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Abstract: Plant viruses can be effectively transmitted by phytophagous mites. Many species of mites, mainly eriophyids 
and tenuipalpids, induce symptoms in infested plants that may be mistaken for viral diseases or may hide infections pro-
duced by unidentified putative viruses. The virus-mite interplay and the multitrophic interactions with their host plants are 
often inadequately described and require further clarifications. Advances in biotechnological methods could enable increas-
ing identification and characterization of viruses transmitted and their potential mite vectors. This review examines the state 
of knowledge of mites and plant-virus interactions by summarizing the strengths and weaknesses in this research field, thus 
paving the way for new research directions.
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1	 Introduction

Amid the relatively sparse data on mite vectors of plant 
viruses, some species of Eriophyoidea and Tenuipalpidae 
(Tetranychoidea) are particular reference points in plant-
virus transmission (cfr. Vacante 2016). Even in these 
instances, however, information on mite-virus relationships 
remains limited and fragmented. Research on these sub-
jects suffers as a consequence of the tiny size of the mites 
involved, particularly in the case of eriophyoids. In addition 
to the peculiarities of niches and microhabitats, the dynamics 
and behavioural traits of these mites hinder their rearing, as 
well as experimental assays (Oldfield & Proeseler 1996; de 
Lillo & Skoracka 2010; de Lillo et al. 2018).

Within the superfamily Eriophyoidea, only mites of the 
family Eriophyidae have been determined to be plant virus 
vectors, and most of them do not cause hypersensitive reac-

tions in the pierced plant cells (Stenger et al. 2016). In the 
superfamily Tetranychoidea, apart from a very few reports 
suggesting that spider mites are involved in the transmis-
sion of plant viruses, most of the current knowledge of virus 
transmission is derived from studies of Brevipalpus species 
(Tenuipalpidae). Data on Brevipalpus-transmitted viruses 
(BTVs) have increased significantly in recent years (Freitas-
Astúa et al. 2018). BTVs are unable to systemically move 
on their host plants, causing local infections (Childers et al. 
2003a; Kitajima et al. 2003a, 2014; Dietzgen et al. 2018a; 
Freitas-Astúa et al. 2018). As far as is known, infestations 
by Brevipalpus mites trigger a drastic reprogramming of the 
plant transcriptome to render the host more susceptible to 
mite colonization, by inducing the salicylic acid-mediated 
pathway (Arena et al. 2016, 2018). The same mechanism is 
also presumed to be deployed by eriophyoids (de Lillo et al. 
2018).
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The current review updates information on mite-virus 
interactions and critically evaluates the needs, weaknesses, 
and strengths of the topics covered.

2	 Plant viruses transmitted by mites

2.1	 Viruses transmitted by eriophyids
Jones (1999) listed at least 26 plant virus diseases that are 
potentially associated with eriophyid mites. Eriophyid-
transmitted viruses (ETVs) are highly specific and vec-
tored only by a single species of mite (Oldfield & Proeseler 
1996; Stenger et al. 2016). Conversely, a single eriophyid 
species can transmit more than one virus belonging to the 
same or a different genus and family. ETVs and suspected 
ETVs have a wide range of genomes and expression strate-
gies, and their particle morphologies range from spherical, 
enveloped (Fimoviridae: emaraviruses) or not (Secoviridae: 
nepovirus), to filamentous (Potyviridae: tritimoviruses, 
poaceviruses, and rymoviruses; Betaflexiviridae: trichovi-
ruses; Alphaflexiviridae: allexiviruses), containing single 
or split RNA molecules as the genome (Stenger et al. 2016; 
http://ictv.global) (Table 1).

Potyviruses are transmitted by aphids, whiteflies, fungi, 
and eriophyids, and the involvement of spider mites has also 
been suggested (King et al. 2012). Viral particles are about 
700 × 12 nm and contain a positive (+) single-stranded (ss) 
RNA genomic molecule, which is expressed as a single poly-
protein that is further processed into single functional pro-
teins by viral encoded proteases.

Particles of allexiviruses are around 800 × 12 nm. Their 
genome consists of (+) ssRNA molecules coding for six pro-
teins, i.e., replicase (open reading frame 1=ORF1), move-
ment, coat, and nucleic acid-binding proteins (ORF2-3, 
5-6); the function of ORF4 is currently unknown (King et al. 
2012).

Trichoviruses are around 700 × 12 nm, with (+) ssRNA. 
Their genomes contain three overlapping ORFs encoding 
replicase, movement, and coat proteins (King et al. 2012). 
Some members also have a fourth ORF, which encodes a 
nucleic acid-binding protein.

Viral particles of nepoviruses encapsidate two (+) ssR-
NAs (RNA1 and RNA2), which are translated into poly-
proteins that are successively processed into structural and 
functional proteins (Seitsonen et al. 2008).

Eriophyid-transmitted emaraviruses induce typical cyto-
pathic effects in their host plants, including the presence 
of double membrane-bounded bodies (DMBs) (Kim et al. 
2001). Virus particles measure 80–200 nm in diameter and 
possess four to eight segmented negative (–) ssRNAs, each 
encoding a single ORF (Mühlbach & Mielke-Ehret 2012; 
Hassan et al. 2017; Kubota et al. 2020). These viruses are 
localised mainly in the plant parenchymatic tissues.

2.2	 Viruses transmitted by tenuipalpids
The first evidence for the involvement of Brevipalpus mites 
in plant virus transmission was reported by Frezzi (1940), 
who reproduced symptoms of citrus leprosis by transfer-
ring viruliferous Tenuipalpus pseudocuneatus (Blanchard) 
(a junior synonym of Brevipalpus obovatus Donnadieu) to 
healthy citrus plants. The same mite species was associ-
ated with a leprosis-like disease in Ligustrum sinense Lour. 
(Vergani 1942). Since then, numerous viruses of the genera 
Cilevirus (family Kitaviridae) and Dichorhavirus (fam-
ily Rhabdoviridae) were found to be transmitted by sev-
eral Brevipalpus spp. (Childers et al. 2003a; Kitajima et al. 
2010, 2014; Dietzgen et al. 2018a; Freitas-Astúa et al. 2018) 
(Table 1). Despite the significant difference in genome orga-
nization, it is speculated that cileviruses and dichorhaviruses 
show signs of convergent evolution, likely determined by 
their intimate interaction with Brevipalpus mites (Freitas-
Astúa et al. 2018).

Citrus leprosis virus C (CiLV-C) is the type member of 
the genus Cilevirus. Virions are short bacilliform, 100–120 
× 60–70 nm, membrane-bound particles that are mainly con-
tained in cisternae of the endoplasmic reticulum (ER) in the 
infected plant cells. A characteristic electron-dense inclu-
sion, referred to as viroplasm, results from cilevirus infec-
tions and is believed to be an accumulation of virus-coded 
proteins. Virion morphogenesis likely occurs by budding of 
the virion precursor from viroplasm through the ER mem-
brane towards the ER lumen (Kitajima et al. 2003a). The 
genome of cileviruses consists of two (+) ssRNAs. RNA1 
contains genes encoding the RNA-dependent RNA poly-
merase and P29. RNA2 has four major ORFs (P15, P61, MP, 
and P24). Proteins P29, P61, and P24 are putative structural 
proteins, while the function of P15 is unknown (Freitas-
Astúa et al. 2018). Although CiLV-C can experimentally 
infect many plant species (Garita et al. 2014) besides citrus, 
only the plant species Swinglea glutinosa (Blanco) Merr. in 
Colombia (León et al. 2008) and Commelina benghalensis 
L. in Brazil (Nunes et al. 2012) were found to be naturally 
infected by the virus. Citrus leprosis virus C2 (CiLV-C2) 
(Roy et al. 2013, Melzer et al. 2013; Roy et al. 2018), pas-
sion fruit green spot virus (PfGSV) (Kitajima et al. 2007; 
Ramos-González et al. 2020) and the tentative cilevirus 
Solanum violifolium ringspot virus (SvSRV) (Ferreira et al. 
2007) are other identified cileviruses (Table 1).

Viruses of the genus Dichorhavirus have non-enveloped 
bacilliform particles measuring 100–110 nm in length and 
40 nm in width. Orchid fleck virus (OFV), the type member 
of the genus, was the first to be described and molecularly 
characterized as a dichorhavirus (Doi et al. 1969; Kondo 
et al. 2006). OFV has been detected worldwide in orchids 
and other ornamental plants (Table 1) and its widespread 
distribution is likely a consequence of the intense trade in 
orchids.
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Table 1.  List of plant viruses transmitted by mites.
Virus (Acronym) Viral genus Plant host/s Geographical 

distribution
Mite species 
vector

Main reference/s

Family Alphaflexiviridae
garlic mite-borne 
filamentous virus 
(GarMbFV)

Allexivirus Allium sativum L. Argentina, Brazil, 
Korea, Japan

Aceria tulipae Yamashita et al. 1996, 
Melo-Filho et al. 2004;  
Lee et al. 2007; Oliveira 
et al. 2014

garlic virus A (GarVA),  
B (GarVB), C (GarVC), 
D (GarVD), E (GarVE), 
X (GarVX)

Allexivirus Allium cepa L., A. 
sativum, Tulipa sp.

probably 
occurring 
wherever the host 
plants grown

Aceria tulipae Chen et al. 2001; Melo-
Filho et al. 2004; Lee et al. 
2007; Gieck et al. 2009; 
Wylie et al. 2012; Gawande 
et al. 2015; CABI/EPPO 
2021; Nurulita et al. 2020

shallot virus X (ShVX) Allexivirus A. sativum, A. cepa, A. 
caeruleum Pall.

