Published paper available at: https://doi.org/10.1016/j.ins.2022.05.079

LP-ROBIN: Link Prediction in Dynamic Networks
exploiting Incremental Node Embedding

Emanuele Pio Barracchia®, Gianvito Pio®P*, Albert Bifet®¢, Heitor Murilo
Gomes?, Bernhard Pfahringer?, Michelangelo Ceci®P=

@Dept. of Computer Science, University of Bari Aldo Moro, Bari (Italy)
bBig Data Lab. - National Interuniversity Consortium for Informatics, Rome (Italy)
¢Dept. of Knowledge Technologies, JozZef Stefan Institute, Ljubljana (Slovenia)
1Dept. of Computer Science, University of Waikato (New Zealand)
¢eLTCI, Télécom Paris, Institute Polytechnique de Paris (France)

Abstract

In many real-world domains, data can naturally be represented as networks.
This is the case of social networks, bibliographic networks, sensor networks
and biological networks. Some dynamism often characterizes these networks
as their structure (i.e., nodes and edges) continually evolves. Considering this
dynamism is essential for analyzing these networks accurately. In this work,
we propose LP-ROBIN, a novel method that exploits incremental embedding
to capture the dynamism of the network structure and predicts new links,
which can be used to suggest friends in social networks, or predict interactions
in biological networks, just to cite some. Differently from the state-of-the-art
methods, LP-ROBIN can work with mutable sets of nodes, i.e., new nodes
may appear over time without being known in advance. After the arrival of
new data, LP-ROBIN does not need to retrain the model from scratch, but
learns the embeddings of the new nodes and links and updates the latent
representations of old ones, to reflect changes in the network structure for
link prediction purposes. The experimental results show that LP-ROBIN
achieves better performances, in terms of AUC and F1-score, and competitive
running times with respect to baselines, static node embedding approaches
and state-of-the-art methods which use dynamic node embedding.

Keywords: Link prediction, Dynamic networks, Node embedding

*Corresponding author

Preprint submitted to Information Sciences April 26, 2022

Published paper available at: https://doi.org/10.1016/j.ins.2022.05.079

1. Introduction

Nowadays, everything is connected, ranging from smartphones in a mobile
network to people on social networks. Relationships can represent any kind
of interaction, and even sent emails and messages can establish and describe
a network of interactions. Over the last few years, the importance of such
networks has rapidly gained attention, becoming one of the most studied
fields. In particular, social networks like Twitter and Instagram became very
central in these studies, since they represent a powerful and important tool for
users to express their ideas and preferences. This data can be analyzed, for
example, to help companies in the design of targeted products or to analyze
the spread of the information after a disaster, in order to help emergency
agencies to develop mitigation plans [22].

Looking at the research advances in the machine learning community, one
of the most challenging aspect is the possibility to consider the temporal di-
mension: we can find several recent approaches that perform link prediction
[18], discover communities and analyze their evolution [10], or detect anoma-
lies [33] in dynamic networks, exploiting traditional and temporal features.
The dynamicity, i.e. the ability to evolve over time, is an important char-
acteristic of real-world networks: every second, 8,799 new tweets are posted
on Twitter, 963 Instagram photos are uploaded, 2,870,940 emails are sent
around the world!, leading to new relationships in the networks.

The ability to catch the dynamicity of a network is therefore fundamental,
since it is possible to capture additional aspects, such as temporal or seasonal
trends, or the establishment of a new link between two users as a consequence
of the creation of other links. Additionally, traditional (static) approaches
usually need to analyze the whole data from scratch every time a new chunk
of data arrives, leading to significantly affecting the computational efficiency
and compromising the applicability of such approaches to real scenarios. Such
issues are commonly alleviated by analyzing only the last snapshots [8] or
by relying on a sliding-window setting [2], possibly leading to discarding
potentially useful information. To face these problems, there is a need for new
approaches that can capture the dynamic nature of the networks and adapt
the extracted models in an incremental way, by processing newly arriving
data in a lifelong machine learning setting.

IStatistics collected on 8th January 2020 at 11.00 am from
https://www.internetlivestats.com/one-second/

Snapshot 1 Snapshot 2 Snapshot 3

Figure 1: Example of different temporal snapshots of a network. We highlight in orange
new nodes and edges appearing in each snapshot.

As already introduced, one of the tasks commonly investigated in the
literature is the link prediction task. Given a network, the goal is to predict
the existence of new links, e.g., new relationships between people in a social
network, new collaborations in a professional network, or a new message in
an email exchange system. Focusing on this task, in this paper we propose a
new method, called LP-ROBIN (Link Prediction through incRemental nOde
emBeddINg), that is able to solve the link prediction task on dynamic net-
works where structural changes, such as the addition of new nodes and new
links, may happen over time (Figure 1). LP-ROBIN treats the link predic-
tion task as a binary classification problem, by considering as positive the
links that will appear in the next snapshot of the network. To achieve this
goal, a neural network is trained on a latent representation of the network
structure, that embeds the properties of both links and involved nodes. Both
the classifier and the latent representation are not learned in batch mode, but
incrementally, without the need to retrain the models from scratch after the
arrival of new data. The strength of this strategy is the possibility to learn
hidden patterns from the latent representation of data, and exploit them to
discover new links over time. This characteristic makes LP-ROBIN a general
and powerful tool, potentially applicable to many application domains.

The node embedding approach proposed in this paper is based on ran-
dom walks [36, 16] and aims at preserving the network closeness among
nodes in the learned feature space. Differently from existing state-of-the-art
methods, LP-ROBIN learns an embedding for random walks and constructs
node embedding by aggregation. In particular, nodes are represented ac-
cording to the random walks in which they appear and their position in the

walks, that weighs the contribution of each walk in the representation of the
node. Therefore, nodes appearing close to each other in the network will
likely be involved in multiple common random walks, leading to properly
capturing network autocorrelation phenomena [42]. In social analysis, auto-
correlation can be recognized in the homophily principle, which states that
people linked through relationships (e.g., friendship) usually share sociode-
mographic, behavioral, and intra-personal characteristics. This principle can
be easily extended to (and should be taken into account for) any network of
interactions. Moreover, the approach we introduce in this paper updates the
embedding model incrementally, without re-learning it from scratch when
new data arrives.

Overall, the main methodological contributions provided by LP-ROBIN
can be summarized as follows:

e it can work with dynamic networks where nodes and links may evolve
over time and are not known apriori. This characteristic makes LP-
ROBIN applicable in real-world scenarios, where it is almost impossible
to know or predict the nodes that will appear in future snapshots;

e it performs node embedding in dynamic networks by updating the la-
tent representation incrementally with the arrival of new data, rather
than re-learning it from scratch;

e it solves the link prediction task on dynamic networks, leveraging pos-
sible hidden patterns discovered from the incremental node embedding.

These characteristics also allow LP-ROBIN to naturally handle possible is-
sues caused by concept drift, namely, relevant changes in the structure of
the network or of properties of nodes and links, that may compromise the
accuracy of the predictive model over time. Indeed, the incremental fashion
we propose for learning the embeddings and the classifier allows LP-ROBIN
to gradually forget old or obsolete representations of nodes and links, and to
adapt to the new state of the network.

The rest of the paper is structured as follows: in Section 2 we briefly
describe the work in the literature that is related to the present paper; in
Section 3 we describe the proposed method LP-ROBIN; in Section 4 we
outline the time complexity of LP-ROBIN, while in Section 5 we evaluate its
performance on publicly available datasets and discuss the results. Finally,
in Section 6 we draw some conclusions and outline possible future work.

2. Related work

Real-world networks, such as social networks and professional networks,
change their state (in terms of nodes, links and features) over time. Due to
this characteristic, they are usually referred to as dynamic networks.

In the literature, many works focused on the study of dynamic networks,
aiming to predict their evolution on the basis of historical data. For exam-
ple, in [12] the authors developed different methods to identify spammers
in evolving multi-relational social networks. In particular, they analyze the
interactions among users in the network, and exploit structural features, se-
quence modeling and collective reasoning to detect spammer accounts. How-
ever, the models need to be retrained every time new samples arrive. This
aspect represents a strong limitation in real-world scenarios, where the rate
of generation of new data is high.

In [38], the authors proposed a new framework to study influence in pro-
fessional networks. During the creation of a model, the authors consider
different types of actions performed by users (e.g., changing jobs, adding a
new skill, following content, joining groups) and analyze the effect of such
actions on the network. Their framework also exploits an action propagation
graph to capture the behavior of the users in response to the actions taken
by their friends. Moreover, in [40], the authors propose a new framework,
called SourceSeer, that exploits articles, blogs, social networks, search engine
logs and micro-blogging services, to forecast disease outbreaks.

Due to the plethora of different analyses that can be performed on network
data, in the following, we focus on the task considered in this paper. In
particular, we briefly review existing methods that solve the link prediction
task in dynamic networks, as well as methods aiming to represent nodes and
links in a numerical feature space (network embedding approaches).

