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Abstract
The graph model is nowadays largely adopted to
model a wide range of knowledge and data, span-
ning from social networks to knowledge graphs
(KGs), representing a successful paradigm of how
symbolic and transparent AI can scale on the World
Wide Web. However, due to their unpreceden-
ted volume, they are generally tackled by Machine
Learning (ML) and mostly numeric based methods
such as graph embedding models (KGE) and deep
neural networks (DNNs). The latter methods have
been proved lately very efficient, leading the current
AI spring. In this vision paper, we introduce some
of the main existing methods for combining KGs

and ML, divided into two categories: those using
ML to improve KGs, and those using KGs to im-
prove results on ML tasks. From this introduction,
we highlight research gaps and perspectives that we
deem promising and currently under-explored for
the involved research communities, spanning from
KG support for LLM prompting, integration of KG
semantics in ML models to symbol-based meth-
ods, interpretability of ML models, and the need
for improved benchmark datasets. In our opinion,
such perspectives are stepping stones in an ultimate
view of KGs as central assets for neuro-symbolic
and explainable AI.
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1 Introduction11

Graph data refers to data that lends itself naturally to being represented as a graph-based data12

model. Examples of graph data are social networks, computer networks, entailment graphs [94],13

concept graphs [26]. Several standards have been proposed to represent graph data, including14

the W3C devised standards OWL, RDF, and RDFS. These enable easy sharing and combining of15

graph data from different sources, and so further facilitate the adoption of the graph formalism.16
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Amongst the several types of graph data in widespread use, one prominent example is the17

Knowledge Graph (KG). A KG aims to convey knowledge of the real world and represent it18

conforming to a graph-based data model, where nodes represent concepts of interest, such as19

human or lion, and edges represent possibly different relations between these entities, such as20

isTypeOf or isPredatorOf [68]. A closely related concept that we do not discuss any further is21

Property Graph, where both nodes and edges can have multiple properties which are represented22

as key-value pairs (the interested reader may refer to [68] for further details). Graphs data may23

be stored in native graph databases or relational databases [68].24

When referring to the representation of information, the term ‘knowledge’, as opposed to25

‘data’, is usually what is predicated of humans. It suggests the information is stored in a more26

structured and actionable manner, e.g. that it enables reasoning. This distinction from ‘data’ was27

first made in relation to the concept of a knowledge base (KB) [105], in the context of expert28

systems [64], in order to distinguish them from databases using, e.g., lookup tables or hash tables.29

A KB is a representation of information as a set of facts or sentences [163].30

A KG can be formalized as a triple of sets ⟨E, R, T ⟩, where E is a set of entities, R a set31

of relations, and T is of the form {(s, p, o) | s, o ∈ E, p ∈ R} [29], by which it is immediately32

equivalent to a KB, considered as a set of facts. Moreover, a graph G = (N , E), can be written33

equivalently as a set of facts, by equating N with the set of all entities appearing as arguments34

to facts, and equating each fact ⟨s, p, o⟩ to a directed edge from s (subject) to o (object) labelled35

p (predicate). On a higher level, one difference between a KG and KB as a set of facts, is that36

the former has a greater emphasis on the connection to the graph-based data model, and is more37

directly associated with the agreed formatting standards for graph data. Our discussion here does38

not require precise disambiguation of the term and in the remainder of this paper, we use the two39

terms interchangeably.40

A closely related concept to a KG is an ontology. Intuitively, an ontology defines a set of41

object types, and how these types relate to each other. For example, if the domain is living things,42

then an ontology would specify that human and lion are two distinct types of a mammal, mammal43

and reptile are two distinct types of vertebrates etc. Formally, an ontology has been defined as44

comprising two components, the TBox, which introduces the vocabulary of an application domain,45

and the ABox, which contains assertions about named individuals in terms of this vocabulary46

[11]. Often the set of concepts in a KG forms an ontology, and their ontological relations can be47

incorporated into the structure of the KG. In the remainder of this paper, we will treat the term48

‘ontology’ as interchangeable with ‘knowledge base’, as defined above.49

Many important applications, such as e-Commerce [211], financial trading [29], semantic search50

[208], fact-checking [167], recommendation [198], (medical) decision support systems [205], question51

answering [73] and even machine translation [224, 136] benefit from access to real-world knowledge52

in a form that is both machine-readable and human-interpretable (i.e. entities, properties, relations53

and types). There has thus been a general convergence on KGs as the means to represent and54

store such knowledge. This interest from academia and especially from industry, has led to55

several large-scale efforts at constructing KGs. Some are freely available and accessible, such as56

DBpedia [9]1, Freebase [18]2, YAGO [174]3, Wikidata [190]4. Others are private, developed for57

commercial use by companies such as Google, Amazon, IKEA, Uber, Microsoft, Facebook and58

LinkedIn. The interested reader could refer to [69] for a comprehensive overview of the history59

1 https://www.dbpedia.org/
2 https://developers.google.com/freebase
3 https://yago-knowledge.org/
4 https://www.wikidata.org/
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and current use of KGs.60

The amount of data that may be of interest to KG applications is very large, e.g., English-61

language Wikipedia contains close to 7 million articles at the time of writing5. Developing KGs of62

this size is a difficult, expensive process, requiring the integration of multiple sources of information,63

along with input from human experts and crowdsourcing. Despite significant efforts for making64

KGs as comprehensive and reliable as possible, they tend to suffer from incompleteness and65

noise, due to the complex building process [69, 196]. This has prompted a search for automatic66

construction and enrichment [83, 193], often through the use of machine learning (ML). Indeed,67

the ML world has advanced considerably in the past decade, particularly with the rise of deep68

learning. From the victory of AlexNet in the ILSVRC in 2012 [97], to the release of ChatGPT in69

2022, deep learning has come to dominate ML research and powers many industry applications.70

One method of combining the world of knowledge and KGs with ML, and especially deep71

learning, is to form a vector representation of each node and edge in the KG, by optimizing72

some loss function based on the graph structure. The resulting set of vector representations is73

known as a knowledge graph embedding (KGE) and it enables several important use cases. In one74

direction, KGEs allow the use of predictive machine learning techniques to improve the KG, for75

example, by KG completion, where sparse KGs, such as those automatically constructed from76

text [90], are augmented with missing triples. Also, by using the deep neural network (DNN)77

feature vector extracted from a video, KGEs have been used to represent the content of a video78

as a graph [121]. Other uses of KGEs include triple (fact) classification, for assessing if a fact79

within the KG is correct or not, KG question answering and node clustering. Node clustering80

indeed can reveal similarities and differences between groups of nodes in the KG [59] and this81

can, for example, help uncover certain types of users in a social network, or article subjects, in a82

citation network. KG question answering uses the information in a KG to answer natural language83

questions [73]. In the other direction, KGEs allow KGs to be used to improve ML performance: for84

example, knowledge-aware visual question-answering [108], or reasoning of large language models85