China, Ecuador, 
India, Italy, New 
Zealand, Poland, 
Sudan, USA

Aceria tulipae Ward et al. 2009; Wang 
et al. 2019; CABI/EPPO 
2021

Family Betaflexiviridae
cherry mottle leaf virus 
(ChMLV)

Trichovirus Prunus emarginata 
(Dougl. Ex Hook.) 
Eaton

China, Europe, 
North America, 
South Africa

Eriophyes 
inaequalis

Németh 1986; Ma et al. 
2014

fig latent virus-1 (FLV-1)1 Trichovirus Ficus carica L. China, Europe, 
Iran, Saudi 
Arabia, Syria, 
Tunisia, USA

Aceria ficus Shahmirzaie et al. 2012; 
Preising et al. 2021

grapevine berry inner 
necrosis virus (GINV)

Trichovirus Vitis vinifera L. China, Japan Colomerus vitis Yoshikawa et al. 1997;  
Fan et al. 2017

grapevine pinot gris virus 
(GPGV)

Trichovirus V. vinifera Worldwide Colomerus vitis CABI/EPPO 2021

peach mosaic virus 
(PcMV)

Trichovirus Prunus hortulana L. 
Bailey, P. mexicana 
Watson, P. munsoniana 
Wight & Hedrick, P. 
persica (L.) Batsch,

Mexico, USA Eriophyes 
insidiosus

CABI/EPPO 2021

Family Fimoviridae
actinidia chlorotic 
ringspot-associated 
emaravirus (AcCRaV)

Emaravirus Actinidia sp. China Eriophyidae2 Zheng et al., 2017

blackberry leaf mottle 
associated emaravirus 
(BLMaV)

Emaravirus Rubus sp. USA Not identified 
Eriophyoidea

Hassan et al. 2017

chrysanthemum mosaic-
associated emaravirus 
(ChMaV)1

Emaravirus Chrysanthemum sp. East Asia Paraphytoptus 
kikus3

Kubota et al. 2021

european mountain ash 
ringspot-associated 
emaravirus (EMARaV)

Emaravirus Sorbus aucuparia L., 
Amelanchier sp.

Czeck Republik, 
Germany, 
Norway, Poland, 
Sweden, UK

Eriophyes pyri CABI/EPPO 2021

fig mosaic Emaravirus 
(FMV)

Emaravirus Ficus carica, experi-
mentally Catharanthus 
roseus (L.) Don, 
Cyclamen persicum 
Mill.

worldwide Aceria ficus Chiumenti et al. 2013; 
Preising et al. 2021

high plains wheat mosaic 
emaravirus (HPWMoV)

Emaravirus Triticum aestivum L., 
Avena sativa L., Bromus 
tectorum L.,Hordeum 
vulgare L., Secale 
cereale L., Zea mays L.

Argentina, 
Australia, Brazil, 
Canada, Chile, 
Denmark, 
Ukraine, USA

Aceria 
tosichella

CABI/EPPO 2021
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Virus (Acronym) Viral genus Plant host/s Geographical 
distribution

Mite species 
vector

Main reference/s

perilla mosaic emaravirus 
(PerMV)

Emaravirus Perilla frutescens var. 
crispa (Thunb.) Deane

Japan Shevtchenkella 
sp.

Kubota et al. 2020

pigeonpea sterility 
mosaic emaravirus 1 
(PPSMV-1)

Emaravirus Cajanus cajan L. Bangladesh, 
India, Myanmar, 
Nepal, Sri Lanka, 
Thailand

Aceria cajani CABI/EPPO, 2021

pigeonpea sterility 
mosaic emaravirus 2 
(PPSMV-2)

Emaravirus Cajanus cajan India Aceria cajani Elbeaino et al. 2015

pistacia emaravirus B 
(PiBV)

Emaravirus Pistacia sp. Turkey Eriophyoidea2 Buzkan et al. 2019

raspberry leaf blotch 
emaravirus (RLBV)

Emaravirus Rubus idaeus L.,  
Rubus fruticosus x 
Rubus idaeus

probably widely 
distributed in 
Europe

Phyllocoptes 
gracilis

Bi et al. 2012; Cieślińska & 
Tartanus 2014; Pleško et al. 
2014; Zindović et al. 2015; 
McGavin et al. 2012; Delić 
et al. 2020; Paunović & 
Jevremović 2020

redbud yellow ringspot-
associated emaravirus 
(RYRaV)

Emaravirus Cercis spp. USA Not identified 
Eriophyoidea

Di Bello et al. 2016

rose rosette emaravirus 
(RRV)

Emaravirus Rose multiflora  
Thunb., Rosa spp.

Canada, India, 
USA

Phyllocoptes 
fructiphilis

CABI/EPPO 2021

Family Kitaviridae
citrus leprosis virus C 
(CiLV-C)

Cilevirus Arabidopsis thaliana 
(L.) Heynh, Citrus sp., 
Commelina benghalen-
sis L., Swinglea 
glutinosa Merr.

Central America, 
Mexico, South 
America

Brevipalpus 
yothersi
Brevipalpus 
papayensis4

Locali-Fabris et al. 2006; 
León et al. 2008; Nunes 
et al. 2012a, 2018; 
Ramos-González et al. 
2016a; Arena et al. 2017

citrus leprosis virus C2 
(CiLV-C2)

Cilevirus Citrus sp., Hibiscus sp. Brazil, Colombia, 
USA

Brevipalpus 
yothersi

Melzer et al. 2013; Roy 
et al. 2013, 2018

passion fruit green spot 
virus (PfGSV)

Cilevirus Passiflora edulis Sims Brazil Brevipalpus 
yothersi

Kitajima et al. 2003b; 
Ramos-González et al. 2020

Solanum violaefolium 
ringspot virus (SvRSV)1

Cilevirus A. thaliana, Solanum 
violaefolium Shott

Brazil Brevipalpus 
obovatus

Ferreira et al. 2007;  
Arena et al. 2017

Family Potyviridae
potato virus Y (PVY) Potyvirus Capsicum spp., 

Nicotiana tabacum L., 
Solanum lycopersicum 
L., S. tuberosum L.

Worldwide Tetranychus 
urticae

McDonald et al. 1996; 
CABI/EPPO 2021

agropyron mosaic virus 
(AgMV)

Rymovirus Elymus repens (L.) 
Gould, T. aestivum

Bulgaria, Canada, 
Hungary, Finland, 
Germany, UK, 
USA

Abacarus 
hystrix

CABI/EPPO 2021

hordeum mosaic virus 
(HoMV)

Rymovirus H. vulgare Canada Eriophyidae2 Slykhuis & Bell 1966

ryegrass mosaic virus 
(RGMV)

Rymovirus Festuca perennis Lam., 
several grasses

Czech Republic, 
UK, Australia, 
Victoria, New 
Zealand

Abacarus 
hystrix

CABI/EPPO 2021

brome streak mosaic 
virus (BrSMV)

Tritimovirus Bromus hordeacus L.; 
B. sterilis L., Cyperus 
esculentus L., Hordeum 
murinum L., H. vulgare

Worldwide Aceria 
tosichella

CABI/EPPO 2021

oat necrotic mottle virus 
(ONMV)

Tritimovirus A. sativa USA Eriophyidae2 Stenger & French 2004
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Virus (Acronym) Viral genus Plant host/s Geographical 
distribution

Mite species 
vector

Main reference/s

tall oatgrass mosaic virus 
(TOgMV)

Tritimovirus Arrhenatherum elatius 
(L.) P.Beauv.

Czech Republic Eriophyidae2 Hassan et al. 2014

wheat eqlid mosaic virus 
(WEqMV)

Tritimovirus T. aestivum Iran Eriophyidae2 Rastegar et al. 2008

wheat streak mosaic virus 
(WSMV)

Tritimovirus T. aestivum, A. fatua L., 
A. sativa, Eragrostis 
cilianensis (All.) Janch., 
Hordeum spp., Lolium 
rigidum Gaudich., Zea 
mays, Panicum spp., 
Tragus australianus 
S.T. Blake

Worldwide Aceria 
tosichella

Navia et al. 2013a

yellow oat grass mosaic 
virus (YOgMV)

Tritimovirus Trisetum flavescens L. Czech Republic, 
Hungary

Eriophyidae2 Hassan et al. 2009; Hassan 
2014; Pasztor et al. 2020

triticum mosaic virus 
(TriMV)

Poacevirus Triticum aestivum, 
several grasses

Canada, USA Aceria 
tosichella

Byamukama et al. 2013; 
McMechan et al. 2014; 
Bennypaul et al. 2021

Family Rhabdoviridae
citrus chlorotic spot virus 
(CiCSV)

Dichorhavirus Citrus sp., Agave 
desmettiana Jacob, 
Talipariti tiliaceum L.

Brazil Brevipalpus 
yothersi

Chabi-Jesus et al. 2018, 
2019

citrus leprosis virus N 
(CiLV-N)

Dichorhavirus Citrus sinensis Macfad. Brazil Brevipalpus 
phoenicis

Ramos-González et al. 2017

clerodendrum chlorotic 
spot virus (ClCSV)

Dichorhavirus Clerodendrum spp. Brazil Brevipalpus 
yothersi

Kitajima et al. 2008; 
Ramos-González et al. 2018

coffee ringspot virus 
(CoRSV)

Dichorhavirus Coffea spp. Brazil, Costa 
Rica

Brevipalpus 
papayensis

Rodrigues et al. 2002; 
Ramalho et al. 2014

Cestrum ringspot virus 1 Dichorhavirus Cestrum sp. Brazil Brevipalpus 
obovatus

Kitajima 2020

orchid fleck virus (OFV) Dichorhavirus Several orchid species, 
Alcea rosea L., Citrus 
spp., Cordyline 
fruticosa (L.) Chev., 
Dieffenbachia sp., 
Liriope spicata 
(Thunb.) Lour., 
Swinglea glutinosa 
(Blanco) Merr.