2.1. Link prediction in dynamic networks

One relevant approach that is able to solve the link prediction task in dy-
namic networks is that proposed in [37]. In particular, the authors propose
the method GraTFEL, that extends the adoption of graphlets? to dynamic
networks. When a link is added or removed, some graphlets will be affected,
producing graphlet transition events. GraTFEL builds a representation of
each node pair by exploiting, in combination with an unsupervised feature

2Small connected non-isomorphic induced subgraphs of a network.

extraction approach, the frequency of the graphlet transition events associ-
ated with the pair. These representations are then used to solve the link
prediction task by learning a supervised classification model.

In [48], the authors proposed LIST, a method that performs link pre-
diction on dynamic networks taking into account both the structure of the
network at the current timestamp, and the evolution of the patterns dis-
covered during the analysis of the different snapshots. To reach its goal,
LIST makes use of network propagation and temporal matrix factorization
techniques.

In [8] the authors proposed an approach to compute and track the prob-
ability of the existence of a link over time. Each link is represented by
multiple similarity metrics observed at each snapshot from the structure of
the network (e.g., Common Neighbors, Shortest Path and Jaccard Index)
and Stochastic Learning Weak Estimators (SLWEs), i.e., estimators which
goal is to update class probabilities every time new instances are observed.
However, the representation for each link is built by considering only the last
k snapshots, discarding previous, potentially useful, data.

In [7] the authors proposed a framework that can detect missing links
in the analyzed snapshot and predict the appearance of new links in future
snapshots. The framework exploits the concept of attractive force between
nodes, computed as the ratio between the product of the node degrees and
the shortest-distance between them. This approach directly analyzes the
adjacency matrix, possibly leading to inefficiencies for large networks.

In [9], the author proposed NexT, a framework that solves link prediction
tasks in dynamic, location-based social networks (LBSNs), with the goal of
forecasting the next location of an individual, on the basis of the observations
of her mobility behavior, of the recent locations she visited, as well as of the
global mobility in the considered geographic area. NexT integrates frequent
pattern mining and a tree-based classifier, that also exploits a set of spatio-
temporal features representing locations and movements along them.

In [46], the authors addressed the challenge of tracking trajectories and
communication records of mobile phone users, and identifying correlations
between the users’ movements and their closeness in the social network, with
the final goal of predicting the appearance of new links. The authors demon-
strated that mobility-based measures can lead to competitive performance,
which can be further improved by also exploiting network-based measures.

In [31], a survey of state-of-the-art methods for link prediction in social
networks has been proposed. In particular, the authors categorize the ex-

6

isting approaches, emphasizing their strong and weak points, and discuss
the challenges related to this task. In particular, some of the problems high-
lighted by the authors include the low prediction accuracy, the heterogeneous
nature of some networks, and the scalability of the proposed frameworks.
Moreover, a relevant observation made by the authors is related to the poor
availability of approaches that can analyze networks where both the set of
nodes and the set of edges evolve over time [18]. Indeed, most of the methods
(37, 48] try to predict new links in networks characterized by a static set of
nodes, i.e., the full set is known a priori and does not change over time. This
strong assumption does not reflect real-world scenarios, such as social net-
works, where at every second new users might join or old users might leave.
In these cases, such approaches have to re-learn their models from scratch.

2.2. Node and link embedding in dynamic networks

One of the major challenges related to the study and the analysis of net-
works concerns the representation of nodes, links and whole networks when
they are treated as training examples of a machine learning method. In the
literature, we can find several approaches [48, 7] that directly analyze the
network structure represented through a binary adjacency matrix. However,
this representation leads to inefficiencies when the network under analysis
exhibits high levels of sparsity. To deal with this issue, in the literature
we can find several techniques for dimensionality reduction, such as Princi-
pal Component Analysis (PCA), Singular Value Decomposition (SVD), and
(Non-negative) Matrix Factorization [4, 19].

Recently, the concept of embedding has received attention in the research
community. It consists in representing complex structures according to (rela-
tively) low-dimensional numerical feature vectors. In the context of networks,
we can distinguish between node embedding, edge embedding, and graph em-
bedding, according to the unit of analysis the numerical feature vectors are
associated with.

Approaches for node embedding are well established in the literature. In
[36], the authors proposed DeepWalk, a framework that is able to generate
node embeddings by exploiting random walks and the Skip-Gram model.
Subsequently, an evolution of DeepWalk, called Node2Vec, has been proposed
[16]. The main difference with respect to its predecessor is the ability to bias
the random walks in order to adopt different (breadth-first, depth-first or
hybrid) search strategies.

A different approach has been adopted in LINE [43]. It generates the
node representation in the latent space by optimizing a function that takes
into account the first-order and the second-order proximity, i.e., the direct
connections between nodes and the similarity of their neighborhood.

However, all the above-mentioned methods work only on static networks,
where the set of nodes and the set of edges do not change over time. One
attempt towards handling the dynamicity of the network has been done in
[11], where the authors propose a general approach to extend skip-gram based
network embedding models to the dynamic context. Alternative approaches
have been subsequently proposed, including [29], where the authors proposed
a dynamic version of Node2Vec, [32] where the authors described a framework
to incorporate the temporal dimension into node embeddings by exploiting
temporal random walks, and [17], where the authors proposed a method that
jointly learns the embedding for different time steps exploiting Node2Vec.

In [44], the authors proposed the system DyRep, which learns latent rep-
resentations of the nodes by considering both the dynamics of the network,
i.e., how the structure of the network evolves over time, and the dynamics
on the network, i.e, the activities between nodes.

In [49] the authors proposed DynamicTriad, a framework that constructs
node embeddings by exploiting closed triads, i.e., fully-connected triples of
nodes. However, the proposed framework is applicable only on undirected
graphs characterized by a pre-defined set of nodes.

In [26], the authors proposed JODIE, a framework that exploits two re-
current neural networks to compute the static and the dynamic embeddings
of a node, and adopts a projection operator to predict the evolution of the
embedding of the nodes in future snapshots. However, this method is strictly
tailored to bipartite networks.

Lastly, in a recent work [15] the authors proposed the system dyngraph2vec.
It implements three different approaches for dynamic node embedding, that
take into account the evolution of the network structure. It also implements
a link prediction method which can predict the next snapshot. However, the
system needs to know the whole set of nodes in advance, i.e., it cannot adapt
to the possible introduction of new nodes in the network over time.

As regards the identification of a numerical vector for links (link embed-
ding), several techniques have been proposed in the literature. For example,
the authors of Node2Vec [16] proposed four different operators to construct
a link embedding starting from the embeddings of the involved nodes: aver-
age, Hadamard, weighted-L1 and weighted-L2. Other works [45] compared

8

the performances obtained using these operators with those achieved by con-
catenating the feature vectors of the involved nodes, and proved that the
concatenation generally leads to better results. For this reason, in this work,
we adopt such a strategy.

In conclusion, even if several methods have been proposed in the literature
to compute node or link embeddings in a dynamic scenario, they generally
exhibit significant limitations: they either assume that the set of nodes does
not change over time [49, 17] or are limited to undirected networks [49, 44].
On the contrary, the approach proposed in this paper, although based on
random walks, like [36, 16], can also work i) when the set of nodes evolves
over time; 77) in the case of directed networks; 4ii) in an incremental fashion,
i.e. contrary to the classical batch learning mode, our approach does not
re-learn the representation from scratch when new data arrives.

3. The LP-ROBIN method

In the following, we first introduce some useful definitions and the task
we aim to solve. Next, we describe in detail the proposed approach.

Definition 3.1. Dynamic network. A dynamic network is a network that
evolves over time. It can be represented as a sequence of snapshots [G*, G2, ..., GT],
where G* = (V*, E') is the state of the network at time ¢, characterized by

the set of nodes V! and the set of links E*.

In this paper, we assume that nodes and links can appear over time, but
cannot disappear. Formally, V;—1o 7 1, V! C Vi and E* C E'. It
is noteworthy that this assumption does not limit the applicability of the
proposed method since it is coherent with the considered task, namely, the
prediction of new links appearing over time.

Definition 3.2. Link prediction in dynamic networks. Given a dynamic
network [G',G?, ..., G"], the goal of the link prediction task is to predict the
set of new links £+ that will appear at time 7T+1.

It is worth clarifying that E7+! C ET+! — ET since links that are actually
predictable are those involving nodes that have been already observed during
the training stage, i.e., V7. More formally, E7*' = {(u,v) € ET+!|(u,v) ¢
ETAu € VT Av € VT'}. However, the whole set of nodes V™ and links E7 !
are considered in the subsequent steps of the link prediction task, namely for
the prediction of ET+2,

We model the link prediction task as a supervised learning problem. In
particular, we treat it as a binary classification task, where a link is classified
as 1 if it is expected to appear in the next snapshot of the network (i.e., it
does not exist at time T, but will exist at time 7"+ 1), 0 otherwise (i.e., it
does not exist at both time 7" and 7"+ 1 or it already exists at time 7T').

