloride – Glycerol
DES on the structural dynamics of two proteins was
investigated by using MD simulations. First we val-
idated the three force fields used through MD sim-
ulations carried out on pure DES and its hydrated

mixture. Then, we explored the impact of a Choline
chloride – Glycerol/water mixture at high DES con-
tent (80% w/w) on the conformation and stability of
hen hegg white lysozyme (HEWL) and human VH
antibody domain (HEL4). Proteins, DES and its hy-
dration level have been choosen referring to the recent
work published by Belviso et al.[34] with the aim of
predicting the reasons that trigger protein crystalliza-
tion in the presence of deep eutectic solvents. The
three force fields used to model DES-water-protein
interactions display qualitatively equivalent results,
making the reported data more robust.

2 Methods
All MD simulations were carried out using the GRO-
MACS software package.[47], [48] All the simulation
boxes containing the deep eutectic mixture [Ch]+[Cl]–

– glycerol (1:2) were generated using the PACKMOL
package.[49] Figure 1 shows the molecular structure
of the DES components: Choline Chloride and glyc-
erol.

2.1 Simulated systems

DES Choline chloride – Glycerol (1:2) To pre-
pare the pure system, the deep eutectic solvent’s con-
stituting species were randomly placed into a cubic
simulation box of side ∼ 60 Å. The choline cation
[Ch]+ and the chloride anion Cl– were inserted inde-
pendently from each other, according to the molar
ratio of the DES.

DES-water mixtures As for pure DES, in DES-
water mixtures the DES species were randomly
placed into twelve simulation cubic boxes (box length
∼60 Å) of different water content (% w/w).

Proteins The initial structures of hen egg white
lysozyme (PDB 1AKI)[50] and human VH antibody
domain (PDB 7OBF) were taken from the RCSB
Protein Data Bank. The two proteins were solvated
either in water or in DES-water mixture (80/20 %
w/w) into cubic boxes of side 85.4 Å and 95.7 Å,
respectively. In water, Na+ and Cl– were added to
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the systems at physiological concentration (0.15 M).
An excess of Cl– ions were used to neutralize the net
positive charge of lysozyme, exept for the FF±0.92e

simulation in which F– were used instead due to the
scaling factor applied to the DES’s ionic species [Ch]+

and Cl–. In the case of human VH antibody domain,
Na+ ions were used to neutralize the net negative
charge of the simulated systems.

2.2 Force Field parameters

In the present work two different force fields were
used to describe the pure DES: one developed by
solely refining Lennard-Jones parameters of the hy-
droxyl function atoms and the other following the
most common practise for DES of charge scaling. FF
parameters of the former (FFLJ) were taken by a re-
cent work published by Chaumont et al.[46] whereas
for the latter strategy we developed our own force
field (FF±0.92e). FF parameters for the choline cation
([Ch]+) and for the glycerol molecule were taken from
the General Amber Force Field (GAFF) v2.11,[51]
designed for simulation of small molecules. The force
field parameters for the chloride anion (Cl–) were ob-
tained from AMBER03.[52] Atomic charges for [Ch]+

and glycerol atoms were obtained using the standard
RESP procedure on the optimized geometry in the
gas phase of each isolated species using the Gaus-
sian16 software package.[53] Geometry optimizations
were carried out using the B3LYP/6-31G* method
and then calculating the electrostatic potential on the
optimized structures using the HF/6-31G* method.
To obtain a better agreement with experimental re-
sults,[54], [55] we used an empirical approach test-
ing some different scaling factor to use on the partial
charges of the ionic species. The best agreement has
been achieved when using a reduced charge of ±0.92e
for the ionic species.

For the description of DES-water and DES-water-
protein systems, a third force field (FFmix) was taken
into account, developed following a novel approach
based on the idea of treating separately DES-DES
and DES-water-protein interactions. In order to
implement such a strategy, we acted on Lorentz-
Berthelot combination rules used to construct cross
terms in vdW interactions (eqs (1) and (2)).