Worldwide Brevipalpus 
californicus

Kondo et al. 2006; Peng 
et al. 2017; Ramos-
González et al. 2016b; 
Sauvêtre et al. 2018; Cook 
et al. 2019; Bratsch et al. 
2021; Read et al. 2021; 
Olmedo Velarde et al. 2021; 
Otero-Colina et al. 2021

Family Secoviridae
blackcurrant reversion 
virus (BRV)

Nepovirus Ribes nigrum L. Europe, New 
Zealand

Cecidophyopsis 
ribis

CABI/EPPO 2021

Family Sobemoviridae
papaya lethal yellowing 
virus (PLYV)

Sobemovirus Carica papaya L. Brazil Tetranychus 
urticae5

Loreto et al. 1983; 
Fernando et al. 2015

Unassigned
barley yellow streak 
mosaic virus (BaYSMV)

Unassigned Hordeum vulgare Canada, USA Petrobia latens Robertson & Carroll 1988; 
Smidansky & Carroll 1996; 
Robertson & Brumfield 
2000

1 tentative species
2 supposed to be involved an eriophyoid mite, but not looked for
3 supposed to be involved an eriophyoid mite, but not proved
4 under experimental conditions
5 able to be acquired by T. urticae but not to be transmitted
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Certain strains of OFV also naturally infect Citrus spp. 
(Cook et al. 2019; Olmedo Velarde et al. 2021). Citrus 
leprosis, originally described in Florida in the early 1900s 
(Fawcett 1911), disappeared after the 1960s (Childers et al. 
2003c). The suspicion that it could be caused by a dicho-
rhavirus, based on the symptoms (Kitajima et al. 2011), was 
supported by molecular analysis of leaf samples preserved in 
an herbarium (Hartung et al. 2015). The causal agent seems 
to be most closely related to the OFV-citrus isolate found in 
several Citrus spp. in Mexico (Roy et al. 2015). Other dicho-
rhaviruses, e.g., coffee ringspot virus (CoRSV), citrus lep-
rosis virus N (CiLV-N), citrus chlorotic spot virus (CiCSV), 
clerodendrum chlorotic spot virus (ClCSV), and cestrum 
ringspot virus are also transmitted by Brevipalpus spp. and 
have so far been detected mainly in Brazil (Table 1).

2.3	 Viruses transmitted by tetranychids
In general, the possibility of viral transmission by mites of 
the family Tetranychidae has been generally accepted but 
remains in need of experimental evaluation.

A few reports have suggested that Tetranychus urticae 
Koch is involved in transmitting viruses (Oldfield 1970; 
Fernando Basso et al. 2015) (Table 1). The still-unclassified 
barley yellow streak mosaic virus (BaYSMV) (Robertson & 
Brumfield 2000) was experimentally transmitted by Petrobia 
latens (Muller), likely in a persistent circulative replicative 
manner, with possible transovarial passage (Smidansky & 
Carroll 1996) (Table 1). BaYSMV particles appear to be 
very long (64 × up to 4,000 nm), encapsidate an ssRNA of 
11–13 kb (Robertson & Carroll 1991), and occur in cavities 
of ER elements, resembling cytorhabdoviruses (Robertson 
& Carroll 1988).

3	� Mites involved in virus transmission and 
virus-mite pathosystems

3.1	 Eriophyidae
The true number of eriophyid species serving as virus vec-
tors is unknown. Eleven species were first indicated by 
Stenger et al. (2018), and additional species were recently 
associated with the transmission of new emaraviruses (Di 
Bello et al. 2016; Kubota et al. 2020, 2021; Von Bargen et al. 
2020) (Table 1). Eriophyids show a high degree of specificity 
and efficacy in the transmission of a given virus (Oldfield & 
Proeseler 1996). Exceptionally, Aceria tosichella Keifer and 
Abacarus hystrix (Nalepa) transmit viruses of more than one 
viral family (Navia et al. 2013a). Moreover, transmission 
efficiency depends on the mite biotype, as observed for A. 
tosichella, Aceria cajani Channabasavanna, and A. hystrix, 
as well as on the plant susceptibility and mite developmen-
tal stage (Kumar et al. 2001; Harvey et al. 2005; McMechan 
et al. 2014). Therefore, plant genotypes that are only slightly 
susceptible to the viruses can serve as reservoirs for the mite 
when preferred host-plant species are unavailable. Eriophyid 

mites are strictly associated with the epidermal cells and par-
enchymatic tissues of green, watery, and soft plant organs 
(de Lillo et al. 2018). Particularly, feeding of virus-vector 
mites does not kill the pierced cells but does induce a wide 
range of effects (Petanović and Kielkiewicz 2010) that can 
positively affect viral transmission.

The cereal rust mite, Abacarus histryx, is a vagrant 
polyphagous species of Phyllocoptinae (Skoracka et al. 
2010) that inhabits the leaf lamina and prefers grooves on the 
adaxial (upper) side, where it feeds on the watery bulliform 
cells of the epidermis. These mites cause leaf discolouration, 
reduce seed production, and lead to withering and stunting 
(Frost & Ridland 1996). They transmit ryegrass mosaic virus 
(RGMV), mainly to perennial ryegrass (Lolium multiflorum 
Lam.), and to a wide range of pasture grasses as well (Salm 
et al. 1994; Webster et al. 2005), and agropyron mosaic virus 
(AgMV) to quackgrass (Elymus repens (L.) Gould) and 
occasionally to wheat (Oldfield & Proeseler 1996). RGMV 
causes mild or severe mottling and streak chlorosis, necrosis 
of leaves followed by ryegrass stunting, and decreased bio-
mass yield in ryegrass (Slykhuis 1980; Heard & Chapman 
1986). AgMV induces mild to severe light-green or yel-
low chlorosis in leaves, stunting, and yield losses in wheat 
(Oldfield & Proeseler 1996). The colonization rate of the 
cereal rust mite depends on the host-plant species and mite 
biotype. The varied efficiency in virus dissemination to a 
wide range of grasses suggests the existence of races and/or 
sister species (Skoracka & Dabert 2010; Laska et al. 2018). 
The minimum acquisition access period (AAP) for RGMV 
was assessed at 2 hours of feeding on infected plants, and the 
infectivity was lost after 24 hours (Mulligan 1960; Slykhuis 
1980).

Aceria cajani is a vagrant member of Eriophyinae and 
infests Cajanus cajan (L.) Millsp., one of the most impor-
tant protein sources for South Asian populations. Mites of 
this species also survive on the wild leguminous Cajanus 
scarabaeoides (L.) Thouras and other volunteer pigeon pea 
plants (Reddy et al. 1989, 1990; Manjunatha et al. 2013). 
They colonise mainly the underside (abaxial side) of young 
leaves and the stem apexes, which are well protected by 
dense trichomes. These mites transmit pigeon pea sterility 
mosaic emaravirus (PPSMV-1 and 2) (Elbeaino et al. 2015). 
PPSMV-1 causes the sterility mosaic disease in pigeon pea. 
Symptoms of A. cajani overlap those induced by PPSMV-1: 
stunting of branches, yellowing and hyper-proliferation of 
leaflets, which remain smaller, together with mosaic mot-
tling and partially or completely sterile flowers (Seth 1962). 
The symptoms are more severe after early infections, usually 
in plants less than 45 days old. A semi-persistent mode of 
transmission of PPSMV-1 is suggested because of the lack of 
both a latent period of infectivity and transovarial transmis-
sion. The minimum AAP and the inoculation access period 
(IAP) were estimated as 10 and 60 minutes, respectively 
(Latha et al. 2004). Mite-VPPSMV-2 interactions need to be 
investigated.
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The fig mottle mite, Aceria ficus (Cotte), is a vagrant 
species, occurring worldwide and strictly associated with 
Ficus carica L. The mite overwinters mainly in the termi-
nal buds and tends to colonize the underside of the youngest 
and densely pubescent leaves, which provide good micro-
environmental conditions and protection from predators 
(Monfreda & de Lillo 2007). The mite induces chlorosis, dis-
tortion, russeting and premature dropping of leaves as well as 
bud stress, and affects stem growth (Ebeling & Pence 1950; 
Çaglayan et al. 2012). Symptoms caused by infestations of 
fig mottle mite and fig mosaic emaravirus (FMV) (Table 1) 
can closely overlap. Fig mosaic disease is characterized by a 
consistent variability in symptom form and severity, which 
might be associated with certain fig genotypes and virus 
haplotypes, as well as with viral loads (Martelli et al. 2013). 
Virus-infected plants can show chlorotic spots or ringspots 
on leaves, often bordered by a rust-coloured band and vein 
banding. Leaves are smaller and are sometimes deformed or 
blistered, where the chlorosis gradually extends to veins and 
other foliar areas. Fruits can also show yellow mosaic spots, 
smaller size, and potentially early drop, and in the worst 
cases the tree declines. Viral acquisition is more efficient 
when the mites feed on terminal buds; the virus may also be 
transmitted by a single individual after moulting, although 
no transovarial transmission has been documented (Martelli 
et al. 2013; Proeseler 1969, 1972). A persistent-circulative 
transmission mode is presumed, based on the minimum AAP 
(5 minutes), latency (6–7 hours), and retention time (10–20 
days), which seem to depend on temperature (Proeseler 
1972; Martelli et al. 2013). Aceria ficus is likely involved in 
the transmission of filamentous viral particles that resemble 
those of the trichovirus fig latent virus 1 (FLV-1) (Table 1) 
(Çaglayan et al. 2012).