Differently from most of the existing methods, LP-ROBIN can work with
directed dynamic networks, where two nodes may be connected through two
different links, one for each direction. In any case, LP-ROBIN can also
work on undirected dynamic networks, by representing each undirected link
through a pair of directed links. Therefore, in the following, we will assume
to work in the more general case of directed networks.

Methodologically, for each snapshot G* ¢t = 1,2,...T, LP-ROBIN per-
forms the following steps:

e Incremental construction and update (for nodes already observed in
previous snapshots) of node embeddings, on the basis of random walks
and of a weighting strategy that considers the position of nodes in the
random walks;

e Generation of the link embeddings for new links observed in G*, by
concatenating the embedding of the involved nodes;

e Incremental fit and update of a binary classification model, on the basis
of the embedding of the new links observed in G".

The trained model is then used to solve the link prediction task for GT+1,
The whole workflow is depicted in Figure 2, while each step will be de-
tailed in the following subsections.

3.1. Node embedding

Definition 3.3. Node embedding in dynamic networks. Identifying a node
embedding in a dynamic network means to learn, V¢ € 1,...,T, a function
fi: VvVt = R with d < |V!|. Considering d < |V!| means that the dimen-
sionality of the identified feature space is much lower than the number of
nodes, since a naive embedding approach would be that of directly consider-
ing the adjacency matrix.

As introduced in Section 2.2, in the literature many approaches have
been proposed to compute node embedding on dynamic networks, but they

10

Learned Sparse
Autoencoder

Gt Random walks

Generation of OO :: Traigin:r:: the
random walks Autozncoder
OO0

Sparse Autoencoder
learned at timet - 1

Generation of
random walk
embeddings

Embeddings of
the random walks

Classifier learned
at time t - 1 01T
o1

i

Generation of
node embeddings

Link embeddings Node embeddings

O [EEEE]
CCCCCCCCCD Generation of O
: link embeddings

Learned classifier

Figure 2: Incremental learning and update of the SAE and of the classifier learned at time
t — 1, on the basis of new data observed at time ¢, in order to predict new links for the
time ¢ 4 1.

generally assume that the set of nodes does not change over time (i.e., they
assume to know the whole set of nodes a priori) [49, 17], or are able to work
only on undirected networks [44, 49].

In the following, we describe our novel approach for node and link embed-
ding, that overcomes such limitations and works incrementally. Since it is
based on the concept of random walks in dynamic networks, in the following
we first formally define it.

Definition 3.4. Random walks in dynamic networks. Given a snapshot G?,
a random walk is defined as a sequence of nodes generated starting from a
given node and taking a given number of random steps, following the links
of the network observed at time ¢, i.e., links in E*.

When a new snapshot of the network G* is observed, LP-ROBIN constructs
n_rw random walks of length [_rw starting from every new node in V' and

11

every node appearing as a source node of new links in E*. Formally, for
t = 1, random walks are computed starting from all the nodes in V!, while
for t > 1, they are computed starting from the following set of nodes:

{fojve (VI =V v I € Vist(v,0) € (B'— E™Y)} (1)

This strategy allows us to take into account the effect of new nodes on the
embedding of other nodes also when such new nodes do not have any outlink.
The identified random walks are represented as [_rw - dimensional vectors
of node IDs. If a random walk is shorter than [_rw, because it reached a node
without outlinks, the corresponding vector is 0-padded. These vectors are
subsequently given as input to a sparse autoencoder (SAE), which goal is to
construct a representation of each random walk in the latent space.

An autoencoder is a specific kind of artificial neural network, that has
already been fruitfully adopted in the literature to generate embeddings [21,
47]. Tt aims at learning an encoding function, which encodes the input into a
code (or latent representation), and a decoding function that, given the code,
approximately reconstructs the input. The autoencoder is trained aiming to
minimize a loss function based on the difference between the original input
and its reconstructed version. In our case, we use a sparse autoencoder with
11-regularization [14], which allows us to possibly learn an over-complete
representation of the input vector, i.e., the number of neurons in the hidden
layer can be higher than that of the input layer, without incurring overfitting
issues [39].

Different architectures can be designed to solve this task. In this paper,
we design the architecture as follows:

e an input layer, consisting of a number of neurons equal to the length
of the random walks [_rw;

e one encoding hidden layer with d/2 neurons, which activation is penal-
ized through 11-regularization;

e one encoding hidden layer with d neurons, that represents the d-dimensional
encoded representation of the input, which activation is penalized through
11-regularization;

e one decoding hidden layer having d/2 neurons;

e an output layer having a number of neurons equal to that of the input
layer (i.e., l_rw).

12

Lw d/2 d d/2 Lw

Encoder

Figure 3: The architecture of the sparse autoenconder used to learn an embedding for
random walks.

All the internal layers use tanh as activation function, while the output layer
uses a linear activation function. The adopted loss function is the mean
squared error. A graphical overview of the proposed architecture is shown in
Figure 3.

After training the sparse autoencoder, we can use its d-dimensional hid-
den layer to obtain the latent representation of a given random walk. For-
mally, considering that each node in V' is assigned to a unique ID in {1, 2, ..., |V|},
we define the function g* : {1,2, ..., [V} — R?, that takes as input a ran-
dom walk represented as a [_rw-dimensional vector of node IDs and returns
the d-dimensional real-valued vector observed in the second hidden layer once
the random walk has been fed to the SAE.

Subsequently, LP-ROBIN computes the embedding for each node v in
V't by aggregating the embedding of the random walks that traverse v. In
particular, we propose the following different aggregations.

Weighted sum: inspired by Word2vec [30], where the embedding of a tex-
tual document is computed as the sum of the embedding of its words, we
compute the embedding of a node as the sum of the embedding of the ran-
dom walks in which it appears. However, we weight the contribution of each
random walk in the sum according to the position of the considered node

13

(i.e., the distance, in terms of the number of steps, from the source node).
Formally, given a node v € V', its embedding at time ¢ is computed as:

—t 1 "
emb (v) = Z pos(v.) -9 (rw) (2)

(v, rw
rweRW

where RW/ is the set of the random walks generated at time ¢ involving the
node v, g*(rw) is the function that returns the latent representation of the
random walk rw through the SAE, and pos(v, rw) returns the position of the
node v in the random walk rw.

Weighted average. In this case, the embedding of a node is computed
as the weighted average of the embedding of the random walks in which it
appears. The main difference with respect to the weighted sum is that the
embedding is normalized according to the position of the node in the random
walks. Formally, given a node v € V*:

—t 1 1 '
emb (v) = 5 —| > m'g(rw) (3)

pos(v,rw t
e W (v,rw) rweRW}

It is noteworthy that in both cases, weighted sum and weighted average,

—t
emb (v) represents the node v according to the state of the network in the
last snapshot. In order to represent the state of the network already observed
for previous snapshots, we introduce the vector emb!(v) defined as follows:
{embt(v) :efw\%ﬁ(v) ift=1vove (Vt -V ()

emb'(v) = « - e/n\lﬁ(v) + (1 —a)-emb™'(v) otherwise

where v € [0,1] is a user-defined parameter that represents the weight of
the embedding computed according to the new random walks with respect
to that computed according to previous snapshots.

We remark that the approach we propose is significantly different from that
adopted by Node2Vec. Indeed, Node2Vec directly aims at learning a repre-
sentation of each node according to its neighborhood, “observed” through
random walks. On the contrary, LP-ROBIN learns a representation for ran-
dom walks (by means of ¢*(+)) and constructs node embedding through aggre-
gation. Intuitively, the approach followed by LP-ROBIN aims at optimizing
the representation of random walks, rather than that of nodes, meaning that

14

it is able to better preserve and represent the network structure more glob-
ally. The representation of nodes, obtained by aggregation, can therefore be
considered as a latent representation of their roles in the network.

Moreover, the adoption of a sparse autoencoder with the proposed archi-
tecture provides two additional advantages:

e apart from the assumptions d < |V*|, and lrw < d/2, we do not
impose any additional constraints on the length [_rw of the considered
random walks?;

e training the SAE from a representation of random walks, rather than
from a representation of nodes, gives us the advantage of being inde-
pendent on the set of nodes, namely, if new nodes appear over time,
the SAE can be incrementally fed with new random walks, without
restructuring its architecture nor retraining it from scratch.

In this way, LP-ROBIN is able to adapt the learned model to the changes of
the network, combining both the information learned in previous snapshots
and that conveyed from the new snapshot, in an incremental and efficient
manner.

The proposed algorithms for constructing node embeddings and random
walks are formalized in Algorithms 1 and 2. From Algorithm 1, it is possible
to see that, at each new snapshot, LP-ROBIN incrementally updates the SAE
by exploiting the inherent incremental learning strategy of autoencoders (see
the instruction “feed SAE with RW"” at line 11) and incrementally updates
the embedding according to Equation (4) (see line 18).

Finally, in order to represent links for the link prediction task, as in-
troduced in Section 2.2, we build the embedding for new links observed in
E' — E'~! by concatenating the embedding of the involved nodes. Therefore,
each link is represented through a 2d-dimensional feature vector.