σij =
σi + σj

2
(1)

ϵij =
√
ϵiϵj (2)

Since this implies to act on Lennard-Jones param-
eters, we used those from Chaumont’s work to de-
scribe DES-DES interactions,[46] while DES-water
and DES-protein interactions were modeled using the
original non-bonded parameters of the GAFF v2.11
[51] for oh and ho atom types (i.e. oxygen and hydro-
gen atoms of the hydroxyl groups). Chaumont and
coworkers took FF parameters for the [Cl]− from the
work of Cheatham et al.[56] which were optimised
for SPC/E water model. In this work, we used TIP3p
water model,[57] so it was more appropriate to use the
original non-bonded parameters of AMBER03 [52] for
the chloride [Cl]− anion when interacting with pro-
teins and water molecules.

2.3 Molecular Dynamics simulations
After minimization with the steepest descent algo-
rithm, we equilibrated the system for 100 ns in the
NVT-ensemble. Then, 200 ns MD simulations were
performed in NpT ensemble. Long range electro-
static interactions were computed by the Particle
Mesh Ewald (PME) method,[58] using a grid spac-
ing of 0.12 nm and a short range cutoff of 1.2 nm.
The LINCS algorithm [59] was used to constrain all
the hydrogen-involving bonds. A step size of 2 fs was
used for numerical integration of the equations of mo-
tion. The temperature was kept constant at 298.15
K using the V-rescale algorithm [60] and the systems
were isotropically coupled to a pressure bath at 1 bar,
using Parrinello-Rahman barostat.[61], [62]

In case of protein simulations, all equilibrium MD
simulations were preceded by energy minimization
using the steepest descent algorithm, followed by 20
ns of MD simulations with harmonic position re-
straints (force constant 1000 kJ mol−1 nm−2) applied
on protein’s heavy atoms in NVT ensemble in order
to equilibrate the solvent. Finally, 200 ns of unre-
strained MD simulations were carried out in NpT
ensemble at 1 bar, using Parrinello-Rahman baro-
stat.[61], [62] The Nosé-Hoover algorithm was used
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to keep the temperature constant at 298.15 K.[63],
[64]

2.4 Pair distribution function (PDF)

PDF measurements were performed at the Na-
tional Synchrotron Light Source (NSLS-II) of the
Brookhaven National Laboratory. The 28ID-2 beam-
line was used, with a primary X-ray beam of 74.52
keV (0.1664 Å) energy and 0.5 mm x 0.5 mm spot
size. A Perkin Elmer XRD 1621 digital imaging de-
tector (2048 x 2048 pixels of 200 x 200 µm size)
orthogonal to the beam was put 202 mm down-
stream the sample to optimize PDF measurements.
Nickel was measured as a standard reference mate-
rial to calibrate the wavelength and the detector po-
sition/orientation. The DES sample was put in a
Kapton tube of 2 mm diameter. An empty capillary
similar to that used for holding the DES sample was
measured for background estimation. X-ray measure-
ments were performed at room temperature, with no
filters and by spinning the sample. Diffraction images
were azimuthally integrated and converted into inten-
sity profiles versus 2 θ and versus momentum transfer
(Q) by using the FIT2D program.[65] PDF profiles
were calculated up to interatomic distances r of 20 Å
from Q profiles by the program PDFGetX3.[66] The
parameters for PDF calculation (background sub-
traction scale factor, minimum and maximum values
of Q, degree of data-correction polynomial) were op-
timized to reduce termination effects and to enhance
the signal to noise ratio. The Qmax parameter was
set to 17.0 Å−1. The PDF profile was refined by using
a python script based on the DiffPy-CMI library.[67]
The last frame from the simulation of pure Choline
chloride – Glycerol DES with the FFLJ force field and
the FF±0.92e force field was used as fitting model.
All the atoms included in the 6x6x6 nm box were
considered, apart from the hydrogen atoms, to speed
up calculations. The fits were executed in the range
of interatomic distances from 0.5 Å to 13 Å, which
includes all the features of the PDF profile, with a
step of 0.01 Å. The fitting model was defined as the
convolution of the PDF contribution due to a bulk
crystal structure and that due to the crystal shape.
The model parameters were refined separately, i.e.