The wheat curl mite, A. tosichella, is a vagrant and refuge-
seeking mite that infests a wide range of species of Poaceae 
worldwide and transmits a few viruses (Table 1). Mite colo-
nization of hosts from other plant families is quite unusual. 
Mites that likely belong to genetically distinct lineages with 
uncommon host preferences are currently under molecular 
and biological investigation (Tatineni & Hein 2018). Some 
mite lineages can be generalists and colonize susceptible 
volunteer wheat plants and alternate host species, which 
can grow at the field edges, fallow fields, along roadsides, 
and in natural environments. These plants can offer ‘green 
bridge’ refuges for mites and viruses during the non-growing 
periods of elective host-plant species (Slykhuis 1980; Malik 
et al. 2003; Skoracka & Kuczyński 2006). Aceria tosichella 
inhabits mainly deep sites within leaf whorls, where micro-
environmental conditions are more favourable because of 
the watery tissues, high humidity, and protection from pred-
ators (Orlob 1966). Dense mite populations on susceptible 
wheat cause yellow spotting, curling, and rolling of leaves, 
and occasional trapping of growing leaf tips (flag leaves) 
by the older unexpanded and tightly rolled leaf, lending a 
stunted appearance to the plant (Oldfield 1996; Richardson 

et al. 2014). The effects on corn plants can be ‘distortive’ or 
‘non-distortive’ depending on the infested organs and mite 
density. Leaves appear spotted, curled, and rolled; sweet, 
pop, dent, and flint corns can show reddish discolouration 
of the kernels, which are presumed to be induced by toxins 
in the injected mite saliva (Nault et al. 1967; Oldfield 1996). 
Streaks extend from the base of the pericarp to the crown 
and are red or pink/purple in the yellow and white variet-
ies, respectively. Aceria tosichella can directly reduce wheat 
yield by up to 30% (Harvey et al. 2002), but the main injury is 
caused by transmission of the more severely yield-reducing 
wheat streak mosaic virus (WSMV) and high plains wheat 
mosaic emaravirus (HPWMoV), in single or mixed infec-
tions (Oldfield & Proeseler 1996; Coutts et al. 2008; Dumón 
et al. 2013; Richardson et al. 2014) (Table 1). The effective-
ness of the mite in transmitting these viruses depends on the 
mite lineage (Stenger et al. 2016; Tatineni & Hein 2018). 
In general, infections by WSMV seem to be more severe in 
winter wheat infected in autumn. WSMV infection induces 
light-green to yellow streaks and dashes on leaves, followed 
by diffuse yellowing. These symptoms are associated with 
more or less severe stunting of the plants, which produce 
small, light, poorly filled seed heads and shrivelled kernels 
(Slykhuis 1980; Navia et al. 2013a). Infected plants have 
poor root development with consequently lower grain and 
forage yields (Velandia et al. 2010). The minimum AAP for 
WSMV was assessed as 15 minutes and the transmission 
efficiency was directly related to the feeding time of mites 
on viruliferous plants (Orlob 1966). The retention time was 
6–9 days at 20–25°C and 61 days at 3°C (Slykhuis 1955; 
Orlob 1966). Virus filaments continued to be observed in the 
midgut 5 days after the mites were removed from the virus 
source, and the mite infectivity continued after moulting, 
suggesting a circulative mode of transmission (Orlob 1966; 
Paliwal 1980).

HPWMoV causes a severe disease in wheat and corn 
and also infects other grasses and weeds (Seifers et al. 1998) 
(Table 1). The symptoms of HPWMoV overlap those caused 
by WSMV. In wheat, initial chlorotic spotting or ring spot 
can evolve to wide and severe yellowing, necrosis, stunting 
and, sometimes, plant death (Styer & Nault 1996), whereas 
red striping is usual in corn. The retention time for trans-
mission of HPWMoV was assessed as 8 days (Nault & 
Styer 1970; Slykhuis 1980), but no other data on the infec-
tive parameters are available. Several studies have reported 
seed-mediated transmission of WSMV and HPWMoV in 
wheat, corn, and other grass species, although at low rates 
(0.07–1.5%) (Jones et al. 2005; Sagadin & Truol 2006, 2008; 
Lanoiselet et al. 2008). This pathway is important in virus-
free areas, where once introduced, the virus could be further 
spread by its vector.

Symptoms caused by triticum mosaic virus (TriMV) 
overlap those caused by WSMV and include streaking or 
striped leaf yellowing along with stunting when wheat is 
infected early in the season (Bockus et al. 2010). Mixed 
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TriMV-WSMV infections may induce synergic effects in 
wheat, causing severe leaf deformations, bleaching, and 
stunting (Tatineni et al. 2019). TriMV-infected plants ham-
per the reproduction of A. tosichella, likely indicating a short 
co-evolutionary path between mite and virus. The low rate 
of mite reproduction is a consequence, for instance, of lower 
nutritional quality of the host or an increase in the production 
of secondary plant metabolites, with detrimental effects to 
the mite (McMechan et al. 2014).

Finally, brome streak mosaic virus (BrSMV) has been 
detected in some grasses, causing chlorotic leaf streaks 
(Navia et al. 2013a) (Table 1).

The dry bulb mite, Aceria tulipae (Keifer), is a refuge-
seeking mite, infesting bulbous plants such as garlic, onion, 
shallot, tulip, leek, and other species of Alliaceae and 
Liliaceae. Aceria tulipae was proposed to be a complex of 
species, meaning that its biology, behaviour, induced symp-
toms, and virus relationships require careful revision (Perring 
1996; Skoracka et al. 2014). In the past, A. tulipae was con-
sidered a synonym of A. tosichella, contributing to a mis-
understanding of the mite-plant relationships. Aceria tulipae 
feeds on the scales and leaves of fleshy bulbs, causing their 
collapse and scarification of the bract surface. Infestation of 
garlic bulbs may reduce emergence by up to 20% and yield 
by up to 23% (Larrain 1986). Aceria tulipae has been related 
to viruses (including the former onion mite-borne latent 
virus and shallot mite-borne latent virus) (Table 1), whose 
accumulation in tissues is favoured by the vegetative propa-
gation of garlic. The symptoms of new vegetation of Allium 
species resemble those of garlic virus (GarV) infections 
and consist of stunted, twisted, and discoloured leaves and 
stems. Typical symptoms of infection by garlic virus (GarV), 
shallot virus X (ShVX), and garlic mite-borne filamentous 
virus (GarMbFV) in garlic plants consist of retarded growth, 
curled yellow-strip mosaic, and distortion of leaves, and the 
severity of symptoms is associated with the presence of the 
mites (Kang et al. 2007), although infections by ShVX can 
be asymptomatic (cfr. Ostoja Strazewski & Mattews 2009).

Cecidophyopsis species have been suggested to transmit 
black currant reversion virus (BRV) (Table 1) (Lemmetty 
et al. 2004). The black currant bud mite or big bud mite, 
Cecidophyopsis ribis (Westwood), is a gall-making member 
of Cecidophyinae that causes serious infestations in black 
currant. The mite is bud-confined for most of the year and 
migrates from dried-brown buds to newly formed buds in 
early spring to early summer, mainly around the blossoming 
time (de Lillo & Duso 1996). In black currant, Cecidophyopsis 
ribis causes galling mainly of basal and apical cane buds, 
which become ovoid to spherical. The mite induces retar-
dation of bud growth, development of asymmetrical and 
malformed leaves from infested buds, drying of the buds in 
spring, and loss of fruit yield (de Lillo & Duso 1996). The 
virus causes a reversion of the plant to its wild phenotype, 
inducing several symptoms: fewer, smaller, and distorted 
leaves with tiny marginal serrations, fewer main veins, and 

less clearly defined sini at the petioles; flower buds that are 
markedly less hairy and more intensely coloured in spring; 
fewer, smaller and abnormal fruits; and blossom drop before 
fruit production. This syndrome is linked to an increase in 
plant susceptibility to mite infestation (Thresh 1964, 1967). 
The involvement of C. ribis in transmitting BRV was proved 
by transferring mites from symptomatic plants to healthy 
ones after the mites fed for about 4 days (Thresh 1963). 
The minimum AAP was assessed as 3–4 hours (optimum of 
about 50 hours) and the retention period was calculated as 
25 days (Jacob 1976). These data indicate a semi-persistent 
transmission mode. Other species of Cecidophyopsis, mor-
phologically similar to C. ribis, were found on other Ribes 
spp., and symptoms of reversion disease were recognized 
also in Ribes alpinum L. and R. spicatum Robson (Bremer 
& Heikinheimo 1980).

Colomerus vitis (Pagenstecher) is a gall-making member 
of Cecidophyinae. It occurs worldwide and causes vary-
ing degrees of harm in grape-growing regions, depending 
on the grapevine cultivars, environmental conditions, and 
mite density and strain (Javedi Khederi et al. 2014, 2018a, 
2018b). Three strains are distinguished based on the symp-
toms induced: bud strain, leaf erinea strain (the most com-
mon grapevine erineum mite, GEM), and the leaf curl strain 
(Smith & Stafford 1948). The most evident symptom induced 
by GEM is the development of white felt-like patches (eri-
nea) that later change to brown, usually on the abaxial 
(lower) surface of leaves, which appear blister-like on the 
adaxial surface. GEM also affects the amount of chlorophyll 
in leaves, weight and size of leaves, length of canes, amount 
of sugar in grapes, and yield (Avgin & Bahadiroğlu 2004; 
Javedi Khederi et al. 2014, 2018a, 2018b). Kunugi et al. 
(2000) demonstrated that GEM is involved in transmission 
of grapevine berry inner necrosis virus (GINV) (Table 1), 
through field trials with net-confined potted plants to which 
potential vectors were applied. GINV induces a delay in 
bud breaking, shortening internodes, plant weakening, and 
sparse growth, discoloured leaves with wide chlorotic line, 
ring and zigzag patterns, inner necrosis in young shoots and 
berries, delay in ripening, and small berries (Yoshikawa et al. 
1997). GINV seems to be limited to some areas in Japan and 
China (Fan et al. 2016a, b). The genetic closeness between 
grapevine pinot gris virus (GPGV) (Table 1) and GINV 
led to investigation of the involvement of GEM in trans-
mitting GPGV (Malagnini et al. 2016). GPGV is respon-
sible for chlorotic mottling, crumpling and deformation of 
leaves, stunting of plants, and loss of grape quality and yield 
(Martelli 2014). Laboratory assays suggested a minimum of 
24 hours for both AAP and IAP (Valenzano, pers. comm.).