3The constraint [_rw < d/2 can in practice be relaxed: if [_rw > d/2, we can adopt a
simpler architecture with a single hidden layer with d neurons.

15

Algorithm 1: Node embedding

1 newV?! + V1
2 if t > 1 then
L newV?! < newV?t — V-t

o J o «

10

11

12
13
14

15

16

17

18

19

20

- Gt = (V' E"): the network snapshot at time ¢;

-Gt = (Vi1 E'1): the network snapshot at time t — 1 (if ¢ > 1);
- SAE: learned sparse autoencoder (if ¢ > 1);

- embst~!: node embeddings computed at time t — 1 (if ¢ > 1);

- n_rw: number of random walks to perform;

- [_rw: length of random walks;

- d: dimensionality of the embedding;

-« € [0,1]: weight of the random walks of the current snapshot;

- agg € {weighted_sum,weighted_avg}: aggregation function

- embs': embedding learned for each node in V¢.

/* Identification of new nodes and links
newE" < E';

newE! + newE! — B~

/* Identification of source nodes for random walks, see Eq.(1)
nodesToEmb < {vlv € newV'Vv I € Vls.t.(v,v') € newE'};
/* Generation of random walks

RW*t < 0;

foreach v € nodesToEmb do

rws = randomwalks(Gt, v, n_rw, l_rw);
RW?t « RW'Urws;

/* Incremental learning of the SAE to represent random walks
if SAE does not exist then
L SAE < createSparseAutoencoder(d);

feed SAE with RW?;

/* Construction of node embedding
embs® <+ 0;

foreach v € nodesToEmb do

if agg = weighted_sum then

t compute efr;zjbt(v) according to Eq. (2);
else if agg = weighted_avg then
t compute efn\z/bt(v) according to Eq. (3);

embst = embs' U {emb'(v)}

return embs;

*/

*/

*/

compute emb’(v) according to Eq. (4), on the basis of emb'~!(v)

Algorithm 2: randomwalks (G*, v, n_rw, l.rw)

Data:

- Gt = (Vt, E?): the network snapshot at time ¢;
- v € V! the source node for random walks;

- n_rw: number of random walks to perform;

- [_rw: length of random walks.

Result:

- rws: n_rw random walks of length [_rw generated starting from v.

rws < 0;
for i + 1 to n.rw do
rw < [vl;
last Node < v;
for k <+ 2 to l-rw do
/* A random neighbor of lastNode, according to Et; 0 if

[NV VU

there is no outlink */
lastNode < rndNeighbor(last Node, E');
7 rw = rw.append(last Node);
8 | rws < rwsU{rw};

9 return rws;

3.2. Prediction of new links

As introduced in Section 1, LP-ROBIN considers the link prediction task
as a binary classification problem. In particular, given a dynamic network
represented by a sequence of snapshots [G1, G?, ..., GT], we aim at predicting
the set of new links that will appear in the next snapshot G7+!,

Methodologically, we train a classifier that is able to distinguish between
existing and non-existing links. These links are represented according to the
strategy described in Section 3.1 and given in input to a neural network
classifier used to solve the link prediction task. The architecture of such a
neural network is:

e the input layer, consisting of 2d neurons, able to take as input 2d-
dimensional vectors associated to links;

e one hidden layer with d neurons;

e one hidden layer with d/2 neurons;

17

2d d a2 1

Figure 4: The neural network architecture of the classifier for the link prediction phase.

e the output layer, with 1 neuron, that represents the predicted label:
instances (i.e., links) are labeled as positive if the output is greater or
equal to 0.5, negative otherwise.

All the internal layers use tanh as activation function, while the output layer
uses a sigmoid activation function. The adopted loss function is the binary
cross-entropy, which is appropriate for binary classification tasks. A graphical
overview of the architecture is depicted in Figure 4.

It is worth mentioning that the neural network classifier is not retrained
from scratch when a new snapshot is observed. Given the classifier learned at
time t—1, we feed it with a new set of examples of links, namely: all the links
that appeared in the last snapshot newE! = E' — E'~!, labeled as positive
examples, and |newE*| examples randomly selected from Vix V' —FE* labeled
as negative examples. This approach is motivated by the huge number of
possible non-existing links, which may cause problems of class imbalance [3].

In this way, the neural network exploits latent patterns learned in previous
snapshots, together with the information conveyed by new examples, possibly
leading to better performances. The fitted model is finally adopted to predict
the existence of links for the subsequent snapshot G**1.

We stress that this approach allows us to handle possible issues caused by
the concept drift phenomenon. Indeed, although LP-ROBIN is able to take
into account the evolution of the network observed in previous snapshots, it
also incrementally adapts to newly observed nodes and links over time, thus
making the predictive model robust to changes of the network structure.

18

4. Time Complexity

To estimate the time complexity of LP-ROBIN, we analyze the complexity
of each step of its workflow.

Let n; be the number of newly introduced nodes at time ¢, i.e., n, =
|nodesT'oEmb|, that LP-ROBIN has to embed (see Equation (1) and Algo-
rithm 1, line 4). We recall that [_rw and n_rw are the length and the number
of random walks, respectively, to be identified for each node. Since we can
randomly select a neighbor of a given node in constant time (this information
is already available in the network structure), the time complexity at time
t for the identification of random walks for all the nodes of nodesToEmb
corresponds to:

O(ng - norw - lrw) (5)

Following the estimation of the time complexity for AutoEncoders in [5], the
complexity of the identification of d-dimensional embeddings for n; - n_rw
random walks by means of the SAE can be approximated to:

O(ny - n_rw - d?) (6)

The time complexity of the computation of the embedding for a given node
depends on the existence or absence of a representation already learned in a
previous snapshot for the same node. The difference would actually consist,
in the case the node was already present, of one additional operation to
linearly combine the existing embedding with the current one (see Equation
(4)). Therefore, we can conclude that the overall time complexity of this
step, in this case, corresponds to:

O(ny - n_rw) (7)

The next step consists of the identification of link embeddings. We remind
that it is obtained by concatenating the latent representation of the involved
nodes. Let e¢; be the number of edges to embed at time ¢, i.e., ¢, = |E" —
E'~!|. Since we can retrieve the embedding of a node in constant time, the
complexity of the construction of e; link embeddings is equal to:

O<2 - ey) (8)

Finally, we estimate the complexity of the link prediction step. Following the
same assumptions made for AutoEncoders, and considering that the largest

19

layer has 2d neurons (see Figure 4), the complexity of this step can be ap-
proximated to:

Ofe: - (2d)°) (9)

Therefore, by summing up the time complexity of all the phases performed
by LP-ROBIN, we can conclude that the overall time complexity at each
time t corresponds to:

O(ng-n_rw-1_rw)+0(ng-n_rw-d*)+0(n;-n_rw)+0(2-¢,)+0(e;- (2d)?) (10)

Considering that [_rw < d?, the time complexity of LP-ROBIN can be ap-
proximated to:

O(ng - norw - d*) + O(e; - d?) (11)

This means that the time complexity of LP-ROBIN is linear in the number
of nodes added at the last snapshot, linear in the number of random walks
considered, linear in the number of new edges added at the last snapshot,
and quadratic in the dimensionality of the embedding.

5. Experimental evaluation

We evaluated the performances achieved by LP-ROBIN with the follow-
ing parameter values: nrw € {10,20} (number of random walks for each
node), [.rw € {10,20} (length of random walks), d € {64, 128,256} (size
of the node embedding), a € {0.0,0.5,1.0} (weight of the last snapshot),
agg € {weighted_sum,weighted_avg} (function to aggregate the embeddings
of random walks). The best values have been selected through a grid search.

We implemented the artificial neural networks used by LP-ROBIN with
Tensorflow 2.0. The weights of the neural networks have been initialized using
the Xavier scheme [13]. Moreover, the optimization has been performed using
the Adam optimizer [23], iterating for a maximum number of epochs equal to
200. We tuned the hyper-parameters of the neural networks (batch size and
learning rate) by exploiting the Hyperopt library [1] and using the 20% of the
training set as validation set. For this evaluation the following values have
been considered: batch size € {27, 28,29 20} learning rate € [0.00001, 0.01],
the parameter used for the l1-regularization A € [0.00001, 0.01].

LP-ROBIN has been compared with 8 baselines and state-of-the-art com-
petitors. The evaluation measures we collected for the comparison are the
Area under the ROC curve (AUC) and the Fl-score. For the AUC we directly
considered the scores returned by the predictors (for a fair comparison, the

20

same procedure is applied for LP-ROBIN and to its competitors) in order to
identify the (FP-rate, TP-rate) points of the ROC curve and properly plot
them. For the Fl-score we considered the example as positive if the returned
score(s) suggest that the likelihood of being positive is higher than that of
being negative, negative otherwise. All the experiments have been performed
on a server equipped with a 6 cores CPU @ 3.50 GHz, 64 GB of RAM, and
a NVIDIA GeForce GTX Titan X.