by keeping constant all the others, with the following
order: scale factor, peak shape parameters: Qbroad,
(peak broadening from increased intensity noise at
high Q) and delta1 (coefficient for 1/r contribution to
the peak sharpening), isotropic displacement factors.
Three atomic displacement parameters were consid-
ered and refined separately: one for the Cl– ions, one
for the non-hydrogen atoms of the choline ion, and
one for non-hydrogen atoms of the glycerol molecule.
The crystal shape was assumed spherical with a diam-
eter of 10 nm (parameter not refined) and the atomic
positions were kept fixed. 10 refinement cycles im-
plementing this protocol were performed.

2.5 MD calculated properties

Density (ρ) values were obtained by averaging the
results over the last 25 ns of MD in the NpT ensemble.

Self-Diffusion Coefficients for the choline ions
([Ch]+), the Cl– ions and glycerol molecules (GOL)
were calculated over the NpT trajectories using the
Einstein relation (eq(3)).[68]

lim
t→∞

⟨||ri(t)− ri(0)||2⟩i∈A = 6DAt (3)

DA is the self-diffusion coefficient of type A parti-
cles, ri is the position of the i-th A type particle at
time t.

Radial distribution function (RDF) or pair
correlation function gAB(r) between particles of type
A and B is defined as follows:

gAB(r) =
⟨ρB(r)⟩
⟨ρB⟩local

=
1

⟨ρB⟩local
1

NA

NA∑︂
i∈A

NB∑︂
j∈B

δ(rij − r)

4πr2
,

(4)
where ⟨ρB(r)⟩ is the density of particles B at a dis-
tance r around particles A, ⟨ρB⟩local is the density of
type B averaged over all spheres around particles A
with radius rmax. RDFs between the center of mass
(COM) of the DES species [Ch]+,Cl– and GOL were
calculated over the MD trajectories in the NpT en-
semble.

5

Page 5 of 19

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2.6 Dynamical Cross-Correlation Ma-
trix (DCCM)

We assessed the correlated motion between residues
by means of the the Dynamical Cross-Correlation
Matrix (DCCM), which measures the cross-
correlations of atomic displacements. Calculations
have been performed by using VMD,[69] with a tcl
script that performs: (i) a frame-by-frame alignment
of the structural models within the trajectory
considering only Cα atoms: (ii) a calculation of
the Pearson’s linear coefficient of the vectorial
displacements of Cα atoms with respect to their
average positions, according to the equation:

corr
(︂
r⃗, s⃗

)︂
=

∑︁N
k=1

(︂
rk⃗ − ⟨r⃗⟩

)︂
∗
(︂
sk⃗ − ⟨s⃗⟩

)︂
√︃∑︁N

k=1

(︂
rk⃗ − ⟨r⃗⟩

)︂2 ∑︁N
k=1

(︂
sk⃗ − ⟨s⃗⟩

)︂2

(5)
where r⃗ and s⃗ are the vector positions of two Cα

atoms of the protein, k=1,...N identifies the frame of
the MD trajectory and the ∗ operator indicates the
scalar product between the two displacement vectors.
The DCCM maps have been plotted by using the
ROOT package.[70]

3 Results and Discussion

Before proceeding with the simulations of proteins in
80/20 (% w/w) DES/water mixture, the force fields
used to describe Choline chloride – Glycerol (1:2)
DES and its aqueous mixtures were validated against
available experimental and theoretical values. In this
regard, we computed densities, self-diffusion coeffi-
cients and radial distribution functions comparing
our results with both experimental[54], [55], [71]–[73]
and computational studies.[43], [46]

The results obtained in this study appear in good
agreement with that found in the literature, thus con-
fering reliability to the force fields used. Looking at
the computed densities as function of the hydration
level of the DES mixture (Figure S2, Table S5) it
is noteworthy underlining a better agreement of the
FFmix with the experimental values compared to the
other FFs used. Additional details are shown in the

Supporting Information (Figures S1 and S2; Tables
S1-S5).