Eriophyes inaequalis Wilson & Oldfield is a refuge-seek-
ing and galling member of Eriophyinae. It inhabits the lateral 
buds of wild bitter cherry, Prunus emarginata (Douglas), 
and moves from dried buds to new ones in early summer. 
The mite induces swelling of buds, which turn reddish and 
then burst, producing retarded shoots. It transmits the cherry 

Enrico
Evidenziato
replace with:

V. Gualandri, V. Malagnini, and DV, personal observations



Unco
rre

cte
d proof

� Mites and plant viruses        9

mottle leaf virus (ChMLV) in sweet and wild bitter cherries, 
and in peach, where it is symptomless (Table 1) (Oldfield 
1970; James & Mukerji 1993). The mite reproduces only 
in the swollen buds of P. emarginata, where it can develop 
dense populations. Although the transmission of ChMLV 
to sweet cherry and peach by mites has been observed in 
laboratory conditions, vectoring of ChMLV in these stone-
fruit trees and in apricot might be performed in the field by 
another, unknown vector, especially in areas where P. emar-
ginata is absent (Hansen 1978; Oldfield & Proeseler 1996). 
The mite has never been collected in sweet cherry orchards 
infected by ChMLV. Symptoms of ChMLV consist of irregu-
lar chlorotic mottling, edge tattering, and reduction in the 
size of leaves, particularly the youngest leaves, while the 
fruits appear normal but tend to lack flavour and often ripen 
late (Oldfield & Proeseler 1996). Some cherry cultivars can 
also show shortening of internodes.

Eriophyes insidiosus Keifer & Wilson is a refuge-seek-
ing mite inhabiting the buds of commercial and ornamental 
peach, nectarine, and wild species of Prunus (Keifer & Wilson 
1956; Gispert et al. 1998). The mite is protected beneath the 
bud scales and its population is barely exposed on the young 
leaf surface of new blossoms. Eriophyes insidiosus feeds 
on bud tissue and causes bud swelling and twisting, delay 
in blossoming of peach, and/or, more severely, only partial 
opening of buds, which fail to develop leaves or shoots. This 
mite was found to transmit the peach mosaic virus (PcMV) 
to ornamental and commercial peach trees (Table 1) (Wilson 
et al. 1955; Oldfield & Proeseler 1996). PcMV can induce 
vein and leaf chlorosis, smaller and deformed leaves, colour 
breaking and deformation of petals, discolouration of blos-
soms, fruit deformities, dwarfing, and rosetting of stems 
and twigs (Gispert et al. 1998). Gispert et al. (1998) dem-
onstrated that a single mite is sufficient to transmit PcMV. 
The virus requires a minimum IAP of 6 hours with about 10 
mites, even though the infested-infected plant samples and 
mite specimens were cold-stored (4°C) for 11 days, and a 
minimum AAP of 3 days with 5–10 mites, while infectivity 
increased within 5 days of acquisition. Wilson et al. (1955) 
demonstrated that the mite is not able to transmit the virus 
transovarially.

The pear leaf blister mite, Eriophyes pyri (Pagenstecher), 
is a galling species. It has been reported on several species of 
Pomoidea, raising the question of whether sister species exist 
under the same name (Easterbrook 1996). The Eriophyes 
pyri blister strain affects mostly leaves, in which coloured 
spots progressively develop on blisters. These deformations 
of the leaf lamina contain large lacunae in the mesophyll 
and formed by intercellular spaces in which the mites live. 
Necrosis can gradually appear from the borders of these 
lacunae and extend through the entire blister, which becomes 
a dark-brown area (Easterbrook 1996). Eriophyes pyri (sic) 
is suspected to be the vector of European mountain ash 
ringspot-associated emaravirus (EMARaV) in Sorbus aucu-
paria L. in Norway (Table 1) (von Bargen et al. 2014). This 

virus was identified as the causal agent of a ringspot disease 
characterised by leaf mottling and ringspots (Mielke-Ehret 
& Mühlbach 2007; Mielke-Ehret et al. 2010). Nucleocapsid 
protein P3 and the viral genomic and antigenomic forms of 
the viral RNA3 were detected in the body of the mite, using 
immunofluorescence microscopy and reverse transcriptase-
polymerase chain reaction (RT-PCR) assays (Mielke-Ehret 
et al. 2010).

The bud and fruit mite of the wild rose, Phyllocoptes fruc-
tiphilus Keifer, is a refuge-seeking species of Phyllocoptinae 
(Diakaki et al. 2019). It is commonly found in the youngest 
tissues of roses, in the angles between leaf petioles and axil-
lary buds during the growing season and under bud scales 
during winter and spring (Allington et al. 1968). The rose 
rosette disease (RRD) was detected in numerous cultivated, 
wild, native, and introduced rose species (Vazquez-Iglesias 
et al. 2020) in the western and central USA and Canada 
(Manitoba). The mite was considered of interest because of 
its potential as a biological control agent against wild multi-
flora rose, as well as its economic impact on ornamental roses 
(Amrine et al. 1988; Amrine 1996). Recently, rose rosette 
emaravirus (RRV), the causal agent of RRD, was detected 
in India, although the mite vector could not be determined 
(Chakraborty et al. 2017). Phyllocoptes fructiphilus can 
efficiently transmit the virus to rose species and multiflora 
roses (Table 1) only when feeding on rapidly growing plant 
organs, which are more sensitive to the mite and more recep-
tive to the virus (cfr. Vazquez-Iglesias et al. 2020). Infected 
multiflora roses can show smaller, wrinkled, and deformed 
leaves that become reddish on part of or the entire surface 
and the veins, and often assume a rosette appearance, as well 
as reduced flowering (Doudrick 1983). Infected plants show 
premature breaking of axillary buds, with the development 
of stunted, shorter, and thicker secondary shoots, assuming a 
witches’ broom or rosette appearance, especially on the ter-
minal part, or causing dwarfism of young plants (Allington 
1968; Doudrick 1983). Usually, RRD plants require about 
3–5 years to fully decline. Symptoms in other rose species 
can differ slightly with respect to leaf mottling, shoot devel-
opment, and thorn density (Allington 1968), and their sen-
sitivity to RRD varies widely depending on the genotype 
(Amrine 2002). Di Bello et al. (2018) demonstrated that the 
mite must feed for at least 5 days on virus-infected roses 
before transmitting the virus, whereas the minimum IAP was 
1 hour, and the virus infectivity increased within 14 days of 
inoculation.

The raspberry leaf and bud mite, Phyllocoptes gracilis 
Nalepa, is a refuge-seeking species. It causes the most severe 
symptoms on raspberry and blackberry, but can also infest 
dewberry and other closely related species. This mite has 
been associated with raspberry leaf blotch disorder (RLBD). 
The symptoms of mite infestation and viral disease over-
lap and consist of yellow blotching and development of 
necrotic patches on leaves, abnormal leaf-hair development 
on the abaxial surface and a pale-green appearance, as well 
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as twisted and distorted margins of the lamina (Gordon & 
Taylor 1976). Also, the growing tip of raspberry canes as 
well as the plant growth and development can be affected, 
along with irregular ripening and poor quality of fruits. The 
raspberry leaf blotch emaravirus (RLBV) (Table 1) was iden-
tified in symptomatic raspberry plants and in the mite body 
by RT-PCR (McGavin et al. 2012; Tartanus et al. 2015). 
Although transmission assays are needed, preliminary obser-
vations have suggested that P. gracilis is likely involved in 
virus transmission.

Still-undescribed or unidentified eriophyid species have 
been associated with some additional viruses (Table 1). 
This is the case for Shevtchenkella sp., a vagrant member 
of Phyllocoptinae, which transmits perilla mosaic emara-
virus (PerMV) (Kubota et al. 2020). The mite causes rust 
symptoms in Perilla frutescens var. crispa (Thunb.) when 
it proliferates at a high density, whereas the virus induces 
severe mosaic and deformations of leaves. Laboratory assays 
ascertained that the virus could be acquired after at least 
30 minutes of feeding on infected leaves, and no transovarial 
transmission occurred. A second unknown eriophyid spe-
cies was shown to transmit blackberry leaf mottle associated 
emaravirus (BLMaV) to blackberry (Hassan et al. 2017), and 
a third species transmits redbud yellow ringspot-associated 
emaravirus (RYRaV) to Cercis plants (Di Bello et al. 2016). 
A few other eriophyid mites are merely presumed to be 
involved in virus transmission (Table 1) (Zheng et al. 2017; 
Buzcan et al. 2019; Kubota et al. 2021) but no evidence of 
this role has been provided until now and these hypotheses 
stem from the similarity of these viruses to other ETVs.