(LLMs) [215].86

In this paper, we introduce some of the main existing methods for combining KGs and ML,87

divided into two categories: those using ML to improve KGs, and those using KGs to improve88

results on ML tasks. From this introduction, we draw research gaps and perspectives that we89

consider urgent as well as promising. These gaps and perspectives are summarised in Table 1 (and90

analyzed and developed in section 3) and are concerned with the topics: LLM prompting, KG91

semantics and KGE models, symbol-based methods, ML model interpretability, and benchmark92

datasets. For each topic, we provide a description of some unsolved problems (gaps) that we93

consider to be of particular importance for future research work, and provide our views, claims, and94

proposals to overcome them. In particular, we support the use of KGs to formalise LLM prompting95

(e.g., providing concept, defining sequencing). We claim that KGE could benefit from the injection96

of KG semantics and usage of various reasoning capabilities, e.g., in terms of performance or97

negative generation. Informative negatives could also be generated by exploiting symbol-based98

method learning disjointness axioms (that are often missing). With respect to interpretability99

using KG, we argue that little progress has been made, and that in-model KG-based approaches100

that demonstrably produce reliable explanations are needed to validate ML results. Assessing101

these improvements in KGE performance or interpretability also calls for extensive empirical102

evaluations. Such evaluations require benchmark datasets that feature various schema constructs103

or levels of semantics that are currently lacking, unnoticed, or uncommon in the state of the art.104

That is why, we call for a systematic characterization and collection of available datasets as well105

5 https://en.wikipedia.org/wiki/Wikipedia:Statistics
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as the creation of synthetic KG generators to produce tailored datasets to support experiments.106

The remainder of this paper is organised as follows. Section 2 provides an overview of existing107

work linking KG and ML, under the framework of KGs for ML (Section 2.1) and ML for KGs108

(Section 2.2). Section 3 describes some gaps in the literature that we deem important, and outlines109

our vision of future research directions for filling these gaps. We particularly focus on: the use of110

KGs for prompting LLMs (Section 3.1), the integration of KG semantics and associated reasoning111

capabilities in KGE models for improved performance and negatives handling (Section 3.2), the112

potential of symbol-based ML for KGs (Section 3.3), the attempts to use KGs for explainable AI113

(Section 3.4), and the need for further benchmark datasets and metrics to assess improvements114

brought by aforementioned directions (Section 3.5). Finally, Section 4 concludes and summarises115

this work.116

2 Machine Learning and Knowledge Graphs117

In this section we focus on the interlink between ML and KGs. As sketched in [19], two main118

perspectives can be drawn: a) KGs as input to ML, whose main goal is to improve the performance119

in many learning tasks, e.g. question answering, image classification, instance disambiguation,120

text summarization, etc.; b) ML as input to KG, whose main goal is to improve the KG itself,121

e.g. in terms of coverage, quality, and adding new facts. In the following, we analyze the most122

impactful approaches in the literature, along these two perspectives.123

2.1 Knowledge Graphs as Input to Machine Learning124

KGs, as representations of background and contextual knowledge in a structured form, have gained125

significant interest from both academia and industry in the area of machine learning, enabling126

models to tackle complicated tasks that need prior knowledge [44]. ML models are knowledge-aware127

and thus can benefit from the incorporation of information that effectively captures the semantic128

meanings [84]. From traditional ML to modern DNNs, KGs can offer advantages, enhancing129

the functionality of ML systems by addressing various challenges and solving problems. In the130

following, we will briefly describe key applications of KGs in ML. Specifically, in Section 2.1.1, we131

elaborate on the key methodologies for incorporating KGs in ML, with a particular emphasis on132

the shortcomings they seek to mitigate. In Section 2.1.2, our focus shifts to recent advancements133

in describing large language models (LLMs) enhancement using KGs, a domain we believe will be134

increasingly significant in the future, given the widespread adoption of LLMs.135

2.1.1 Addressing Machine Learning Challenges with Knowledge Graphs136

KGs represent semantic descriptions of entity types and properties with a well-defined meaning.137

Hence, they can be employed when attempting to automatically extract features (that are difficult138

to measure or quantify directly) from data points [93, 134]. A feature extractor is a transformation139

function that maps data from a higher-dimensional space to a lower-dimensional vector space,140

encompassing a wide range of dimensionality reduction techniques. Early approaches map the141

output of feature extractors to hierarchies [101, 41] or use hierarchies as input to feature extraction142

[164], or use large-scale real world labels and their inter-relations [142, 39]. Many recent approaches143

rely on image annotation that is linked to KGs, such as WordNet [128], like the image databases144

that have been established based on these concepts (see for example [40, 95]). On the other145

hand, knowledge graph embedding methods can be also seen as methods to build semantic feature146

extractors. This involves the mapping of entities and relations into low-dimensional vectors,147

effectively capturing their semantic meanings in a form that is more compatible to deep learning148
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Table 1 Overview of the research topics considered, the identified gaps, and our claims and proposals
to address them.

Topics Gaps Claims & Proposals

LLM prompting

LLM hallucinations
No formalized process to inter-
act with LLMs

Use KG at inference time to formalize
the dialogue process between humans
and LLM
Ground prompts in knowledge (e.g.,
adding context, analyzing response, de-
fining prompt sequence)

KG semantics &
KGE models

Semantics not (fully) considered
Deductive capabilities not (fully)
considered

Investigate the full exploitation of KG
semantics (e.g., to improve model per-
formance, to generate informative neg-
atives)
Possibly with different reasoning types
(deductive, analogical)
Empirical full assessment of the role of
semantics

Symbol-based
methods

Largely disregarded
Scalability issues

Leverage mining of disjointness ax-
ioms to generate informative negatives
needed in ML models training
Alleviate scalability issues

Interpretability
of ML models

Pre-/post-model approaches do
not fulfil necessary requirements
In-model KG-based explainable
approaches not proved to im-
prove interpretability

Infuse KG in ML training
Demonstrate that this improves ML in-
terpretability

Benchmark data-
sets

Lack of needed characteristics
(e.g., schemas)
Some datasets under-used or un-
noticed

Develop a unified repository of datasets
Automatically crawl in the wild and
qualify datasets w.r.t. needed charac-
teristics
Create synthetic KG generators that
generate both tailored schemas and
KGs

TGDK
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models [195, 139]. This field of research offers significant opportunities for exploration and149

advancement [147, 113] and will be analysed in more detail in the next sections.150

DNNs require a substantial amount of data for training. Sometimes, the data can either be151

unavailable or come with a high cost of collection. This issue, commonly referred to as the sample152

shortage, comes with different settings. Among them, the zero-shot learning (ZSL) [143] [49, 197]153

and the few-shot learning (FSL) [199] has recently gained significant research attention and call154

for the use of structured knowledge [71]. ZSL is formally defined as the task of predicting labels155

for new classes that have never been encountered during training, while FSL involves the task of156

predicting labels for new classes for which only a small number of labeled samples are provided.157

In both cases, the proposed solutions try to somehow transfer knowledge from seen classes to158

unseen classes (see [231] for recent advances on transfer learning, specifically describing knowledge159

transfer). Here, KGs play an important role, since they can represents background knowledge160

such as class hierarchies, instances of classes (samples), features, properties, relations as well161

as meta information like model parameters, providing the necessary auxiliary information. The162

interested reader can check [197] and [199] for a systematic review on ZSL and FSL, [71] and163