Pair Distribution Function (PDF) results
Since the FFLJ model was identified as the basis
for the development of FFmix, further experimental
validation was performed through X-ray diffraction
measurements performed in PDF mode. The pure
DES models have been validated against experimen-
tal PDF data, which monitor the local order in amor-
phous or quasi-crystalline materials. As shown in
Figure 2, the PDF profile calculated from the last
frame of the FFLJ simulation (Figure 2a) has a bet-
ter agreement with data than that calculated from
the FF±0.92e simulation (Figure 2b). In particular,
FFLJ is able to reproduce the small-range features of
the PDF profile, i.e. all its sharp peaks comprised
between 1 and 4 Å better than FF±0.92e. The dis-
crepancies at interatomic distances smaller than 1 Å
are due to finite-size artifacts and are not significant.
The fitting parameters are summarized in Table 1.
The agreement factor with data (Rw) is slightly bet-
ter for FFLJ than FF±0.92e models.

For both fits, the peak shape parameters assume
realistic values for PDF refinements, and the atomic
displacement parameters are consistent with expecta-
tions, showing much higher mobility of the Cl– with
respect to choline ions and glycerol molecules, and
chlorine ions fluctuating more than glycerol. On the
basis of the results reported, FFLJ is more suitable to
simulate the Choline chloride – Glycerol (1:2) DES,
and pure DES simulations can be considered fully
validated by X-ray diffraction experimental data sen-
sitive to the chemical short-range order.

3.1 Lysozyme

Recently Belviso and coworkers succesfully achieved
crystallization of lysozyme using three different
choline eutectic mixtures, including Choline chloride
– Glycerol (1:2) at low hydration level.[34] In this con-
text, four MD simulations of lysozyme, one in water
and three in 80/20 (% w/w) DES/water mixture us-
ing three different force fields, were carried out start-
ing from the crystal structure.
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Figure 2: Results of the fit of pair distribution function experimental data with the final frame of the pure DES
model simulated by the FFLJ (a) and FF±0.92e (b) force fields. Experimental (blue dots), calculated (red line) and
difference (green line) PDF values are shown.

Table 1: Refinement parameters of the PDF fit. Rw is the weighted agreement factor between observed and
calculated PDF, Delta1 is the coefficient for 1/r contribution to the peak sharpening, Qbroad describes the peak
broadening from increased intensity noise at high Q, B are the thermal factors of the Cl– ion and the of the atoms
of the choline ion [Ch]+ and the glycerol molecule (GOL).

Parameter FFLJ FF±0.92e

Rw 0.331 0.363
Delta1 1.23 1.38
Qbroad 0.07 0.133

B(Cl−, [Ch]+, GOL)(Å2
) 42.684, 0.001, 0.082 6.67, 0.489, 0.003

3.1.1 Overall stability

We evaluated the overall stability of lysozyme in wa-
ter and DES-water mixture by computing different
properties as function of time (see Figure 3). Top
panel shows the RMSD of atoms of the whole HEWL
backbone with respect to its reference structure either
in water and in 80/20 (% w/w) DES-water mixture.
RMSD values in water lay in the range of 0.1-0.25
nm. Differently in DES aqueous mixture these val-
ues slightly decrease and, more importantly, remain
constants below 0.1 nm all over the simulation time.

This suggests that the hydrated DES solvent tends
to preserve the original protein structure.