3.2	 Tenuipalpidae
Of the 292 known valid species of Brevipalpus (Castro et al. 
2020), only Brevipalpus californicus (Banks), B. obova-
tus, and B. phoenicis (Geijskes) were recognized as vectors 
of plant viruses before 2015 (Childers et al. 2003a; Beard 
et al. 2015). Several incongruences between molecular and 
morphological data suggested the presence of cryptic diver-
sity within Brevipalpus, which was later confirmed by the 
revision of B. phoenicis (Rodrigues et al. 2004; Navia et al. 
2013b; Beard et al. 2015). Morphological characteristics his-
torically used for the identification of tenuipalpid species, 
such as dorsal and ventral patterns, design of microplates, 
and size and shape of spermathecae, were analysed, and B. 
phoenicis sensu lato was split into B. phoenicis sensu stricto, 
B. azores Beard & Ochoa, B. feresi Beard & Ochoa, B. fer-
raguti Ochoa & Beard, B. hondurani Evans, B. papayensis 
Baker, B. tucuman Beard & Ochoa, and B. yothersi Baker 
(Beard et al. 2015). This new arrangement was also sup-
ported by mitochondrial (COI) and nuclear (28S gene) mark-
ers (Alves et al. 2019). Similar work is being carried out with 
B. californicus, B. obovatus, and B. yothersi (R. Ochoa, J. 
Beard, ADT, pers. comm.). As a consequence, the adjust-
ment of these taxa has generated many questions regard-
ing the virus-vector-host associations (Table 1) and led to 

the need for further revision of BTV-vector relationships, 
as already begun with several experiments summarized by 
Tassi et al. (2019).

Brevipalpus species commonly infest several plant spe-
cies belonging to different families. Childers et al. (2003b) 
listed nearly 1,000 species of host plants for B. californi-
cus, B. obovatus, and B. phoenicis. In many instances, a 
single plant species may be co-infested by more than one 
Brevipalpus species, with densities depending on the sea-
son (ADT, personal observations). Brevipalpus mites infest 
mainly the abaxial surface of the leaves, twigs, flowers, and 
fruits. Mite species that transmit viruses reproduce by thely-
tokous parthenogenesis and were found to be feminised 
if infected by the endosymbiont ‘Candidatus Cardinium’ 
(Weeks et al. 2001), which invades most of the mite’s 
organs (Kitajima et al. 2007). Males are rare and seem to be 
sterile, although they behave actively in copulation. High 
infestations are rare, but when they occur may result in sil-
very-white areas, chlorosis, bronzing, blistering or necrotic 
areas on leaves, premature leaf and fruit drop, necrotic 
lesions on branches and twigs, and formation of rough-
ness, russeting and cracking on fruits (Childers et al. 2003a, 
2003b). The diseases caused by BTVs result in localised 
lesions on leaves, fruits, and stems (Kitajima et al. 2010). 
Symptoms include ring, necrotic, and green spots on green 
and/or senescent leaves; chlorotic and/or necrotic spots on 
stems; chlorotic or brown spots on fruits, along with prema-
ture drop; brown spots on flowers; and a high incidence of 
dieback in citrus trees (Childers et al. 2003a; Kitajima et al. 
2003a).

Brevipalpus yothersi is widely spread and transmits the 
largest number of known BTVs (Table 1) (Kitajima et al. 
1997, 2003; Roy et al. 2015; Ramos-González et al. 2017, 
2018, 2020; Ferreira et al. 2020). The replication of these 
viruses in the vectors has not been ascertained, though some 
evidence indicates a persistent-circulative type of virus-
vector relationship for the cileviruses (Kitajima & Alberti 
2014). All active instars of B. yothersi can acquire and inoc-
ulate CiLV-C: the inoculation access period was estimated 
as 2 hours and the acquisition access period as 4 hours, the 
transmission efficiency ranged from 25% to 60%, and no 
transovarial transmission was observed (Tassi et al. 2017). 
A persistent-circulative-replicative transmission mode is 
suggested for the dichorhavirus ClCSV to Clerodendrum 
spp. (Ramos-González et al. 2018). Preliminary evidence 
based on transmission experiments shows that the ability 
of B. yothersi to transmit these different viruses seems to 
depend on still-unassessed peculiarities of the mite popula-
tions (ADT, personal observations). A mixture of B. yothersi 
and its close relative Brevipalpus aff. yothersi (a new spe-
cies under description) was found on infected sweet orange 
trees showing leprosis-type symptoms in Piauí, Brazil. The 
disease was caused by citrus chlorotic spot dichorhavirus 
(CiCSV) (Table 1) (Chabi-Jesus et al. 2018), which was also 
found infecting beach hibiscus (Talipariti tiliaceum (L.)) and 
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agave (Agave desmettiana Jacobi) plants (Chabi-Jesus et al. 
2019).

Brevipalpus phoenicis s.s. was identified as a vector of 
citrus leprosis virus N (CiLV-N), a dichorhavirus involved 
in the citrus leprosis syndrome, which was found infecting 
backyard orange plants in cooler climates, at higher-altitude 
sites in the state of São Paulo (Ramos-González et al. 2017). 
No data on the virus-vector relationship have been reported.

Initial studies on mite transmission of the coffee ringspot 
dichorhavirus (CoRSV) identified B. phoenicis as its vector 
(Chagas 1978), but a taxonomic re-evaluation of Brevipalpus 
(Beard et al. 2015) and experimental assays have indicated 
that B. papayensis was the actual vector (Table 1) (Nunes 
et al. 2018). This species also transmitted CiLV-C under 
experimental conditions, although with low efficiency 
(Nunes et al. 2018). A persistent replicative transmission 
mode is suggested for CoRSV, based on electron micros-
copy observations of cytopathic effects in the mite tissues 
(Kitajima & Alberti 2014). Under experimental conditions, 
transmission efficiency was about 24% for adult females; no 
transovarial transmission was observed (Chagas et al. 2003).

Knorr (1968) first reported B. californicus as a vector of 
BTV, after a successful transmission of the causal agent of 
citrus leprosis in Florida. Later, B. californicus was found 
to vector OFV between orchids in Japan (Maeda et al. 
1998) and between Citrus species in Mexico and Colombia 
(Table 1) (Roy et al. 2015; Garcia-Escamilla et al. 2018). 
Brevipalpus californicus was also associated with an out-
break of leprosis symptoms in navel sweet orange orchards 
in South Africa (Cook et al. 2019). A long latent period, no 
transmission by immatures, retention of infectivity for three 
weeks in a virus-immune host, and cytopathic effects on 
mite tissues similar to those observed in OFV-infected plant 
cells suggested a persistent propagative transmission (Kondo 
et al. 2003; Kitajima & Alberti 2014).

Brevipalpus obovatus was the first tenuipalpid associ-
ated with BTV (Frezzi 1940) and was used to experimen-
tally transmit the causal agent of citrus leprosis (Knorr 
1968). According to recent surveys, this mite is rarely found 
on citrus in Argentina, in contrast to B. yothersi, which is 
prevalent (Cáceres et al. 2013). The tentative cilevirus, 
SvRSV (Ferreira et al. 2007), and the tentative dichorhavi-
rus, Cestrum ringspot virus (Guidotti et al. 2006) are also 
transmitted by B. obovatus, but no data on virus-vector rela-
tionships have been reported (Table 1).

4	� Mode of virus transmission, methods of 
study, and related weak points

The interactions between mites and transmitted plant viruses 
are highly specific, necessitating complex and integrated 
laboratory and greenhouse experiments to explain them. 
The mode of transmission of almost all mite-borne viruses is 
unknown. This is due mainly to the tiny size of the mites and 

difficulties in their manipulation, colony establishment, and 
management as a consequence of unsuitable food, micro-
environmental conditions, predators, etc. (Stenger et al. 
2016). A ready and constant supply of virus-free mites is 
needed to conduct assays determining pathways and param-
eters of transmission (Gispert et al. 1997). An exception is 
the pathosystem composed of A. tosichella and WSMV: the 
transmission mode of this ETV is better understood than 
the others, mainly because of the relative ease in manag-
ing annual wheat test plants, mite populations, and WSMV 
transmission (Skare et al. 2003; Tatineni & Hein 2018).

4.1	 Transmission trials: how to transfer mites
Transmission trials are carried out by transferring individual 
or several mites from infected plants, or their parts, to healthy 
ones, usually seedlings. Mites can be transferred by coiling, 
clipping, or apposing pieces of infected plant organs (usu-
ally leaves) infested by mites to the test seedlings. The mites 
tend to move to the receptive healthy plants as the detached 
donor pieces dry, making them inhospitable. This protocol, 
less stressful for both mites and operators, can also be used 
for non-mechanically transmitted viruses but does not allow 
assessment of AAP, IAP, or the minimum population density 
for infection (Çaglayan et al. 2009, 2010).

A more stressful procedure involves transfer of single 
mites from infected to healthy plants or leaf discs. This 
protocol is a necessarily microscope-assisted procedure to 
check for successful transfer of the mites. It is largely opera-
tor-dependent and necessitates manipulating the mite with a 
needle, eyelash, or fine brush. This procedure allows a con-
fident evaluation of AAP and IAP as well as the population 
density needed for plant inoculation, and drastically reduces 
the risk of mechanical transmission of the virus during the 
mite handling (Gispert et al. 1997, 1998; Tassi et al. 2017).

Another protocol consists of transferring the mite by 
blowing it from infested-infected sources toward healthy 
target plants inside a protected and confined space such as 
a cabinet, screen-house, or greenhouse. This protocol is cer-
tainly less stressful for the operators but not for the mites, 
which might be exposed to the wind and be passively dis-
persed over a short distance. It does not allow contact 
between healthy and infected plants or the assessment of 
AAP, IAP, and minimum population density. This protocol 
was used to determine the involvement of A. hystrix in trans-
mitting AgMV (Slykhuis 1969; Catherall & Chamberlain 
1975).