5.1. Datasets

We performed our experiments on three public datasets:

CollegeMsg* [34]. This dataset contains information about messages ex-
changed on an online social network at the University of California, Irvine.
Each message is characterized by a source user, a destination user, and an
associated timestamp ranging from April 2004 to October 2004. We con-
structed seven monthly snapshots, namely G°:04/2004, G*:05/2004, G?:06,/2004,
G3:07/2004, G*:08/2004, G5:09/2004, G°:10/2004.

BitcoinOTC? [25, 24]. This dataset contains timestamped links between
November 2010 and December 2016 related to a who-trust-whom network of
people that use the platform BitcoinOTC. We considered only links associ-
ated with a trust value greater than 0, i.e., excluding links representing the
fact that someone does not trust someone else. We divided the dataset into
7 yearly snapshots, namely G°:2010, G*:2011, G%:2012, G3:2013, G*:2014,
G5:2015, G6:2016.

Wiki-Talk® [35, 27]. This dataset contains timestamped links collected
between November 2001 and August 2007 related to editing activities of a
user’s Talk page. Each node represents a user’s Talk page, while each link
represents an editing activity performed by the source node on the destination

node’s Talk page. We divided the dataset into seven yearly snapshots, namely
G°:2001, G*:2002, G?:2003, G3:2004, G*:2005, G*:2006, G%:2007.

In Table 1, we show the number of nodes of each snapshot for all the con-
sidered datasets. For training-prediction purposes, we considered temporally
adjacent snapshots (see Table 2). We remind that, for the link prediction

“4https://snap.stanford.edu/data/CollegeMsg.html
Shttps://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
Chttps://snap.stanford.edu/data/wiki-talk-temporal.html

21

Table 1: The Number of nodes in each snapshot. We recall that the nodes are incrementally
added to the network when a new snapshot arrives.

I I € I € I I S I S B
CollegeMsg | 504 | 1,514 (1,731 | 1,780 | 1,827 | 1,875 | 1,899
BitcoinOTC | 43 |1,631|3,107| 4,985 | 5453 | 5570 | 5,881
WikiTalk | 17 [1,161]5,681|25,255 | 112,654 | 513,138 | 1,140,149

task, instances correspond to links. Specifically, for each prediction task, the
training instances are the links belonging to previous snapshots, with respect
to the snapshot subject of the prediction. For example, for the prediction
of snapshot G?, the training instances (i.e., links) of the snapshots G° and
G! are used. Note that, coherently with Definition 3.2, the capability of
predicting new links appearing in G® (involving nodes already known in G®)
is evaluated when G is included in the training snapshots. Note that LP-
ROBIN works in an incremental fashion, whereas all the competitors work in
batch mode and require a full retrain when a new snapshot arrives (see Incr.
Training Instances and Batch Training Instances in Table 2). The examples
actually considered in the prediction phase are those involving nodes already
known during the training phase. This explains why the examples to predict
in G’ are less than the training examples added when predicting G7*+1.

5.2. Competitor methods
We compared LP-ROBIN against the following competitors:

Adamic-Adar Index (AAI) [28]: the Adamic-Adar Index of a pair of
nodes (u,v) is computed as 3, cr)are) Wl(w)w where I'(x) is the neighbor-
hood of x. This index tends to give more importance to common neighbors
that have a small number of connections.

Common Neighbors (CN) [41]: given two nodes u and v, the predicted
score associated with the link (u, v) is computed on the basis of their common
neighbors, that is, |I'(u) N T'(v)|, where I'(x) is the set of neighbors of .

Jaccard coefficient (JACCARD) [28]: the Jaccard coefficient of an edge
(u,v) is computed as the ratio between the number of neighbors of u and
v in common and the cardinality of the union of the sets of neighbors, i.e.,

%, where T'(z) represents the set of neighbors of .

Resource Allocation Index (RAI) [50]: this index is based on the con-

cept of resource allocation process and it is computed as Zwer(u)mr(v) Wlw)\?

22

Table 2: Summary of snapshots, number of training examples (in both incremental and
batch settings), and prediction examples.

Training Prediction Incr. Training Batch Training Prediction
Snapshots Snapshot Examples Examples Examples
o0 G G! 1,906 1,906 2,109
£ GO-G! G? 12,725 14,631 1,531
) GO-G? G? 2,975 17,606 916
o GG G* 1,131 18,737 563
S| G-G* G° 769 19,506 376
Ol g G 517 20,023 180
O G G! 114 114 83
=l GO-G? G? 7,629 7,743 1,149
% G°-G? G? 8,556 16,299 2,052
'§ G°-G3 G* 11,139 27,438 1,728
= G-G* G° 3,596 31,034 625
SleNe: GS 953 31,987 39
G° G! 13 13 7
—T‘g GO-G! G? 3,412 3,425 2,011
H GO-G? G? 18,019 21,444 12,242
e, G°-G3 G* 76,541 97,985 50,961
= G°-G4 G° 282,016 380,001 225,344
GO-G° G° 1,157,534 1,537,535 458,292

where I'(z) is the neighborhood of node z. Like the Adamic-Adar Index, it
gives more importance to neighbors involved in a small number of links.

Node2Vec [16]: we specifically compared our embedding approach with
Node2Vec since they are, in principle, both based on random walks. In order
to specifically evaluate the contribution of the node embedding mechanism
implemented in LP-ROBIN, we plugged Node2Vec in place of our embedding
approach in LP-ROBIN. Since Node2Vec works in batch mode, in this case
also the link prediction algorithm works in batch mode.

DynAE [15]: DynAE is the dyngraph2vec variant, which is based on adapt-
ing autoencoders to the dynamic context.

DynRNN [15]: DynRNN is the dyngraph2vec variant that is based on recur-
rent neural networks in order to capture and exploit the temporal dimension.

23

DynAERNN [15]: DynAERNN is the dyngraph2vec variant that combines
both autoencoders and recurrent neural networks, exploiting the former to
reduce the dimensionality of the input and the latter to capture temporal
information.

For Node2Vec, we considered different values of its parameters, i.e., p €
{0.25,1,4} and ¢ € {0.25,0.50, 1}, suggested by the authors according to the
results of the experiments reported and discussed in [16], while the considered
embedding size, number of random walks and their length have been set to
the same values adopted for LP-ROBIN.

Since all the variants of dyngraph2vec are based on neural networks, anal-
ogously to LP-ROBIN and for a fair comparison, we set the number of epochs
equal to 200. Moreover, we set its lookback parameter (i.e., the number of
previous snapshots to consider during the training phase) equal to the num-
ber of previous snapshots (as shown in Table 2). Moreover, in order to
properly compare it with LP-ROBIN, and exclude possible influences deriv-
ing from the architecture of the neural network in the embedding phase, we
set the number of neurons of its hidden layers equal to those considered for
LP-ROBIN in the embedding phase.

5.8. Results and discussion

In this section, we show and discuss the results obtained by LP-ROBIN
and its competitors on the considered datasets.

The first analysis is aimed at investigating the sensitivity of LP-ROBIN
to the values of its parameters. In Figure 5 we report the results in terms
of AUC of an ablation study. From the graphs, it is possible to observe
that none of the parameters has a strong influence on the AUC performance,
especially the number (i.e., n_rw) and the length (i.e., {_rw) of the random
walks. This is a positive aspect that indicates that LP-ROBIN identifies
reliable embeddings even for a small number of short walks. An additional
observation is that there are no parameter configurations that lead to the best
results over all the datasets. One exception is represented by the embedding
size (i.e., d), which typically shows the best results for d = 256. This means
that the number of nodes in the hidden layers influences the effectiveness of
the method. As for the aggregation method, the best results are achieved
with the “weighted sum”, especially for BitcoinOTC and WikiTalk. This
indicates that the normalization introduced in the “weighted average” is not
always beneficial and can lead to flattening the representation of the links.

24

Table 3: Parameter values selected by the grid search.

System | Parameter | CollegeMsg | BitcoinOTC | WikiTalk
n_rw 20 20 10
[_rw 10 10 20
LP-ROBIN d 128 256 256
agg w_average w_sum w_sum
@ 0.5 1.0 0.5
n_rw 10 20 10
[_rw 20 10 10
Node2Vec d 256 256 64
P 4 1 1
q 0.25 0.25 1
DynAE d 256 128 64
DynRNN d 64 64 64
DynAERNN d 256 256 64

As for «a, the best results are obtained with a = 0.5 and o = 1. This is
probably due to the speed of evolution of the network structure over time,
which requires giving more importance to the most recent data’.

We performed a similar ablation study for competitor systems (see Figures
6-9). For Node2Vec, we can draw conclusions similar to those of LP-ROBIN.
This is a clear indication that the subsequent link prediction task is not neg-
atively affected by the values of the parameters adopted for the embedding
strategy. This observation also holds when comparing the learning strategies
adopted for LP-ROBIN (incremental) and Node2Vec (batch): we do not ob-
serve any correlation between the parameter values and the adopted learning
strategy.