The radius of gyration allows us to understand
the effect of the DES on the compactness of protein
structure. As reported in Figure 3 both water and
DES-water mixture do not affect the compactness of
lysozyme. The Rg values lie around the average value
of 1.4 nm in both solvents.

Finally, calculating the total number of hydrogen
bonds present in the whole protein as a function of
time, it appears clear that the presence of DES does
not affect the stability of the secondary structures.
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Figure 3: Impact of 80/20 (% w/w) DES/water
mixture on lysozyme compared to water From top
to bottom panel: RMSD calculated on the protein back-
bone with respect to its crystal structure as function of
time; variation of radius of gyration (Rg) of lysozyme
during simulation; total number of lysozyme’s hydrogen
bonds computed over the whole trajectory.

In addition, the simulations in water and in 80/20
(% w/w) DES/water mixture display similar results,
thus confirming that DES does not affect the sec-
ondary structures.

The three analyses discussed above show an inter-
esting behaviour: lysozyme in hydrated DES shows a
rigidity higher than the rigidity of the protein in pure
water. We decided to further investigate this aspect
by computing the RMSF of Cα atoms for each residue
of HEWL in water and 80/20 (% w/w) DES/water
mixture. In water solution, the observed RMSF val-

ues are lower than 0.1 nm for most of the residues
(Figure 4). A higher RMSF value is found in corre-
spondence of the loops including residues 14-22, 46-
50 and 121-124, indicating that in water these regions
are more flexible than the rest of the protein. In hy-
drated DES, the rigidity of lysozyme is, in average,
comparable to the rigidity in water with the excep-
tion of the above mentioned residues.

The presence of DES affects the correlated motion
within the protein, as determined by the Dynamical
Cross-Correlation Matrix (DCCM) (Figure 5). Cou-
pled fluctuations of atomic positions usually occur
among neighboring residues, so that DCCM matrices
are always peaked along its main diagonal. However,
longer-ranges correlations are also present, which in
lysozyme mainly affect two regions, shown in Figure
5b: the β-hairpin comprising residues 37 to 58 (in
blue) and the loop region comprising residues 59-78
(in red). The combined motion of these two regions
is crucial for the protein to carry out its function,
as they represent the lid that opens on the lower
domain to perform the bacterial lysis. Diffuse off-
diagonal correlations are also present for the longer
α-helix (in green), whose movements are propagated
to neighboring regions.

A general decrease in the variability of correlation
values determined by eq.(5) is observed in hydrated
DES (Figure 5c) with respect to the pure water (Fig-
ure 5a). In these conditions, the protein motion is
smoothed by DES viscosity, so that correlated fluc-
tuations among backbone atoms are reduced. As a
result, extreme positive and negative correlation val-
ues are absent in the DCCM of Figure 5c, and the
correlated motion of the longer α-helix is highly re-
duced.

On the other hand, the characteristic off-diagonal
peaks due to the functional movements between the
blue and red regions described above are still evident,
suggesting that in hydrated DES the activity of the
protein is not jeopardized notwithstanding the overall
increase of its rigidity.

A numerical assessment of these observations, re-
ported in the Supporting Information (Figure S3),
shows that the presence of DES reduces by about
30% the average absolute value of the dynamic cross-
correlation and this reduction affects equally the di-
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Figure 4: RMSF values of Cα of each HEWL’s residue over the last 25 ns in water and 80/20 (% w/w) DES/water
with the three FFs used in this study. The most flexible residues in water are coloured on the protein model.

Figure 5: DCCMs calculated for simulations of HEWL in water (a) and DES parametrized by FFmix (c). Three
regions of the protein showing higher off-diagonal correlations are highlighted by squares in a) and c), and coloured
on the protein model in b), by using the same colour of the squares.

agonal and the off-diagonal region of the DCCM ma-
trix. It is worth noting that similar results have been
obtained by all the force fields used to describe DES
interactions (Figures S3 and S4).