An important step in mite-transmission experiments is 
the development and rearing of lines formed from a sin-
gle individual (isolines) of a given species or population. 
Although arduous for eriophyid mites, it is potentially fea-
sible (de Lillo & Skoracka 2010), especially for species 
related to Poaceae (Karpicka-Ignatowska et al. 2019; Laska 
et al. 2019). Isolines of a few species of Brevipalpus were 
developed on plants of common bean (Phaseolus vulgaris 
L.) (Groot 2006). Isolines of B. yothersi have been main-
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tained on orange fruits or leaves of jack bean (Canavalia 
ensiformis (L.) DC.) in Brazil. These mites have been used 
for experimental transmission of CiLV-C (Arena et al. 
2016, 2018, 2020; Ramos-González et al. 2016a) and other 
BTVs (M.A. Nunes, V.M. Novelli, and ADT, pers. comm.). 
Colonies of B. papayensis and B. obovatus have been main-
tained on detached leaves of coffee (Coffea arabica L.) and 
S. violifolium for transmission assays of CoRSV and SvRSV, 
respectively (Ferreira et al. 2007; Nunes et al. 2018).

4.2	� Transmission trials: where mites must 
be transferred

Feeding of eriophyid mites can influence the physiology 
and morphology of the pierced plant organs. The alterations 
induced by refuge-seeking and gall-making species are the 
result of intimate and specific reactions of the plant tissues 
to certain salivary chemicals injected into the wounds and of 
the plant defense mechanisms triggered upon piercing (de 
Lillo et al. 2018). This means that the successful, stable plant 
colonization by the mites depends on the presence of suit-
able organs of the host plant to be infested. Consequently, the 
selection of plant parts to which mites are to be transferred 
during transmission assays is crucial to allow the mites to 
establish, and the transfer must be done at the time when 
the plant organs are most receptive. For example, success-
ful transmission of PcMV by E. insidiosus occurs only in 
buds (Gispert et al. 1997, 1998). However, mite probing on 
discs of mature leaves is useful in ETV trials and allows 
virus transmission in the laboratory, as recently observed for 
GPGV transmitted by C. vitis (DV, personal observations). 
Finally, it has been observed that cold storage of virulifer-
ous mites on infected plant samples for 11 (E. insidiosus, by 
Gispert et al. 1998) and 61 days (Aceria tosichella, by Orlob 
1966) did not reduce the transmission rate, which can allow 
storage and prolonged use of mites.

Brevipalpus species are less critical in transferring tri-
als, due to their wide range of host-plant species and their 
lower requirements for specific states of plant tissue. In BTV 
transmission trials, single individuals or groups of mites, 
after accessing the source of the virus, are then transferred to 
leaves. If infection occurs, local lesions are produced around 
the feeding sites. Brevipalpus mites can be also transferred 
to fruits, twigs, and flowers, or to leaves of potted plants. 
Alternatively, leaves can be removed and kept with the abax-
ial surface upwards on moistened filter paper. Experiments 
with CiLV-C using common bean resulted in the appear-
ance of small necrotic lesions about 5 days after inoculation, 
much faster than on sweet orange leaves, in which the initial 
chlorotic lesions appeared only after 3 weeks (Garita et al. 
2013).

4.3	 Transmission mode: involved mite instars
ETVs are not known to have been transmitted by neonate 
larvae. This excludes transovarial transmission, whereas 

transtadial transmission is well documented (Slykhuis 1955, 
1980; del Rosario & Sill 1965; Orlob 1966; Oldfield 1970; 
Gispert et al. 1998; Oldfield & Proeseler 1996). The vector-
ing efficiency may depend on the mite life stage and may 
be higher in adults than in immatures (Gispert et al. 1998). 
Transmission of viruses may be inefficient when the mite 
acquires and transmits them as an adult (Slykhuis 1955; 
Del Rosario & Sill 1965; Orlob 1966). WSMV vectoring 
appeared to be unaffected by moulting of A. tosichella imma-
tures, suggesting that it was not internalized on the intima 
cuticle-like surfaces (Orlob 1966). McMechan et al. (2014) 
provided further support for this hypothesis, demonstrating 
that TriMV can be transmitted by moulted individuals of A. 
tosichella transferred at the quiescent stage on the host plant.

The instars of species of Brevipalpus can be identified 
with a stereomicroscope. Although the instars can be manip-
ulated, the larvae and nymphs are highly delicate and require 
special care in manipulation. All developmental stages of 
these mites (larva, proto- and deutonymph, and adult female 
and male) transmit CiLV-C, although no transovarial passage 
of this virus has been recorded (Tassi et al. 2017).

4.4	 Transmission mode: virus internalisation
Studies of the entry of plant viruses into their vectors are 
essential to understand the pathway of translocation of the 
virus into the vector body and its mode of transmission (non-
persistent, semi-persistent, persistent, circulative non-propa-
gative, or circulative propagative).

By means of the current diagnostic molecular procedures, 
the presence of virus particles around the mouthparts of the 
eriophyids or inside their body can be easily established. In 
these cases, a positive response may merely indicate uptake 
of the cell sap containing the virus that is not yet ingested 
or promptly degraded by digestive enzymes, as observed by 
Paliwal (1980) for WSMV in the midgut of A. hystrix and for 
barley stripe mosaic virus (BSMV) in A. tosichella. How and 
where the viruses are internalized is not understood. Some 
studies on ETVs have documented that WSMV persists in 
the mite gut for several days and that the virus is present 
in the hemocoel and salivary glands (Slykhuis 1955; del 
Rosario & Sill 1965; Orlob 1966; Paliwal & Slykhuis 1967; 
Stein-Margolina et al. 1969; Paliwal 1980). Sinha & Paliwal 
(1976) detected the virus in body fluids, using an antigen, 
although Mahmood et al. (1997) failed to detect viruses by 
immunofluorescence and dot-immunobinding assays. Orlob 
(1966) artificially inoculated WSMV into plants by using 
homogenates of viruliferous A. tosichella, but no positive 
infection resulted from mechanical inoculation of homog-
enates of non-vector species such as Aculodes mckenziei 
(Keifer) and A. histryx that had been reared on WSMV-
infected leaves. Taken together, these data partially support 
the hypothesis advanced by Takahashi and Orlob (1969) that 
the A. tosichella-WSMV relationship is circulative and that 
the virus might be transmitted via saliva into the plant, even 
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though there is no direct evidence (Paliwal 1980). Because 
BSMV was also detected in the hemocoel and gut of A. tosi-
chella¸ but not in the salivary glands, and the mite was unable 
to transmit this virus, Paliwal (1980) concluded that the virus 
was unable to pass through the salivary-gland barriers of the 
mite. Finally, nothing is known about the process used by 
putatively circulative ETVs in crossing cell barriers during 
their translocation from the mite gut to the salivary glands.

Transmission electron microscopy of viruliferous 
Brevipalpus mites detected cileviruses and dichorhavi-
ruses in their tissues (Kitajima & Alberti 2014). Virions of 
CiLV-C were consistently found between membranes of 
adjacent cells of the midgut epithelium, anterior prosomal 
glands, muscles, and epidermis in the prosoma, but not in 
the cytoplasm. Also, the viroplasms seen in the cytoplasm 
of infected plant cells could not be found in the mite tissues. 
These observations seem to be consistent with a virus-vector 
relationship of the persistent-circulative type. This hypoth-
esis is further supported by the short latent period (7 hours) 
of CiLV-C in the vector and by the short acquisition and 
inoculation periods (2–4 hours) of larvae and protonymphs 
(Tassi et al. 2017). In contrast, ultrastructural observations 
of Brevipalpus transmitting dichorhaviruses provided shreds 
of evidence that the viruses replicate in the midgut epithe-
lium and anterior prosomal gland cells. Nuclei of these cells 
contained electron-lucent viroplasm, and rod-like particles 
were abundant in both the nucleoplasm and cytoplasm, as 
observed in cells of the plant leaf lesions. Viral replication in 
mites is consistent with the information that the latent period 
of OFV in the vector B. californicus extends up to 10 days 
(Kondo et al. 2003).

The mechanism by which cileviruses reach the intercel-
lular space is unknown, and a paracellular route is suspected. 
It is hypothesised that septate junctions, formed by a com-
plex of transmembrane proteins that keep the epithelial cells 
tightly together, could open temporarily, leaving a narrow 
extracellular passage for virions. This mechanism could 
involve epithelial-cell membrane receptors and viral-mem-
brane glycoproteins in both the midgut lumen and the apical 
part of the anterior prosomal glands. This process would per-
mit cileviruses to move from the midgut lumen to the median 
salivary duct and up to the intercheliceral channel, and then 
be injected into the plant cell together with saliva. For 
dichorhaviruses, the internalization of virions may involve 
endocytosis. Both para- and intracellular routes require the 
mediation of putative cell surface receptors that recognize 
the virions. Analysis of the recently obtained B. yothersi 
genome sequence (Navia et al. 2019) may contribute to clari-
fying the mechanisms involved in virus internalization.

4.5	� Transmission mode: plant tissues/organs 
pierced by mites and infected by viruses

The main animal vectors of plant viruses (aphids, hoppers, 
whiteflies, and nematodes) have long and, in some cases, 

flexible stylets that allow these animals to feed on vascular 
tissues of plants.