In Table 3 we report the combination of the parameter values that led to
the best results in terms of AUC. In the remaining of this section, we will
use such configurations for the comparative evaluation.

"We remark that with o = 1 we do not forget the past, but we represent the nodes
(and links) only according to the random walks observed at the current snapshot.

25

C g - n_rw BitcoinOTC - n_rw WikiTalk - n_rw

’ w10
20

060 065 070 075 080 085 000 095 100 o4 10 11 03 o4

05 06 07 08 09 o5 o6 07 o8 095 10 11
Area Under the ROC Curve Area Under the ROC Curve Area Under the ROC Curve
Ci g - L_rw OTC - I_rw WikiTalk - I_rw
M 10 10
20 * 20

060 065 070 075 080 085 090 095 100 10 03 o4 10 11

Area Under the ROC Curve

o4

os o6 07 05 o5 06 07 o8 09
Area Under the ROC Curve Area Under the ROC Curve

C g-d OoTC-d WikiTalk - d
64 64

256 104 0 256

o . N w s v o
-
N
®
-
N
®

060 065 070 075 030 08 090 095 100 os o o 11

Area Under the ROC Curve

s 06 07 o8 09 1 o4 06 08 7o
Area Under the ROC Curve Area Under the ROC Curve
C g - agg BitcoinOTC - agg WikiTalk - agg

[Weighted average 6| 7" Weighted average [Weighted average
o Weighted sum Weighted sum 150 Weighted sum

=
:

070 075 080 085 090 095 100 0a o 11 ¥ o3 oa 10 11

X 5 06 07 08 o
Area Under the ROC Curve Area Under the ROC Curve

05 06 07 o8 09
Area Under the ROC Curve

OTC-a WikiTalk - a

0.0
0.5
10

-

070 075 080 085 090 X 0a o5 11

4 06 08
Area Under the ROC Curve

o6 07 08 09 10
Area Under the ROC Curve Area Under the ROC Curve

Figure 5: Results of an ablation study over LP-ROBIN parameters in terms of AUC.

26

-n_rw BitcoinOTC - n_rw WikiTalk - n_rw

w10 ey
8 20
20 20
15 ‘
10
5
1 1 ol

00 085 070 075 080 085 090 095 Y 07 08 09 To 02
Area Under the ROC Curve Area Under the ROC Curve Area Under the ROC Curve
Ci - OTC - I_rw WikiTalk - I_rw
10 200
-
175 2 0
150
125
100
75
50
25
1 004
065 070 075 080 085 090 095 07 o8 09 00 02
Area Under the ROC Curve Area Under the ROC Curve Area Under the ROC Curve
[o g-d oTC-d . WikiTalk - d
10 - 64
i 20
8 2 56 - 2 56
6 15
6
4 10
4
N 2 B
ol o oo
065 070 05 080 085 080 095 07 08 09 ¥
Area Under the ROC Curve Area Under the ROC Curve Area Under the ROC Curve
» [o g BitcoinOTC - p WikiTalk - p
- 025 200{ 50 0.25
10 s 1.0
a0
N 150
125
6
100
‘. 75
50
2
25
ol

070 075 080 085 090 095 Y 07 o8 09 Y 0 02 04 06 08 10
Area Under the ROC Curve Area Under the ROC Curve Area Under the ROC Curve
Coll g BitcoinOTC - q WikiTalk - q
200
o = 025 - o 25
05 15
10 150 T 1 o
125
100
75
50
25
00
050 065 070 075 080 085 090 095 6 07 08 o5 o 02
Area Under the ROC Curve Area Under the ROC Curve Area Under the ROC Curve

Figure 6: Results of an ablation study over Node2Vec parameters in terms of AUC.

27

o

8 050 052
Area Under the ROC Curve

054

64
128
256

BitcoinOTC - d

64
128
256

042 034 036 o

.48 050 0.5:
Area Under the ROC Curve

2 054 056 058

WikiTalk - d

64
128
256

o4 os 06 o7
Area Under the ROC Curve

Figure 7: Results of an ablation study over DynAE parameters in terms of AUC.

Area Under the ROC Curve

64
128
256

0425 0450 0475 0500 0525 0550 0575 0600

inOTC -d

0.8

049 050 051 05

2
Area Under the ROC Curve

053

64
128
256

034

WikiTalk - d

64
128
256

~075 ~050

025 000 025 050 075 100 125

Area Under the ROC Curve

Figure 8: Results of an ablation study over DynRNN parameters in terms of AUC.

0.40

055

045 050
Area Under the RO

0.60

C Curve

64
128
256

oTC-d

040

055

s 0
Area Under the ROC Curve

060

64
128
256

WikiTalk - d

02

0 06 o8
Area Under the ROC Curve

10

64
128
256

Figure 9: Results of an ablation study over DynAERNN parameters in terms of AUC.

28

We report the AUC and Fl-score results in Table 4 and in Figure 10. It
is possible to observe that LP-ROBIN leads to the best overall results, both
in terms of AUC and in terms of F1-Score. There are few cases in which
Node2Vec is able to outperform LP-ROBIN, but only for the first snapshots,
while on the subsequent snapshots, LP-ROBIN clearly shows its superiority.
This phenomenon emphasizes that the dynamic nature of LP-ROBIN (in
both the construction of the embedding and in the learning strategy) is ben-
eficial, since it is able to properly weight the contribution of new data with
respect to past data. On the contrary, the static nature of Node2Vec gives the
same importance to all the data, without giving more importance to recent
data and without properly dealing with possible concept drift phenomena.

LP-ROBIN and state-of-the-art competitors generally perform signifi-
cantly better than baselines. This is due to the fact that baselines have
a local view of the network structure, since they focus on the neighborhood
of nodes. On the contrary, relying on random walks, generated from specific
nodes and links, leads to having a wider view of the network structure. For
this reason, LP-ROBIN can be considered a semi-local approach since, on
the other hand, it does not incur the strong computational issues typical of
global approaches that extensively analyze the whole network (e.g., [20, 6]).

Compared with DynAE, DynRNN, and DynAERNN, we can observe a
clear superiority of LP-ROBIN. Although all the methods exploit neural net-
works for the embedding step, the strategy we adopt in LP-ROBIN appears
to be much more effective. This might be due to the fact that DynAE,
DynRNN, and DynAERNN directly compress the node representation into
d features starting from a full row of the adjacency matrix. On the con-
trary, in LP-ROBIN we reduce this problem since we start from [_rw (with
l_rw < |V*|, where |V*] is the number of nodes at the ¢-th snapshot). More-
over, this aspect also makes DynAE, DynRNN, and DynAERNN much less
efficient. Indeed, they were not able to complete the experiments causing
out-of-memory errors for the last few snapshots of the WikiTalk dataset.

As for the learning times (see Table 5), while the baselines are very ef-
ficient at the price of poor accuracy, the comparison with Node2Vec shows
that the incremental approach, in addition to providing accurate results, is
also more efficient. An exception is represented by WikiTalk, where the lower
Node2Vec running times are motivated by the shorter random walks of its
best configuration (see Table 3). Finally, DynAE, DynRNN and DynAERNN
do not show competitive running times, probably for the same reason men-
tioned before, i.e., they exploit high-dimensional node representations.

29

Table 4: Fl-score and AUC results for all the considered snapshots. The best Fl-score

and AUC results for each dataset and snapshot are reported in bold.
G1 G? G3 G4 G5 G*S
System F1 AUC| F1 AUC| F1 AUC| F1 AUC| F1 AUC| F1 AUC
LP-ROBIN |0.550 0.701|0.656 0.769 |0.813 0.890|0.769 0.905| 0.734 0.896|0.773 0.904
AAT 0.002 0.577 [0.004 0.665|0.026 0.698 | 0.011 0.693 | 0.042 0.683 | 0.022 0.612
CN 0.000 0.572]0.004 0.658 | 0.036 0.694 | 0.004 0.692 | 0.031 0.681 | 0.022 0.607
JACCARD | 0.002 0.559 |0.000 0.634 |0.000 0.665|0.000 0.665 |0.055 0.655|0.000 0.581
RAI 0.000 0.577|0.003 0.666 | 0.017 0.699 | 0.011 0.692 | 0.031 0.682 | 0.022 0.615
Node2Vec |0.514 0.685 | 0.648 0.794|0.750 0.859 | 0.731 0.873 [0.745 0.865 | 0.768 0.868
DynAE 0.667 0.503 |0.667 0.489|0.667 0.523 | 0.667 0.503 | 0.667 0.504 | 0.667 0.525
DynRNN |0.646 0.463 |0.612 0.491|0.634 0.478 | 0.663 0.497 | 0.662 0.484|0.667 0.541
DynAERNN | 0.609 0.460 | 0.556 0.498 | 0.402 0.490 | 0.459 0.574 | 0.471 0.557 | 0.485 0.535

LP-ROBIN | 0.573 0.674 [0.777 0.857|0.853 0.913 |0.866 0.929|0.939 0.981|0.901 0.992
AAI 0.114 0.588 [0.031 0.763 [0.017 0.763 [0.029 0.794 | 0.035 0.907 | 0.143 0.921