3.1.2 DES-protein interactions

Given the presence of the choline cation in the crys-
tal structure, Belviso et al. work suggests the ex-
istence of two binding sites for [Ch]+.[34] Both are

dominated by π-cation interactions between choline
and Trp62 and Trp123 residues, respectively. The
authors attribute a key role for these DES-protein
interactions during the crystallization process. Fol-
lowing their hint, we tested if these [Ch]+-Trp inter-
actions occur also in the simulated trajectories. An
example of interactions between choline cations and
Trp62 and Trp123 residues occuring along our simu-
lated trajectories are shown in Figure 6.

In this regard, the minimum distances sampled
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Figure 6: Choline sites in lysozyme Both choline sites show the presence of at least one [Ch]+ at a minimum
distance of 2 Å. Choline ions in the two sites interact with Trp.

along the MD simulations between Trp123 and [Ch]+
have been calculated and are reported in Figure 7.
The two tryptophans interact very similarly with
the choline cation and the results for the interaction
Trp62-[Ch]+ are shown in the Supporting Informa-
tion (Figure S5). Figure 7 shows that there is always
at least one choline cation at 2 Å from Trp123 dur-
ing the whole simulation time, strongly suggesting
the existence of specific [Ch]+-protein interactions.
The same trend as shown in Figure 7 was observed
for each of the different force fields used. Our re-
sults suggest that the aqueous mixture of DES has
an impact on lysozyme behaviour by means of spe-
cific interactions DES-protein.

The enhanced rigidity related to the high viscosity
of the hydrated DES solvent, combined with the spe-
cific interaction between triptophan and choline ions,
can be considered as molecular determinants respon-
sible for lysozyme crystallization in the presence of
hydrated DES. We hence performed the calculations
under the same conditions of temperature and pres-
sure on a different protein, the human VH antibody
domain, to highlight if the enhanced structural rigid-
ity is peculiar of lysozyme or it is more general.
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3.2 Human VH antibody domain

Human VH antibody domain is a dimer with a pre-
vailing β-sheet secondary structure tested by Belviso
and coworkers,[34] whose crystal structure in hy-
drated DES could not be obtained.

3.2.1 Overall stability

As for lysozyme, we evaluated the overall stability of
human VH antibody domain (HEL4) by calculating
as a function of time, RMSD, radius of gyration and
H-bond number. Figure 8 reports the RMSD values
for the entire protein and both the two chains consti-
tuting the dimer.

It is noteworthy underlining that hydrated DES is
not detrimental to the HEL4 tertiary structure and
yet, the presence of the DES components makes the
protein more rigid. However, hydrated DES solvent
shows a lower impact compared to that found for
lysozyme.

The analysis of radius of gyration shows, in both
water and 80/20 (% w/w) DES/water mixture, an
overall stability of the size of HEL4. It can be seen
from Figure S6 that Rg values of the protein remain
constant around an average of 1.8 nm in water and
in hydrated DES mixture. This suggests that HEL4
is able to maintain its compactness throughout the
simulations even in the presence of DES.

The number of intra and inter-monomer H-bond
interactions slightly tend to increase, suggesting that
secondary structures are preserved over the simula-
tion time. Apparently the presence of DES leads to
the same results obtained in water (Figure S7).

Finally, we focused our attention on the protein
flexibility. It is worth noting that the presence of
DES contributes to suppress the mobility of some
residues (see Figure 9). In water, the majority of
protein residues present RMSF values lower than 0.1
nm, suggesting that HEL4 is mostly rigid. The only
two peaks worth mentioning are related to residues
25-32 of chain A and residues 100-106 of chain B. The
presence of DES "freezes" the whole protein as can
be seen from the fact that all RMSF values are lower
than 0.1 nm.