[27] for ZSL and FSL based on external knowledge (covering some works that use KGs as the164

background knowledge), [134] covers the use of knowledge graphs specifically for visual transfer165

learning and [28] that is a recent thorough survey paper that specifically classifies and analyzes166

methods utilizing KGs for ZSL and FSL.167

The capabilities of DNNs have enabled the development of numerous models and techniques168

to address challenging problems, particularly those involving multimodal data. In this context,169

multimodal machine learning [14, 61, 133] has emerged as one of the rapidly advancing fields170

within artificial intelligence, addressing various challenging problems, including visual question171

answering, visual reasoning, image captioning, image-text retrieval, visual storytelling, visual172

dialoging and others [3, 66, 220, 207, 171, 45, 45, 96]. Not surprisingly, the proposed DNNs173

models (mainly based on transformers) often struggle with generalization to various concepts174

and scenarios that demand commonsense knowledge, or understanding of abstract entities, facts,175

and real-world events, due to the lack of formal representation of background, contextual and176

commonsense knowledge [152, 74, 91]. Hence, integrating external knowledge at different stages177

of multimodal learning, especially in pre-training or fine-tuning, augments the capabilities of178

models, enabling them to better address a broader range of real-world scenarios. Several proposed179

DNNs models are based on external knowledge that is represented using semantic descriptions180

stored in KGs. In particular, there have been proposed datasets that leverage external knowledge181

[123, 179, 151, 203] linked to web resources and KGs [107] to learn the alignment between visual182

and textual information [30] in order to solve multimodal learning tasks. The interested reader183

can find information in several survey papers classifying and analyzing methods in the area of184

multimodal learning (see for example [14, 61, 133], specifically presenting works that make use of185

KGs [120]).186

The adoption of symbolic knowledge representation and reasoning as a means to address the187

opacity of machine learning classifiers is a research domain that has recently garnered significant188

attention from researchers [58]. The need to provide explanations grounded in domain knowledge189

with formal semantics has driven the utilization of KGs in explainable AI [32, 112, 42, 25, 183].190

As this field holds considerable interest and offers numerous prospects for future research, we191

discuss it in more detail in section 3.4.192

2.1.2 Knowledge Graphs for Large Language Models193

The current ML literature is dominated by Deep Learning solutions that have been proved very194

effective in multiple domains and for multiple tasks. Particularly, nowadays LLMs and related195
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systems are catalyzing the attention of the scientific and industrial community for their impressive196

ability to provide highly accurate results in a very limited amount of time, as for the case of197

ChatGPT6 and similar solutions. LLMs behind these systems (like the GPT models [22] that198

currently guide ChatGPT) are usually deep learning models that have been trained on huge199

amounts of text data and are capable of understanding and generating human-like text. Typically,200

they get a text in their input and provide a text as a response. Lately, they can be also directly201

connected to other generative models like Midjourney7 and DALLE-38 that get text as input and202

give image or videos in the output, advancing the user experience and extending the scope of203

application domains.204

There are many ways of using KGs to improve or understand the operation of LLMs. There205

are works that aim to enhance the text generation (see for example the survey [219]) or more206

generally to enhance visiolinguistic learning with knowledge (see for example the survey [120]). In207

[144] several methods are discussed that try to unify LLMs and KGs, combining their advantages.208

Among others, methods that use KGs to improve the operation of LLMs are analysed. An209

interesting approach is to incorporate knowledge graph information into LLMs in order to enhance210

their performance, by advancing the factual knowledge understanding. This is a way to improve the211

LLM performance on knowledge-intensive tasks, and to generate more informed and contextually212

grounded text. In particular, there are works that try to enhance word representations with213

knowledge graph embeddings providing context, improving the model’s performance [148], or to214

learn contextualized representations that capture both linguistic and factual knowledge [119], or215

to use KGs in pre-training to enhance the model’s understanding of factual knowledge [176, 110].216

Other works in the area try to decompose knowledge into separate modules to improve its natural217

language understanding capabilities [222], or to integrate KG and language understanding in a218

joint pre-training framework [218].219

Moreover, there are other approaches for graph-to-text generation integrating knowledge from a220

knowledge graph into the text generation process, trying to produce more informative and coherent221

outputs [217]. In this framework, combining language representations with knowledge graph222

embeddings can be used to enhance the representation of contextualised knowledge [175, 173, 65].223

Sentiment knowledge can be also incorporated with the use of KGs, thus enhancing the performance224

of language models with respect to sentiment analysis accuracy [181, 180].225

Finally, KGs can be used to prob and possibly understand different aspects of the operation of226

LLMs. In particular, KGs can be used to elicit knowledge from language models using automatically227

generated prompts, enabling targeted information retrieval from the model’s knowledge base228

[166], or for querying language models effectively, through a query generation technique that229

leverages explicit context [2], or to contrastively probing LLMs to investigate the domain knowledge230

of pretrained language models by comparing their performance to specially designed contrast231

models [126]. Prompting can be also used for understanding the limitations LLMs, revealing232

scenarios where language models may produce unreliable or incorrect responses [122], or to enable233

the exploration and understanding of the underlying knowledge captured by LLMs [178], or to234

understand how LLMs capture factual knowledge and identify the key factors that contribute to235

their acquisition of factual information [109].236

Of particular significance in this context is the utilization of KGs to validate LLMs, mitigating237

the issue of hallucination, that causes the generation of factually incorrect content [85]. Hallucin-238

ation of LLMs poses a substantial challenge to their reliability [15]. Although some LLMs are239

6 https://openai.com/blog/chatgpt
7 https://www.midjourney.com/home/
8 https://openai.com/dall-e-3
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equipped with the ability to explain their predictions, their explanatory capabilities also suffer240

from hallucination and this has been particularly connected to the criticism that LLMs have241

limited ability to encode factual knowledge [232, 191, 56]. Hence, it becomes crucial to examine242

and authenticate the knowledge embedded within LLMs to prevent hallucination. Recently, there243

is some work in the area of utilizing KGs for hallucination detection. Specifically, KGs are used as244

an external source to validate LLMs reliability [86], or to develop fact-checking models, identifying245

and mitigating hallucinations [48]. This is a very interesting area for future work.246

In Section 3.1, we outline our viewpoint on the most important research areas that require247

attention in order to address the challenges discussed here.248

2.2 Machine Learning as Input to Knowledge Graphs249

From the perspective of ML as input to KGs, the main objective is to improve the quality of250

existing KGs overall. Particularly, given the well-known issues concerning noise and incompleteness251

of KGs, most solutions have focussed on KG refinement which actually encompasses several tasks.252

Among the others, triple classification (aiming at assessing the correctness of a statement in a253

KG and generally regarded as a binary classification problem) and mostly link/type prediction254

(aiming at predicting missing links/types between entities and generally regarded as a learning to255

rank problem) gained most of the attention, aiming at improving/limiting KG incompleteness.256

Different approaches have been developed over the years, with the goal of improving effectiveness257

(mostly targeting the link prediction problems) while scaling to very large KGs. Mostly, numeric-258

based methods have been investigated. Among the very first proposals, probabilistic latent variable259

models from the Statistical Relational Learning (SRL) [54] field (having as main goal the creation260

of statistical models for relational/graph-based data) have been formalized. Successive and very261

efficient solutions have been represented by Knowldge Graph Emebedding (KGE) models. Other262

approaches focusing on propositionalization techniques, recently also exploiting Graph Neural263