CollegeMsg

8 CN 0.337 0.584|0.077 0.761|0.037 0.761 | 0.025 0.792 | 0.086 0.904 |0.143 0.921
O| JACCARD |0.000 0.522|0.000 0.739 | 0.000 0.746 | 0.007 0.777 | 0.000 0.884 |0.098 0.917
= RAI 0.092 0.584|0.019 0.762]0.004 0.763 |0.017 0.793 | 0.013 0.907 | 0.098 0.921
S[Node2Vec |0.667 0.761]0.769 0.882]0.802 0.920] 0.841 0.927 | 0.916 0.970 | 0.870 0.993
5 DynAE |0.667 0.502 | 0.667 0.494 | 0.667 0.500 | 0.667 0.475|0.667 0.503 | 0.667 0.538
DynRNN | 0.656 0.514 | 0.655 0.493|0.634 0.497|0.662 0.504 | 0.666 0.499 | 0.667 0.513
DynAERNN|0.664 0.515|0.600 0.473|0.379 0.518|0.412 0.554 | 0.366 0.450 | 0.500 0.560
LP-ROBIN | 0.571 0.551 |{0.822 0.909|0.780 0.889(0.794 0.894|0.805 0.918|0.887 0.963
AAI 0.000 0.500 | 0.007 0.789]0.005 0.797 [0.001 0.762 | 0.001 0.692 | 0.000 0.735
v CN 0.923 0.929|0.009 0.770 | 0.009 0.790|0.002 0.767|0.000 0.700 | 0.000 0.740
®| JACCARD |0.923 0.929|0.055 0.477 | 0.055 0.720 | 0.062 0.748 | 0.054 0.697 | 0.046 0.732
E RAI 0.444 0.929|0.011 0.792]0.000 0.801 | 0.000 0.769 | 0.000 0.700 | 0.000 0.742
2| Node2Vec |0.556 0.510(0.755 0.899 |0.724 0.862|0.684 0.869 | 0.738 0.884|0.846 0.963
B DynAE 0.667 0.571 [0.667 0.513 | 0.667 0.502 | 0.667 0.500 - - - -

DynRNN | 0.471 0.102 | 0.667 0.699 | 0.639 0.529 - -
DynAERNN | 0.182 0.582|0.574 0.566 | 0.496 0.472|0.486 0.483 - - - -

30

Table 5: Running times (in seconds) for the training phase.

31

| System | G'| G| G| G| G| G°
LP-ROBIN 39 65 23 11 7 7
AAT 1 2 1 1 1 1

% CN 1 2 1 1 1 1
= | JACCARD 1 2 1 1 1 1
1y RAT 1 1 1 1 1 1
2 [NodeZVec 18 72 36 91 90 95
S DynAE 66 95 185 215 324 124
DynRNN 268 278 943 | 1,751 | 3,112 | 4,788
DynAERNN 86 132 426 811 | 1,404 | 2,167
LP-ROBIN 16 58 22 28 31 9
AAT 1 1 1 1 2 1

8 CN 1 2 2 2 1 1
o | JACCARD 1 1 1 2 1 1
E RAI 1 1 1 2 1 1
8 [Node2Vec 6 g5 151 240 2683 270
z DynAE 322 359 638 962 | 1,437 | 1,748
DynRNN | 4,534 | 5,674 | 18,102 | 36,713 | 63,796 | 84,698
DynAERNN | 420 478 | 1,597 | 3,077 | 5,368 | 28,072
LP-ROBIN 12 37 145 460 | 3,238 | 24,927
AAT 2 2 16 75 384 | 4,926

. CN 1 1 3 18 108 | 1,876
T | JACCARD 1 2 4 21 119 | 1,994
E RAI 1 1 4 18 107 | 1,902
g Node2Vec 5 5 53 238 | 1,002 | 5,846
DynAE 1,445 | 7,965 | 11,195 | 15,677 - -
DynRNN | 4,792 | 13,146 | 25,556 - - §
DynAERNN | 4,983 | 13,615 | 26,184 | 43,048 - -

CollegeMsg

F1-Score Area Under the ROC Curve
1.00 1.00
0.80 0.90 e
Q
S 0.60 o 0.80
v S 0.70
o 040 < ol ‘..
0.20 050 . ——9
0.00 0.40 +—
Gt G? G3 G* G GS Gt G? G3 G* G GS
Snapshot Snapshot
BitcoinOTC
F1-Score Area Under the ROC Curve
1.00 1.00
0.80 0.90
% 0.60 ek
] S 0.70
2 040 - < <
T «\ 0.60
0207, y 0.50 = —
0.00 - = 0.40
Gt G? G3 G* G GS Gt G2 G3 G* G GS
Snapshot Snapshot
WikiTalk
F1-Score Area Under the ROC Curve
1.00 T 1.00 3
3 0.90 1K
0.80 .
v >‘(,/' — 0.80 \
3 000 4 S 0.70 X ———
4 0.40 <
g 0.60 41
0.00 0.40 +—
Gt G? G3 G* G GS G! G? G3 G* G GS
Snapshot Snapshot
—e— LP-ROBIN —e— AAIl —e— JACCARD —eo— DynAE —e— DynAERNN
—e— Node2Vec —e— CN —o— RAI —o— DynRNN

Figure 10: Results obtained with the different datasets in terms of Fl-score and AUC,
with the best configurations.

32

6. Conclusion

In this paper, we proposed LP-ROBIN, a novel method that is able to
solve link prediction tasks on dynamic networks. LP-ROBIN is able to pre-
dict new links that will appear in the next snapshot of the network, exploiting
an embedding technique based on random walks.

LP-ROBIN works incrementally, in order to dynamically capture the
changes. The innovative aspect is that the network embedding and the
link prediction model are incrementally and coherently updated when new
snapshots arrive, with the advantage of adapting to the possible structural
changes in the network.

Our experimental evaluation showed that LP-ROBIN is able to outper-
form baseline and state-of-the-art competitors, achieving better results in
terms of both AUC and F1-score. Moreover, LP-ROBIN effectively and effi-
ciently exploits the different contributions coming from new data with respect
to past data, in an incremental and dynamic fashion.

For future work, we will extend LP-ROBIN to predict not only the ap-
pearance of new links, but also their removal over time. A possible solution
could consist in constructing random walks virtually traversing non-existent
links, and feeding the sparse autoencoder with them to generate their la-
tent representations. Then, we could exploit their complementary/negated
representation to represent nodes and, accordingly, links.

Moreover, we will aim to extend the applicability of LP-ROBIN to a more
general setting, involving heterogeneous types of nodes and links as well as
possible weights on the links. This would give us the opportunity to apply
LP-ROBIN to more complex network data, such as biological networks.

Availability
The system, the datasets and all the results are publicly available at:
https://figshare.com/projects/LP-ROBIN/87188.

Acknowledgment

The authors acknowledge the support of the European Commission through
the H2020 Projects “CounteR - Privacy-First Situational Awareness Plat-
form for Violent Terrorism and Crime Prediction, Counter Radicalisation
and Citizen Protection” (Grant N. 101021607), and “IMPETUS - Intelligent

33

Management of Processes, Ethics and Technology for Urban Safety” (Grant.
N. 883286). Dr. Gianvito Pio acknowledges the support of Ministry of Ed-
ucation, Universities and Research (MIUR) through the project “Big Data
Analytics”, AIM 1852414, activity 1, line 1.

References

1]

Bergstra, J., Yamins, D., Cox, D.D., 2013. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vi-
sion architectures, in: Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
JMLR.org. pp. 115-123.

Bifet, A., Gavalda, R., 2007. Learning from time-changing data with
adaptive windowing, in: In SIAM International Conference on Data
Mining, pp. 443-448.

Brzezinski, D., Stefanowski, J., 2018. Ensemble classifiers for imbal-
anced and evolving data streams, in: Data Mining in Time Series and
Streaming Databases, Chapter 3, pp. 44-68.

Buono, N.D., Pio, G., 2015. Non-negative matrix tri-factorization for
co-clustering: An analysis of the block matrix. Information Sciences
301, 13 — 26.

Ceci, M., Corizzo, R., Japkowicz, N., Mignone, P., Pio, G., 2020.
ECHAD: embedding-based change detection from multivariate time se-
ries in smart grids. IEEE Access 8, 156053-156066.

Chebotarev, P.Y., Shamis, E., 1997. The matrix-forest theorem and
measuring relations in small social group. Automation and Remote
Control 58, 1505-1514.

Chi, K., Yin, G., Dong, Y., Dong, H., 2019. Link prediction in dynamic
networks based on the attraction force between nodes. Knowledge-Based
Systems 181, 104792.

Chiu, C., Zhan, J., 2018. Deep learning for link prediction in dynamic
networks using weak estimators. IEEE Access 6, 35937-35945.