The study of correlated fluctuations of HEL4
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Figure 8: RMSD calculated on the backbone with re-
spect to the starting structure. From top to bottom panel:
protein; chainA; chainB

shown in Figure 10 clearly indicates that the regions
corresponding to the two chains exhibit strong intra-
dimer cross-correlations in the DCCM. For the sim-
ulation in water (Figure 10a), relevant inter-dimer
cross-correlations are also present, and the two chains
of the dimer have an asymmetric behavior, with the
shorter chain B showing higher correlated motion
than the longer chain A (Figure 10b). Both the
amount of correlated motion and the asymmetric be-
havior within the dimer are reduced in the presence
of DES, whereas the inter-dimer cross-correlations
are almost absent (Figure 10c). This confirms the
damping effect of correlated motion introduced by
the DES solvent, which can be estimated as 40%, in-
dependently of the force field used (Figures S8 and
S9).

The effect of reduction of the asymmetry between
the two chains of the dimer in the hydrated DES sol-
vent with respect to the pure water solvent is instead
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Figure 9: RMSF of Cα of each HEL4’s residue over the last 25ns in water and in 80/20 (% w/w) DES/water with
the three FFs used. The most flexible residues in water are coloured. Top panel chainA; bottom panel chainB.

Figure 10: DCCMs calculated for simulations of HEL4 in water (a) and DES parametrized by FFmix (c). The two
chains of the HEL4 dimer are highlighted by squares in a) and c), and coloured on the protein model in b), by using
the same colour of the squares.
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estimated as 20%, independently of the force field
used (as shown in Figure 11).

Figure 11: Averages of the absolute dynamical cross-
correlation value calculated separately for chain A and
chain B of the HEL4 dimer, calculated in water and in
DES parametrized by the FFLJ, FF±0.92e and FFmix force
fields.

Conclusions

In this article, we present a throughout investigation
of the influence of the hydrated deep eutectic sol-
vent Choline chloride – Glycerol (1:2) on the struc-
ture of two water soluble proteins, namely lysozyme
and Human VH antibody domain. To the purpose,
molecular dynamics simulations were run, develop-
ing - when needed - appropriate force fields suitable
for the accurate description of the interacting sys-
tems. The simulated DES properties fairly agree
with Pair distribution function and Dynamical Cross-
Correlation Matrix obtained from X ray synchrotron
experiments. The comparison between protein/water
and protein/DES/water MD simulations and experi-
mental data shows that the presence of hydrated DES
does not jeopardize the secondary and tertiary struc-
tures of the two proteins even if the flexibility of spe-
cific groups of amino acids is firmly reduced. More-
over, the dynamics of the choline cations reported in
the crystallographic structure of the Choline chloride
– Glycerol (1:2) hydrated DES was investigated. The
results here reported show that the interaction be-
tween two specific tryptophans and the choline cation

may be playing a central role in the improved crys-
tallization of lysozyme in hydrated DES, confirming
the hypothesis previously formulated.[34] We believe
that the present work represents a step forward in
the understanding of the unusual properties shown
by hydrated DES in improving protein stability and
allowing the protein crystal formation. Further in-
vestigations are needed to reveal similarities between
the behaviour of lysozyme and other hydrated DESs
or between other water soluble or membrane proteins
and the hydrated Choline chloride – Glycerol (1:2).

Supporting Information
Computed densities (g/cm3) for pure DES and
DES/water mixture (80/20% w/w) over last 25 ns
of simulation time for each FF used. Average com-
puted diffusion coefficients (10−11m2/s) of the DES
components. COM-COM RDF for pure DES model
parametrized by FFLJ and FF±0.92e. Figures for DC-
CMs calculated for simulations of HEWL and HEL4
in DES/water mixture (80/20% w/w) parametrized
by FFLJ and FF±0.92e. Averages of the absolute
dynamical cross-correlation value along the diagonal
and off diagonal. Minimum distance analysis Trp62-
[Ch]+ for HEWL, variation of radius of gyration (Rg)
and number of H-bonds of HEL4 as a function of
time(PDF)
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