Networs (GNN) [204]) have been also pursued. Complementary to these numeric-based solutions,264

research directions targeting symbol-based models have been also proposed, particularly focusing265

on rule-based methods for predicting triples in KGs.266

In the following we summarize the most representative methods for each of the aforementioned267

categories. We dedicate particular attention to KGE methods that represent the main subject of268

study for our successive proposals, illustrated in Section 3.2.269

2.2.1 Probabilistic Latent Variable Models270

Probabilistic Latent Variable Models explain relations between entities by associating each resource271

to a set of intrinsic latent attributes (i.e. attributes not directly observable in the data) and272

conditions the probability distribution of the relations between two resources on their latent273

attributes. All relations are considered conditionally independent given the latent attributes. This274

allows the information to propagate through the network of interconnected latent variables.275

One of the first solutions belonging to this category is the Infinite Hidden Semantic Model276

(IHSM) [155]. It formalises a probabilistic latent variable that associates a latent class variable277

with each node and makes use of constraints expressed in First Order Logic during the learning278

process. IHSM showed promising results but resulted limited in scaling on large data collections,279

because of the complexity of the probabilistic inference and learning, which is intractable in280

general [92].281
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2.2.2 Knowledge Graph Embedding Models282

KGE models have received considerable attention because of their impressive ability to scale on283

very large KGs. KGE are numeric-based approaches that convert the data graph into an optimal284

low-dimensional space in which graph structural information and graph properties are preserved as285

much as possible [23, 83]. The embedding procedure consists of learning embeddings such that the286

score of a valid (positive) triple is lower than the score of an invalid triple, i.e. the invalid triples287

function as negative examples. Graph embedding methods may differ in their main building blocks:288

the representation space (e.g. point-wise, complex, discrete, Gaussian, manifold), the encoding289

model (e.g. linear, factorization, neural models) and the scoring function (that can be based290

on distance, energy, semantic matching or other criteria) [83]. Over the years, several models291

have been developed. Some are presented below. It should also be noted that several libraries292

or frameworks such as Deep Graph Library9 [194], PyKEEN10 [6], or PyTorch-BigGraph11 [106]293

have been developed and provide unified implementations of wide ranges of models.294

One of the first solutions that has been proposed is RESCAL [141], which performs graph295

embedding by computing a three-way factorization of an adjacency tensor that represents the296

multi-graph structure of the data collection. It resulted in a powerful model that was also able297

to capture complex relational patterns over multiple hops in a graph, however it was not able298

to scale on very large graph-based data collections (e.g. the whole YAGO or DBpedia). The299

main limitation was represented by the parameter learning phase, which may take rather long for300

converging to optimal solutions.301

The very first highly scalable embedding model is TransE [20]. It introduces a simple but302

effective and efficient model: each entity is represented by an embedding vector and each predicate303

is represented by a (vector) translation operation. The score of a triple is given by the similarity of304

the translated subject embedding to the object embedding. The optimal embedding and translation305

vectors for predicates are learned jointly. The method relies on a stochastic optimization process,306

that iteratively updates the distributed representations by increasing the score of the positive307

triples i.e. the observed triples, while lowering the score of unobserved triples standing as negative308

examples. The embedding of all entities and predicates in the KG is learned by minimizing a309

margin-based ranking loss.310

Despite its scalability and effectiveness, TransE remained limited in properly representing311

various types of properties such as reflexivity, and 1-to-N , N -to-1 and N -to-N relations that312

can be easily found in KGs (e.g. typeOf as an example of N -to-N relationship). To tackle this313

limitation while keeping the ability to scale to very large KGs, a large family of models has been314

developed that build on TransE, such as TransH [200] and TransR [114].315

Specifically, TransR adopts a score function that projects entities into a different vectorial316

space for each relation through a suitable projection matrix. TransR associates to typeOf, and317

to all other properties, a specific vector space in which entity vectors are projected. This leads318

to training specific projection matrices for typeOf (and any other relation) so that the projected319

entities can be located more suitably to be linked by the vector translation associated to the320

(typeOf) relation. This differs from TransE, which models typeOf as simple vector translation.321

The considered individuals and classes may be quite different in terms of the properties and322

attributes they are involved in, thus determining strong semantic differences (according to [213])323

taking place at small reciprocal distances in the underlying vector space, hence revealing the324

weakness of employing the mere translation.325

9 https://www.dgl.ai/
10 https://github.com/pykeen/pykeen
11 https://github.com/facebookresearch/PyTorch-BigGraph
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With the goal of capturing additional properties in the data, such as inverse relationship,326

symmetry, anti-symmetry and composition, more complex embedding models have been formalized,327

either targeting more complex vector representation spaces, such as the complex representation,328

as for the case of ComplEx [187] and (Path-)RotatE [227], Gaussian representation, as for the329

case of KG2E [67] and TransG [206], and manifold representation, as for the case of MuRP [13]330

and DihEdral [209], or targeting more complex encoding models such as neural models, as for331

the case of ConvKB [138] and CompGCN [188]. Nevertheless, these additional models became332

rather computationally expensive, which limits their usefulness.333

Nevertheless, several additional semantic aspects that are generally available within KGs, such334

as hierarchies of concepts and roles, type constraints and transitivity of relationships are currently335

almost disregarded by existing KGE models. The need for semantic embedding methods has been336

argued [33, 146, 82]. In [60] a KG embedding method considering logical rules has been proposed,337

where triples in the KG and rules are represented in a unified framework. Specifically, triples are338

represented as atomic formulae while rules are represented as more complex formulae modelled339

by t-norm fuzzy logics. A common loss function over both representations is defined, which is340

minimized to learn the embeddings. This proposal resulted in a novel solution but the specific form341

of prior knowledge that has to be available constitutes its main drawback. A similar drawback also342

applies to [130], where a solution based on adversarial training is formalized, exploiting Datalog343

clauses to encode assumptions which are used to regularize neural link predictors.344

Complementary solutions, directly targeting rich representation languages as RDFS and OWL345

and not requiring additional formalism for representing prior knowledge have been proposed.346

Particularly, [129] has proven the effectiveness of combining embedding methods and strategies347

relying on reasoning services for the injection of prior Background Knowledge (BK) to enhance348

the performance of a specific predictive model. Following this line, TransOWL, aiming at349

injecting schema level information, particularly during the learning process, and its upgraded350

version TransROWL, have been formalized [36, 35]. The main focus is on the application of this351

idea to enhance well-known basic scalable models, namely TransE [20] and TransR [114], even352

if, in principle, the proposed approach could be applied to more complex embedding methods,353

with an additional formalization. In TransOWL the original TransE setting is maintained354

while resorting to reasoning with schema axioms to derive further triples to be considered for355

training and that are generated consistently with the semantics of the properties. Particularly, for356

each considered axiom, TransOWL defines, on the score function, specific constraints that guide357

the way embedding vectors are learned. A set of different axioms, specifically equivalentClass,358

equivalentProperty, inverseOf and subClassOf, are employed for the definition of constraints on the359

score function so that the resulting vectors, related to such axioms, reflect their specific properties.360

As a consequence, new triples are added to the training set on the grounds of the specified axioms.361