34

[9]

[10]

[11]

[12]

[15]

[16]

[17]

Comito, C., 2020. Next: A framework for next-place prediction on
location based social networks. Knowledge-Based Systems 204, 106205.

Dakiche, N., Tayeb, F.B.S., Slimani, Y., Benatchba, K., 2019. Tracking
community evolution in social networks: A survey. Information Process-
ing & Management 56, 1084 — 1102.

Du, L., Wang, Y., Song, G., Lu, Z., Wang, J., 2018. Dynamic Net-
work Embedding : An Extended Approach for Skip-gram based Network
Embedding, in: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, International Joint Conferences on
Artificial Intelligence Organization, Stockholm, Sweden. pp. 2086—2092.

Fakhraei, S., Foulds, J., Shashanka, M., Getoor, L., 2015. Collective
spammer detection in evolving multi-relational social networks, in: Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Association for Computing Machinery,

New York, NY, USA. p. 1769-1778.

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training
deep feedforward neural networks, in: AISTATS, pp. 249-256.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural
networks, in: Gordon, G.J., Dunson, D.B., Dudik, M. (Eds.), Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
JMLR.org. pp. 315-323.

Goyal, P., Chhetri, S.R., Canedo, A., 2020. dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning. Knowl.
Based Syst. 187.

Grover, A., Leskovec, J., 2016. node2vec: Scalable feature learning for
networks. KDD : proceedings. International Conference on Knowledge
Discovery & Data Mining 2016, 855-864.

Haddad, M., BOTHOREL, C., Lenca, P., Bedart, D., 2019. TemporalN-
ode2vec: Temporal Node Embedding in Temporal Networks, in: COM-
PLEX NETWORKS 2019 : 8th International Conference on Complex
Networks and their Applications, Lisbon, Portugal. pp. 891-902.

35

18]

[19]

[20]

[21]

[22]

[23]

[24]

[26]

Haghani, S., Keyvanpour, M.R., 2017. Temporal link prediction: Tech-
niques and challenges. Computer science and information technologies

Hess, S., Pio, G., Hochstenbach, M.E., Ceci, M., 2021. BROCCOLI:
overlapping and outlier-robust biclustering through proximal stochastic
gradient descent. Data Min. Knowl. Discov. 35, 2542-2576.

Jeh, G.; Widom, J., 2002. Simrank: A measure of structural-context
similarity, in: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, New York,
NY, USA. pp. 538-543.

Jin, D., Li, B., Jiao, P., He, D., Zhang, W., 2019. Network-Specific Vari-
ational Auto-Encoder for Embedding in Attribute Networks, in: IJCAI,
pp. 2663-2669.

Kim, J., Hastak, M., 2018. Social network analysis: Characteristics of
online social networks after a disaster. International Journal of Infor-
mation Management 38, 86-96.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimiza-
tion. CoRR abs/1412.6980.

Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahma-
nian, V., 2018. REV2: Fraudulent User Prediction in Rating Platforms,
in: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining - WSDM 18, ACM Press, Marina Del Rey,
CA, USA. pp. 333-341.

Kumar, S., Spezzano, F., Subrahmanian, V.S., Faloutsos, C., 2016. Edge
Weight Prediction in Weighted Signed Networks, in: 2016 IEEE 16th
International Conference on Data Mining (ICDM), IEEE, Barcelona,
Spain. pp. 221-230.

Kumar, S., Zhang, X., Leskovec, J., 2019. Predicting dynamic embed-
ding trajectory in temporal interaction networks, in: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, Association for Computing Machinery, New York, NY,
USA. p. 1269-1278.

36

[27]

Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M., 2010. Governance in
social media: A case study of the wikipedia promotion process, in: Co-
hen, W.W., Gosling, S. (Eds.), Proceedings of the Fourth International
Conference on Weblogs and Social Media, ICWSM 2010, Washington,
DC, USA, May 23-26, 2010, The AAAI Press. pp. 98-105.

Liben-Nowell, D., Kleinberg, J., 2007. The Link Prediction Problem
for Social Networks. Journal of the American Society for Information
Science and Technology , 19.

Mahdavi, S., Khoshraftar, S., An, A., 2018. dynnode2vec: Scalable
Dynamic Network Embedding, in: 2018 IEEE International Conference
on Big Data (Big Data), IEEE, Seattle, WA, USA. pp. 3762-3765.

Mikolov, T., Chen, K., Corrado, G.S., Dean, J., 2013. Efficient estima-
tion of word representations in vector space. CoRR abs/1301.3781.

Mohamed, E.A., Zaki, N., Marjan, M., 2019. Current Trends and Chal-
lenges in Link Prediction Methods in Dynamic Social Networks : A
Literature Review. Advances in Science, Technology and Engineering
Systems Journal 4, 244-254.

Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.,
2018. Continuous-Time Dynamic Network Embeddings, in: Companion
of the The Web Conference 2018 on The Web Conference 2018 - WWW
18, ACM Press, Lyon, France. pp. 969-976.

Noble, J., Adams, N., 2018. Real-time dynamic network anomaly de-
tection. IEEE Intelligent Systems 33, 5-18.

Panzarasa, P., Opsahl, T., Carley, K.M., 2009. Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online com-
munity. Journal of the American Society for Information Science and
Technology 60, 911-932.

Paranjape, A., Benson, A.R., Leskovec, J., 2017. Motifs in temporal
networks, in: de Rijke, M., Shokouhi, M., Tomkins, A., Zhang, M.
(Eds.), Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM 2017, Cambridge, United Kingdom,
February 6-10, 2017, ACM. pp. 601-610.

37

[36]

[37]

[40]

Perozzi, B., Al-Rfou, R., Skiena, S., 2014. Deepwalk: Online learning
of social representations, in: Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM.

pp. 701-710.

Rahman, M., Hasan, M.A., 2016. Link prediction in dynamic networks
usingA graphlet, in: Frasconi, P., Landwehr, N., Manco, G., Vreeken,
J. (Eds.), Machine Learning and Knowledge Discovery in Databases,
Springer International Publishing, Cham. pp. 394-409.

Ramesh, A., Rodriguez, M., Getoor, L., 2017. Multi-relational influence
models for online professional networks, in: Proceedings of the Inter-
national Conference on Web Intelligence, Association for Computing
Machinery, New York, NY, USA. p. 291-298.

Ranzato, M., Boureau, Y., LeCun, Y., 2007. Sparse feature learning for
deep belief networks, in: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T.
(Eds.), Advances in Neural Information Processing Systems 20, Pro-
ceedings of the Twenty-First Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007, Curran Associates, Inc.. pp. 1185-1192.

Rekatsinas, T., Ghosh, S., Mekaru, S.R., Nsoesie, E.O., Brownstein,
J.S., Getoor, L., Ramakrishnan, N., 2017. Forecasting rare disease out-
breaks from open source indicators. Statistical Analysis and Data Min-
ing: The ASA Data Science Journal 10, 136-150.

Soundarajan, S., Hopcroft, J., 2012. Using community information to
improve the precision of link prediction methods, in: Proceedings of
the 21st International Conference on World Wide Web, Association for
Computing Machinery, Lyon, France. pp. 607-608.

Stojanova, D., Ceci, M., Appice, A., Dzeroski, S., 2012. Network re-
gression with predictive clustering trees. Data Min. Knowl. Discov. 25,
378-413.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q., 2015.
Line: Large-scale information network embedding, in: Proceedings of
the 24th International Conference on World Wide Web, International

38

[44]

[45]

[46]

[48]

[49]

[50]

World Wide Web Conferences Steering Committee, Republic and Can-
ton of Geneva, CHE. p. 1067-1077.

Trivedi, R., Farajtabar, M., Biswal, P., Zha, H., 2019. DyRep: Learning
Representations over Dynamic Graphs, in: ICLR, pp. 1-25.

Verma, J., Gupta, S., Mukherjee, D., Chakraborty, T., 2019. Heteroge-
neous Edge Embedding for Friend Recommendation, in: Azzopardi, L.,
Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (Eds.), Advances
in Information Retrieval. Springer International Publishing, Cham. vol-
ume 11438, pp. 172-179.

Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.L., 2011.
Human mobility, social ties, and link prediction, in: Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Association for Computing Machinery, New York,
NY, USA. p. 1100-1108.

Yang, Y., Chen, H., Shao, J., 2019. Triplet Enhanced AutoEncoder:
Model-free Discriminative Network Embedding, in: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence,
International Joint Conferences on Artificial Intelligence Organization,

Macao, China. pp. 5363-5369.

Yu, W., Cheng, W., Aggarwal, C.C., Chen, H., Wang, W., 2017. Link
prediction with spatial and temporal consistency in dynamic networks,
in: Proceedings of the 26th International Joint Conference on Artificial
Intelligence, AAAI Press. p. 3343-3349.

kui Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y., 2018. Dynamic
network embedding by modeling triadic closure process, in: AAAI, pp.
571-578.

Zhou, T., Lu, L., Zhang, Y.C., 2009. Predicting Missing Links via Local
Information. The European Physical Journal B 71, 623-630. ArXiv:
0901.0553.

39