The short cheliceral stylets (commonly 20–30 μm long) 
of eriophyid mites enable them to feed mainly on epidermal 
cells of plants (Oldfield 1996; de Lillo et al. 2002). In many 
eriophyoid species, these cells remain viable as the cell con-
tents are ingested (Petanović & Kielkiewicz 2010). Through 
this means, the eriophyids successfully acquire the disease 
agents and inoculate them into the most superficial tissues 
of leaves, buds, and other green organs, preferably soft 
watery tissues, as evidenced by microscopic analysis of C. 
ribis (Jones 2000). This suggests that these agents might also 
be experimentally transmitted by mechanical inoculation of 
sap extracts and that the mode of transmission by eriophyid 
mites may be non-persistent or semi-persistent (Jones 2000). 
In agreement with this suggestion, PPSMV and FMV could 
be mechanically transmitted to Nicotiana clevelandii Gray, 
N. benthamiana Domin, and Chenopodium quinoa Willd. 
(Kumar et al. 2003; Serrano et al. 2004), even though some 
information may indicate a persistent (circulative) mode for 
certain other viruses (Jones 1999; Gray & Banerjee 1999).

Species of Brevipalpus have relatively short stylets, around 
50 µm long (de Lillo et al. 2002; Alberti & Kitajima 2014), 
that cannot reach the plant vascular bundles. Brevipalpus 
stylets pierce the epidermis and adjoining parenchymal cells 
of leaves, stems, fruits, and flowers. After the stylet reaches 
the desired cell, the mite injects saliva, possibly initiating 
pre-digestion, and BTVs would be injected together with the 
saliva. Because the intercheliceral channel is not connected 
to the digestive duct (de Lillo et al. 2002; Alberti & Kitajima 
2014), the mite withdraws its stylet after initially piercing 
the plant, maintaining the infracapitular tip firmly around 
the remaining opening. The cell contents would be passively 
expelled by cell turgor and also be actively ingested by the 
action of the pharyngeal pump (Alberti & Kitajima 2014).

4.6	� Transmission mode: protocols for virus 
detection in mites

Viruses in mite tissues (eriophyids and Brevipalpus spp.) are 
usually detected by means of a reverse-transcriptase reaction 
(RT) followed by a PCR or real-time PCR (RT-qPCR) and 
sequencing (Mielke-Ehret et al. 2010; Çaglayan et al. 2012; 
Lommen et al. 2012; Ramos-González et al. 2017, 2018, 
2020).

Extraction of viral RNA could require a specialized pro-
cedure (Druciarek et al. 2019), depending on the character-
istics of both the mite and virus; it is possible to detect the 
virus in a single individual (ADT and DV, pers. comm.). 
Viruses can also be detected by using a virus-specific anti-
body conjugated with a fluorescent dye in crude mite 
homogenates (Sinha & Paliwal 1976), and by analysis of 
protein extracts from mite homogenates, using immunosor-
bent electron microscopy (ISEM) and a specific antiserum 
(Kang et al. 2007). Immunofluorescence microscopy along 
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with confocal laser scanning have been used for whole 
mites. The accumulation of putative EMARaV N-protein P3 
was detected in the body of E. pyri after the mite fed on 
EMARaV-infected S. aucuparia (Mielke-Ehret et al. 2010). 
This procedure appears promising, although the results may 
be inconclusive because several tissues and organs of mites 
may be naturally fluorescent and the mite anatomy may be 
inadequately identified. The subcellular localization of the 
virus inside the mite body has been successfully assessed 
through transmission electron microscopy, which is a time-
consuming procedure (Paliwal 1980; Kitajima & Alberti 
2014). Besides virions, transmission helper factors involved 
in the retention of WSMV have been detected in mite bodies 
(Tatineni et al. 2018).

5	� Final remarks (future directions and 
perspectives)

Knowledge of mite-plant virus pathosystems has far 
advanced since the most recent reviews dealing with eri-
ophyid (Oldfield & Proeseler 1996; Stenger et al. 2018) and 
Brevipalpus mites (Beard et al. 2015; Dietzgen et al. 2018; 
Freitas-Astúa et al. 2018). With the development of novel 
and more sensitive biomolecular tools and protocols, new 
mite-borne viruses or viruses presumed to be transmitted 
by mites have been discovered and characterized (Table 1) 
(Roy et al. 2013, 2015; Hassan et al. 2017; Ramos-González 
et al. 2017, 2018; Zheng et al. 2017; Chabi-Jesus et al. 2018; 
Buzkan et al. 2019; Olmedo-Velarde et al. 2019; Kubota 
et al. 2020). Notably, despite the use of innovative bio-
technologies, the mere detection of a virus in the body of a 
mite must be carefully analysed rather than taken as a direct 
validation of vectorial activity. Positive results may indicate 
the presence of viral genomes, viral transcripts, or partially 
degraded viral genomes in undigested food in the digestive 
tract.

Mite transmission of viruses is often species-specific 
(Oldfield & Proeseler 1996; Hogenhout et al. 2008), and 
therefore accurate identification of the mite species is vital to 
understand the spread of mite-transmitted viruses. In some 
cases, accurate mite identification may be challenging due 
to the existence of cryptic speciation. Misidentification of 
species hidden within cryptic complexes may lead to inap-
propriate diagnoses of pests and pathogens (Bickford et al. 
2007). Characterization of the mite species transmitting a 
virus is crucial to define the bio-ecology of the mite and its 
epidemiological impact. Potential sibling species, such as 
those in A. hystrix, A. tosichella, A. tulipae, C. ribis, C. vitis, 
and E. pyri, among eriophyids, as well as in B. californicus, 
B. phoenicis, B. yothersi, and B. obovatus, among flat mites, 
can hide smaller but divergent pathosystems. Essentially, 
morphological and genetic characterization of complexes 
of multiple lineages and identification of their primary and 
elective host-plant species could help to understand, for 

instance, the true dimensions of a given mite-virus patho-
system, the need for new research projects on mite biology, 
and the implementation of more effective control measures. 
In parallel, better comprehension of virus populations, e.g., 
symptomatic and asymptomatic GPGV, may contribute to 
identifying viral lineages involved in the development of 
distinct pathosystems.

The role of some mite life strategies, i.e. deutogyny in the 
eriophyid mites, in the efficiency and other aspects of virus 
transmission have not been adequately investigated. Also, the 
ecological relationships between mite vectors, the pathogens 
that they transmit, and their hosts are still poorly understood 
for most pathosystems involving mites. Although some hints 
are available, the contribution of the mite-virus symbiosis 
to the fitness of both eriophyids and tenuipalpids needs to 
be further evaluated (Freitas-Astúa et al. 2018). Likewise, 
the responses of mites to virus-infected plants and the poten-
tial changes in the biology of mites on virus-infected plants 
have not been fully investigated. The mites may gain certain 
advantages, such as in the cases of A. cajani and P. fructiphi-
lus, which develop denser and more persistent populations 
on PPSMV- and RRV-infected plants, respectively (Epstein 
& Hill 1999; Jones et al. 2004; Solo et al. 2019). Another 
example is A. tosichella, which increases in fecundity when 
feeding on WSMV-infected plants (Murugan et al. 2011). In 
the case of the citrus leprosis pathosystem, the interaction 
between CiLV-C and B. yothersi has been examined in some 
details. CiLV-C infection triggers the SA-mediated pathway 
in Arabidopsis thaliana (L.) Heynh. and Citrus sinensis (L.) 
Osbeck (Arena et al. 2016). Infected leaves accumulate reac-
tive oxygen species (ROS) and areas of dead cells around 
the local lesions, suggesting a hypersensitive-like response 
(Arena et al. 2016). Besides activating the SA pathway, the 
infection causes progressive reprogramming of the plant 
transcriptome, including down-regulation of the jasmonic 
acid (JA)/ethylene (ET)-mediated pathways and processes 
involved in primary metabolism, including photosynthesis 
(Arena et al. 2020). During infestation with non-viruliferous 
Brevipalpus mites, plants also accumulate ROS around the 
mite feeding sites, and at the transcription level display a 
drastic up-regulation of defensive responses involving 
salicylic acid (SA) and JA, as well as down-regulation of 
growth-related processes (Arena et al. 2016, 2020). These 
findings suggest that Brevipalpus mites manipulate the host 
defensive response to render the plant more susceptible to 
their colonization. It is hypothesized that CiLV-C might 
act as an effector used by the mites to modulate the plant 
metabolism, contributing to reduction of the anti-herbivore 
defenses controlled by the JA pathway. Mites oviposit less 
on mutant plants with defective SA biosynthesis and signal-
ing, confirming that the SA pathway functions to improve 
mite fitness (Arena et al. 2018). In biological assays using 
two sets of Arabidopsis plants infested with non-virulifer-
ous and viruliferous B. yothersi, the number of mites on the 
CiLV-C-infected Arabidopsis plants increased significantly 
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in comparison to the plants infested with non-viruliferous 
mites. Furthermore, the viruliferous mites preferentially laid 
eggs on CiLV-C-infected leaves (Arena et al. 2016).

Some information suggests that the mode of transmis-
sion of several mite-borne viruses may be persistent or semi-
persistent. However, many pieces of this complex puzzle are 
missing and most of the current research models do not pro-
vide satisfying explanations. Innovative biomolecular tools 
and procedures (i.e., next-generation sequencing), advances 
in mite genomics with the discovery of genes involved in 
membrane transfers, virus translocation among tissues, or 
coat-absorbance may be useful for this study. The recent 
completion of B. yothersi genome sequencing (Navia et al. 
2019) may yield insights regarding the specificity of BTV 
and species/populations of Brevipalpus mites, as well as 
the mechanisms of viral internalization and transmission. 
The role of traditional and applied acarologists remains 
essential to provide supportive biological and ecological 
confirmations.
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