TransROWL further develops TransOWL by adopting TransR as the base model in order362

to handle non 1-to-1 properties in a more proper way. TransOWL and TransROWL have363

been proven to improve their effectiveness on link prediction and triple classification tasks when364

compared to the baseline models (TransE and TransR) that focus on structural graph properties.365

Some additional efforts in the formalization of KGE and Deep Learning solutions taking into366

account limited semantics can be found in the literature [57, 12, 72, 62, 100]. Nevertheless, none of367

the existing KGE model is able to exploit the full expressiveness that a KG may have in principle.368

Independently of the specific model, another important issue needs to be highlighted: most of369

the existing KGs only contain positive (training) examples, since usually false facts are generally370

not encoded. However, training a learning model in all-positive examples could be tricky, because371

the model might easily overgeneralize. As such, for obtaining negative examples, that are needed372

when training KGE models, two different approaches are generally adopted: either corrupting373
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true/observed triples randomly, with the goal of generating plausible negative examples or374

adopting a local-closed world assumption (LCWA) in which the data collection is assumed as375

locally complete [140]. In both cases, wrong negative triples may be generated and thus used when376

training and learning the embedding models.377

In Section 3.2, we present our perspective on the research directions that need to be tackled to378

cope with the problems illustrated particularly in this section.379

2.2.3 Neural Methods for Vector Space Embeddings380

Another research direction focused on the exploitation of vector space embeddings for obtaining381

a propositional feature vector representation of a KG. One of the first solutions targeting this382

research direction is RDF2Vec [156], which adapts the well-known Word2Vec technique, devised383

for natural language processing, to graph representations. A two-step approach is adopted. First384

the data graph is converted into a set of sequences of entities (two different approaches can be385

used for this purpose: graph walks and Weisfeiler-Lehman Subtree RDF graph kernels). In the386

second step, the obtained sequences are used to train a neural language model to estimate the387

likelihood of a sequence of entities appearing in a graph. The result is that each entity in the graph388

is represented as a vector of latent numerical features. In order to show that the obtained vector389

representation is independent of the downstream task and the specific algorithm, an experimental390

evaluation involving a number of classification and regression tasks has been performed.391

An upgrade of RDF2Vec has been presented in [31], where global patterns are considered392

(differently from the intial RDF2Vec proposition grounded on local patterns). These solutions393

cannot cope with literals.394

Another way to better capture global information is to use a more powerful model, such as a395

graph neural network (GNN). These are a class of methods for allowing artificial neural networks396

to operate on graph data. Given that graphs are a very general data structure, GNNs can take a397

wide variety of forms. It has also been shown that many popular deep learning architectures, such398

as convolutional neural networks, recurrent neural networks, and transformers, can be seen as399

a GNN for a suitably defined graph [21]. In a GNN, as for RDF2Vec and KGE models, nodes400

are represented as vectors. These vectors are fed through a sequence of message-passing layers,401

where nodes update their values based on their neighbours’ values, and local pooling layers, where402

groups of neighbouring nodes are combined into a single vector representation. The final layer403

aggregates the entire input into a single vector representation for the entire graph. Because of this404

iterative process, GNNs are better able to capture multi-hop relations and global graph structure,405

compared to RDF2Vec [156]. They are also able to reduce an entire graph to a single embedding406

vector, as well as computing embedding vectors for each node. See [226] or [229] for an overview407

of GNN design and applications.408

Several works have applied GNNs to construct or enhance KGs. [230] integrates Bellman-Ford409

into the GNNs training procedure, and then uses the resulting model for link prediction on410

KGs. [145] show that GNNs can be trained, in a supervised setting, to accurately estimate node411

importance in a KG. GNNs have also been used for entity alignment, which seeks to discover412

when the same entity appears in two different knowledge graphs. [201] embeds entities in both413

KGs and then uses the distance between the embeddings to identify when nodes in different KGs414

correspond to the same entity. More recent works have built on this method, for example by415

capturing time-sensitive information [210] or multi-modal inputs [172]. Another common uses of416

GNNs for KG is to improve the use of KGs in recommender systems [52], and inference [137]. For417

an overview of the use for GNNs for KGs, see [216].418
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2.2.4 Rule Learning Solutions419

With the goal of finding new facts (namely new triples) that are missing in a KG, AMIE [51, 50]12
420

has been proposed. AMIE represents one of the most well-known and efficient solutions grounded421

on a symbol-based approach. Inspired by association rule mining [4] and the Inductive Logic422

Programming (ILP) literature, AMIE is able to learn logic rules from KGs, that are ultimately423

used for predicting new unseen triples. Interestingly AMIE is tailored to support the Open World424

Assumption (OWA) characterizing KGs, differently from all numeric-based solutions that are425

grounded on the Closed World Assumption (CWA). Nevertheless, AMIE mines rules inspecting426

the triples that are directly observable in the KG and it does not exploit the additional semantics427

that is available in the KG as well as any form of deductive reasoning.428

A related rule mining system, based on a level-wise generate and test strategy has been further429

proposed [37], with the goal of learning SWRL rules [70] while exploiting schema level information430

and deductive reasoning capabilities during learning. As for AMIE, the goal was to exploit the431

discovered rules for predicting new facts. This system actually outperformed AMIE in terms of432

new predicted triples, and this was due to the exploitation of the schema level information and433

reasoning capabilities. Nevertheless, they have been also the main cause of the reduced ability of434

the system to scale on large KGs, when compared to AMIE.435

More recently AnyBURL [124] has been proposed. It is a scalable bottom-up rule learning436

system for KG completion that works by sampling random paths, that are generalized into437

Horn rules. Reinforcement learning is exploited to guide path sampling and make efficient use of438

computational resources. AnyBURL also showed improved scalability and competitive performance439

in comparison to numeric-based approaches. Even more so, it has been also shown that AnyBURL440

can be used to explain predictions made by a latent model when restricting the types of learned441

rules. Nevertheless, as for AMIE, no exploitation of the KG semantics and reasoning capabilities442

can be found.443

3 Gaps in Machine Learning and Knowledge Graphs and Next Challenges444

In this section we analyse existing gaps of the class of methods illustrated in Section 2 that445

we identify as important. Hence, for each of them, we provide our perspective on the research446

directions that need to be pursued in order to fill these gaps. Specifically, the following Section 3.1447

primarily focuses on the need of having a clear methodology for interleaving LLMs with KGs and448

drafts a preliminary proposal. Section 3.2 primarily focuses and provides preliminary proposals449

for the need of taking into account reasoning capabilities and schema level information of KGs,450

to be used for setting up a more informative way for generating negative training examples as451

well as for injecting schema level information in KGE. Beyond the gaps, Section 3.3 presents our452

view supporting that symbolic ML methods may still have a role in KG, particularly for KG453

refinement and more specifically for mining disjointness axioms, that are quite often missing in454

KGs and related ontologies. Section 3.4 presents our position on the need for an approach that455

demonstrably produces reliable explanations to validate ML results when applied to KGs. Hence,456

Section 3.5 shows the need for diverse, high-quality benchmark datasets when combining ML and457

KGs as well as new metrics for capturing new behaviours.458

12 AMIE system is currently at its third version. For more details see https://github.com/dig-team/amie

https://github.com/dig-team/amie
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3.1 Knowledge Graphs for Prompting Large Language Models459

From what has been described in section 2.1, we understand that the use of KGs, as an additional460

tool, during the (pre-)training phase or during the inference phase of LLMs are important fields of461

research, attracting the interest of many researchers, and could potentially improve the operation462

of the LLM and the results of LLMs, respectively. Although the operation of modern LLMs463

and respective systems (like chatGPT) is impressive and traditional machine learning gaps (like464

reasoning capabilities) have started to close, there is still room for improvement, and the use465

of KGs as an additional tool during the training and fine-tuning phases can play an important466

role, here. Specifically, KGs can provide background knowledge (encyclopaedic, commonsense,467

domain-specific, multimodal etc), represent human-oriented processes, and explain opaque machine468

operation. On the other hand, the practical use of LLMs increases dramatically and there is a469

great need for advancing the use of LLMs inference, making the process of dialoguing470

LLMs more formal and systematic. Therefore, the use of KGs during the phase of the design471

of the input to be given to LLMs and during the phase of the analysis of the LLM response seems472

to have a great potential.473

Following the above, interesting open problems and challenges is the use of KGs in LLM474

prompt engineering or simply LLM prompting [144, 117]. Prompting is the process of providing a475

sequence of instructions or queries to a LLM in order to get the desired output or to check the476

LLM’s operation and characteristics. It is actually a dialogue between a user (human or agent)477

and a LLM, that reflects the user’s intent and finally results in the desired task or information478

that the user wants to get from the model. Although the field is new, there are some attempts to479

formalise the process (see for example the Automatic Prompt Engineer (APE) approach [228]). The480

formalization of the dialogue process should be grounded on some type of background knowledge,481

so there is a need for representing and using this knowledge. Here, we describe the great potential482

of using KGs in LLM prompting, based on the nature of prompts, their types and effectiveness, the483

tasks and the methodology to provide adequate prompts during the prompting process, focusing484

on the potential use of KGs.485

There are many ways to modify the prompt that is given to LLM, using KGs. First, the486

instruction or question can be more explicit and specific, capturing the user requirements, since487

it is well-understood that the more specific the prompt the better chance of guiding the LLM488

to the desired response. For example, the instruction “Summarise text A” can be specified as489

“Summarise the text A in 200 words”, using the knowledge that an abstract should be between490

200 and 300 words. Or the question “Is there any recent paper in the area of prompting machine491

learning systems?” can be specified as “Is there any recent paper in the area of prompting492

LLMs?”. On the other hand, sometimes it may be helpful, depending on the instruction or the493

question, to generalise it, for example, the question “Is there any recent paper in the area of494

prompting machine learning systems?” can be generalised as “Is there any recent work in the495

area of prompting machine learning systems?”. Also, may be useful to contextualise or style the496

prompt, by providing examples (“Suggest romantic musicals, like “La La Land”), or conditions497

(“Suggest papers for prompting LLM, published in top conferences”), or style (“Paraphrase text A,498

using more formal language). It is not difficult to see that KGs can be very helpful in constructing499

knowledge-enhanced prompts like the above (and not restricted to them), guiding prompt changes,500

as they capture formal domain knowledge descriptions. Interesting ideas can be found in [228] that501

the instruction generation is framed as natural language program synthesis, in [168] that simple502

and effective prompts are constructed to improve GPT-3’s reliability, in [192] that multi-step503

reasoning tasks are tackled by constructing planning and solving prompts, in [225] that LLMs504

are asked to provide explanations for their choices (in this case for a specific task that is model505

selection) and in [117] that prompting with generated knowledge rectifies model prediction.506
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Response analysis Another interesting issue that could be considered is to use KGs to characterise507

the prompt, for example to measure its effectiveness or reliability, by analysing and evaluating508

the response. The effectiveness of prompts depends on the response of the LLM, i.e. the answer509

to a specific prompt in comparison with the desired output, given the task. Depending on the510

prompt and response languages, it is important to formalise effectiveness or reliability evaluation511

measures that guide a process of iterative refinement of the results, by using formal knowledge512

represented in KGs. Interesting ideas can be found in [144, 119, 168].513

Prompt sequencing Designing and controlling prompting, i.e. producing a sequence of prompts514

to elicit a desired output, can be a challenging task that requires a systematic strategy, evaluation515

and experimentation. Although LLMs are powerful, their operation is complex and unpredictable516

and thus a dialogue for producing a sequence of prompts may be helpful to understand LLM517

characteristics, like complex reasoning capabilities. There is lately some work in the area, for518

example: Chain-of-Thought (CoT) prompts [202] decompose complex reasoning capabilities into519

a set of simpler reasoning steps; In [117], the usefulness of using knowledge in common sense520

reasoning is discovered, extracting knowledge from an LLM and then using this knowledge as521

additional input to refine the prompt result. The APE methodology proposed in [228] uses ideas522

from program synthesis in order to optimise the prompt selection process, based on efficient score523

estimations. Future steps would benefit from the use of KGs as formal knowledge representations,524

because there is a clear requirement formalising the prompting extraction methodology.525

3.2 Handling Semantics, Reasoning and Negative Information in Knowledge526

Graph Embedding Methods527

One of the key features of KGs is that they can be enriched with schema-level information. For the528

purpose ontologies are generally adopted, which coupled with deductive reasoners, allow to make529

explicit knowledge which is implicitly coded in a KG13. For example, given a KG containing the530

triple <c typeOf Woman> (or equivalently Woman(c), by adopting a Description Logic formalism)531

and referring to the following simple ontology formalizing a hierarchy of concepts Man ⊑ Human532

and Woman ⊑ Human, the fact Human(c) can be derived by the use of a deductive reasoner.533

Similarly, new knowledge can be derived when additional axioms are available, such as equivalence534

axioms, disjointness axioms, as well as restrictions on domain and ranges14. However, due to the535

limited ability of reasoners to scale on very large KGs, deductive reasoning is currently almost536

disregarded.537

Indeed, when talking about ML methods coupled with KGs, as for the case of KGE methods,538

generally only facts that can be directly observed are taken into account e.g. when projecting the539

data graph into a lower vectorial representation space. This is clearly a limitation, since knowledge540

that is somehow already available within the KGs (as for the fact Human(c) in the example above)541

and that may play a role when considering KGE is ignored. For instance, by considering the fact542

Human(c), a more appropriate vectorial representation for the entity c could be provided thus543

limiting errors also when solving downstream tasks. By only considering observable facts, schema544

level information, that is a seminal element of knowledge, and all additional knowledge that can545

be derived are actually fully dismissed.546

13 Several reasoners exist and may be used for the purpose. Some examples are RDFox (https://www.
oxfordsemantic.tech/rdfox), HermiT (http://www.hermit-reasoner.com/), FaCT++ (http://owl.cs.
manchester.ac.uk/tools/fact/). See http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/ for
the full list of reasoners.

14 See https://www.w3.org/TR/owl2-overview/ for details on the representation language.

https://www.oxfordsemantic.tech/rdfox
https://www.oxfordsemantic.tech/rdfox
http://www.hermit-reasoner.com/
http://owl.cs.manchester.ac.uk/tools/fact/
http://owl.cs.manchester.ac.uk/tools/fact/
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
https://www.w3.org/TR/owl2-overview/
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Abboud et al. [1] analyzed the shortcomings of the existing embedding mod-547

els. These shortcomings can be summarized in: theoretical inexpressiveness, lack548

of support for inference patterns and higher-arity relations, need for logical rule549

incorporation.550

Here, we specifically claim that KGE methods need to be equipped with the full usage of KGs551

semantics which comprises the exploitation of all axioms that can be found in the ontologies that are552

used for supplying (rich) schema level information to KGs, as well as the exploitation of deductive553

reasoning services that allow to obtain additional knowledge both at schema and assertion level.554

Indeed, whilst the need for semantic embedding methods has been advocated [33, 146, 82], only a555

few proposals can be found in the literature that actually address this problem (see section 2.2.2556

for details) and mainly focusing on equivalentClass, equivalentProperty, inverseOf and subClassOf557

axioms. To the best of our knowledge, none of the existing methods is able to exploit all kinds of558

axioms that in principle can be found in expressive ontologies. Even more so, a complementary559

research direction would be needed, calling for a solid and extensive experimental evaluation560

aiming at providing a clear position on the need (or not) to fully exploit the KG semantics as well561

as reasoning capabilities. Specifically, we claim that a comprehensive experimental evaluation,562

involving most of the KGE methods currently available is needed. Two main scenarios should be563

considered: the first one (currently adopted) where only observable facts are considered; the second564

one where the full knowledge available within KG is made explicit by considering schema-level565

information (e.g. transitivity, equivalence axioms, same as axioms etc,) and reasoning capabilities.566

Hence performances on the very same downstream tasks, adopting the two settings, should be567

compared, in order to experimentally prove the value added, if any, of exploiting the KGs entirely.568

Importantly the second scenario could be possibly divided into two intermediate steps, one where569

knowledge is partially completed by considering the schema level information but no exploitation570

of deductive reasoners and a second step where the actual full knowledge is gained by adopting571

available deductive reasoners. This is on one hand, for assessing the impact of the usage of the572

full knowledge and on the other hand, for assessing if some complexity, due to reasoning, can be573

saved whilst still trying to make knowledge explicit as much as possible.574

Another issue with KGE models is given by the need of negative examples (for training KGE575

models) that anyhow are generally missing in KGs, where generally only positive information576

is coded. As illustrated in section 2.2.2, this problem is usually addressed either by corrupting577

true/observed triples randomly, that is by replacing either the subject or the object of the observed578

triple with an entity picked randomly from the KG, or by adopting a local-closed world assumption579

(LCWA), in which the data collection is assumed as locally complete [140]. In both cases, wrong580

negative triples may be generated and thus used when training and learning the embedding models.581

In order to mitigate this issue, preliminary proposals tried to take under control the number of582

negatives that are randomly generated [43]. Clearly this solution does not solve the problem of583

generating false negatives, it simply try to somehow control the effect of the false negatives. One584

of the first proposal trying to generate and materialize actual negative triples has been formalized585

in [8]. Nevertheless, the proposed solution is grounded on the exploitation of additional and586

external sources of information besides KGs. Specifically, the proposed solution is grounded on587

two complementary approaches: a statistical ranking for statements obtained based on related588

entities, and a pattern-based text extraction, applied to search engine query logs.589

On the contrary, here we claim that KGs semantics should be fully and solely exploited590

for making explicit correct negative statements. For instance, given a restriction on domain591

and/or range of predicate appearing in a true observed triple, the restriction can be exploited for592

generating negative triples where e.g. the object entity of the negative triple can be deductively593

proved to be out of the declared range restriction. Similarly, given an observed true triple with a594
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predicate having a functional restriction, negative statements may be generated by constructing595

triples having objects that are different from the object in the true statement. More generally, the596

approach for generating correct negative statements that is envisioned, is deeply grounded on the597

semantics of the schema axioms. The approach should basically construct triples that are in the598

complement of the set of triples representing the semantics of a given schema axiom.599

An initial proposal in this direction can be found in [36, 35, 118], where only domain, range,600

disjointWith and functionalProperty constraints are considered. Whilst we consider this proposal601

a valuable way to go as in agreement with the envisioned solution, it needs to be extended for602

comprising all axioms and constraints that can be possibly found in a KGs, e.g. transitivity,603

same-as, equivalence axioms, for citing a few. Even more so, we consider it worthwhile to conduct604

an extensive experimental study comparing the different settings for generating negative examples605

in order to prove experimentally the actual role of semantics, if any.606

Up to now, when referring to reasoning we basically meant deductive reasoning applied to607

ontologies/KGs [11]. Nevertheless, besides deductive reasoning, other forms of reasoning could be608

investigated. These different reasoning forms could be useful in KG-related tasks, and conversely,609

knowledge contained in KGs could be leveraged in their reasoning process. Here we specifically610

focus on analogical reasoning that is a remarkable capability of the human mind [132] relying611

on analogical proportions. They are statements of the form “A is to B as C is to D” that can612

be formalized as quadruples A : B :: C : D [127]. An example of such a quadruple is “leg :613

human :: paw : dog”. Analogical reasoning relies on similarity and dissimilarity to extrapolate614

knowledge between objects of potentially different domains. To illustrate, the given example615

quadruple leverages the similarity between body parts and whole, and the relation linking them616

to constitute a valid analogy. Analogical reasoning is mainly concerned with two tasks: analogy617

detection that aims to determine whether a quadruple A : B :: C : D is a valid analogy, and618

analogy solving that aims to predict a missing element X, given three elements A, B, and C619

such that A : B :: C : D constitutes a valid analogy. When elements are represented as vectors,620

analogies can be thought of as parallelograms, i.e., eB − eA = eD − eC . Such a view can thus621

be adopted with embeddings, which attracted works on ML-based analogy for various Natural622

Language Processing tasks, e.g., word morphology [7] or machine translation [102]. In the realm623

of KGs, to the best of our knowledge, only few works consider analogical reasoning. However, KG624

embeddings are suited for analogical formalization. For instance, by using translations to model625

relations, TransE inherently validates the parallelogram rule. This motivated Portisch et al. [149]626

to investigate whether some KG embedding models are well-suited for the task of analogy detection627

with standard analogical datasets. But analogical reasoning could also be directly applied to KGs.628

In the link prediction task, it is natural to extrapolate edges from one (part of a) KG to another629

(part), which motivated the ANALOGY model [116]. Interestingly, ANALOGY is based on the630

parallelogram rule and the authors showed that it subsumes some other models such as DistMult,631

ComplEx, and HolE. Analogical reasoning can also be considered as an enhancer of existing632

KGE models by using triples, relations or entities in analogies to enrich the training process [214].633

In fact, the integration of analogical reasoning into KG-related tasks and KGE models is not634

limited to one formalization or one task. Jarnac et al. re-used a convolutional model for analogy635

detection and applied it on pre-trained graph embeddings to select subgraphs of interest from636

Wikidata to bootstrap a domain-specific KG [81]. Analogies also inherently appear in several637

other tasks, e.g., Semantic Table Interpretation, matching, or recommendation [135]. It remains638

to explore both theoretically and empirically the best formalizations, models, improvement in639

performance, and interactions with other forms of reasoning, especially deductive reasoning that640

is inherently permitted by ontologies.641
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3.3 Symbol-based Methods for Knowledge Graphs642

Given KGs volumes, the need for scalable ML solutions has obfuscated the attention to643

symbol-based ML solutions. Nevertheless, the important gain, in terms of scalability, that644

numeric-based methods (such as KGEs) are obtaining is penalizing: a) the possibility to have645

interpretable models as a result of a learning process (see Section 3.4 for more details); b) the646

ability to exploit deductive (and complementary forms of) reasoning (see Section 3.2 for more647

details); c) the expressiveness of the representations to be considered and related assumptions648

(such as the Open World Assumption (OWA)).649

Indeed, suitable symbol-based methods, often inspired by the Inductive Logic Programming650

(ILP) [153] field (aiming at inducing a hypothesised logic program from background knowledge651

and a collection of examples), have been proposed [34, 87, 104, 51, 182]. Most of them are able to652

cope with expressive representation languages such as Description Logics (DLs) [11], theoretical653

foundation for OWL, and the Open World Assumption (OWA) typically adopted, differently from654

the Closed Wold Assumption (CWA) that is usually assumed in the traditional ML settings. Also,655

problems such as ontology refinement and enrichment at terminology/schema level have been656

proposed [46, 47, 103, 189, 159].657

Particularly, with the purpose of enriching ontologies at the terminological level, methods for658

learning concept descriptions for a concept name have been formalized. The problem has been659

regarded as a supervised concept learning problem aiming at approximating an intensional DLs660

definition, given a set of individuals of an ontological KB acting as positive/negative training661

examples. Various solutions, e.g. DL-Foil15 [46] and celoe [103] (part of the DL-Learner662

suite16), have been formalized. They are mostly grounded on a separate-and-conquer (sequential663

covering) strategy: a new concept description is built by specializing, via suitable refinement664

operators, a partial solution to correctly cover (i.e. decide a consistent classification for) as many665

training instances as possible. Whilst DL-Foil works under OWA, celoe works under CWA.666

Both of them may suffer of ending up in sub-optimal solutions. In order to overcome such issue,667

DL-Focl17 [161, 160], Parcel [185] and SpACEL [186] have been proposed. DL-Focl is an668

optimized version of DL-Foil, implementing a base greedy covering strategy. Parcel combines669

top-down and bottom-up refinements in the search space. Specifically, the learning problem is split670

into various sub-problems, according to a divide-and-conquer strategy, that are solved by running671

celoe as a subroutine. Once the partial solutions are obtained, they are combined in a bottom-up672

fashion. SpACEL extends Parcel by performing a symmetrical specialization of a concept673

description. All these solutions proved to be able to learn approximated concept descriptions for a674

target concept name to be used for possibly introducing new (inclusion or equality) axioms in675

the KB. Nevertheless, quite often, relatively small ontological KBs have been considered for the676

experiments, revealing that, currently, they have limited ability to scale on very large KGs.677

A few scalable exceptions are represented by rule learning systems for KG completion such as678

AMIE and most of all AnyBURL (see section 2.2.4 for more details). Nevertheless, most of the679

existing symbol-based methods cannot scale to very large KGs [160].680

Here we want to highlight particularly the role that symbolic ML solutions may play681

in assessing disjointness axioms within ontologies. Indeed, disjointness axioms are essential682

for making explicit the negative knowledge about a domain, yet they are often overlooked during683

the modelling process [196]. Furthermore, disjointness axioms would be absolutely beneficial for684

setting up an informed generation of negative examples in KGE models (see section 3.2 for details),685

15 System publicly available at: https://bitbucket.org/grizzo001/dl-foil/src/master/
16 Suite publicly available at: https://dl-learner.org/
17 System publicly available at: https://bitbucket.org/grizzo001/dlfocl/src/master/
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thus limiting false negatives that random corruption may inject.686

To tackle this problem, automated methods for discovering disjointness axioms from the687

data distribution have been devised. A solution grounded on association rule mining [4] has688

been proposed in [189]. It is based on studying the correlation between classes comparatively,689

namely by considering association rules, negative association rules and correlation coefficient.690

Background knowledge and reasoning capabilities are used to a limited extent. A different solution691

has been proposed in [159, 158], where, moving from the assumption that two or more concepts692

may be mutually disjoint when the sets of their (known) instances do not overlap, the problem693

has been regarded as a clustering problem, aiming at finding partitions of similar individuals694

of the knowledge base, according to a cohesion criterion quantifying the degree of homogeneity695

of the individuals in an element of the partition. Specifically, the problem has been cast as a696

conceptual clustering problem, where the goal is both to find the best possible partitioning of the697

individuals and also to induce intensional definitions of the corresponding classes expressed in the698

standard representation languages. Emerging disjointness axioms are captured by the employment699

of terminological cluster trees (TCTs) and by minimizing the risk of mutual overlap between700

concepts. Once the TCT is grown, groups of (disjoint) clusters located at sibling nodes identify701

concepts involved in candidate disjointness axioms to be derived18. Unlike [189], that is based702

on the statistical correlation between instances, the empirical evaluation of [159, 158] showed the703

system ability to discover disjointness axioms also involving complex concept descriptions, thanks704

to the exploitation of the underlying ontology as background knowledge.705

Here, we claim that, when tackling the problem of learning disjointness axioms, a two-level706

analysis needs to be conducted. One level relates to the expressiveness of the axioms that can707

be learned. The other level is related to the usage of the learned axioms from a user/knowledge708

engineering perspective. The goal of this two-level analysis should be finding a trade-off between709

expressiveness and utility from a user modelling perspective. Whilst the former analysis, concerning710

the expressiveness of the discovered axioms, has been conducted (as reported just above) the711

latter, requiring an actual user study is currently missing, whilst we consider it necessary for712

coming up with the aforementioned trade-off between expressiveness and utility of the discovered713

disjoitness axioms. Furthermore, additional efforts should be devoted to the scalability of the714

developed methods that, even if not very limited, still they do not appear to be able to scale on715

the existing KGs.716

3.4 Knowledge Graphs for Interpretable Machine Learning717

When considering the relation of KGs to deep learning, via KGEs for example, a popular research718

objective is to use KGs for interpretability. The internal dynamics of DNNs are typically opaque,719

and there is hope that KGs can be used to help provide (satisfying) explanations of their behaviour.720

The general goal of producing explanations for behaviour of machine learning models is sometimes721

referred to as explainable AI (XAI).722

As argued in [55], the concepts of explainability and interpretability are intertwined in the723

context of XAI, because what we really seek is an interpretable explanation. One could, for example,724

detail exactly the activations of each hidden layer in a neural network to explain why it produced725

the output from the corresponding input, but this is not a human-interpretable explanation, so is726

unhelpful for XAI. Despite a strong incentive for interpretable machine learning [115], especially727

in the area of healthcare [131, 5], and despite significant research attention, how to make complex728

machine learning model interpretable and explainable remains an open problem [88, 111].729

18 System publicly available at: https://github.com/Giuseppe-Rizzo/TCTnew

https://github.com/Giuseppe-Rizzo/TCTnew
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In this section, we give an overview of existing work, and needed future work, on using KGs730

for interpretable machine learning. We follow our above framework and divide the discussion into731

two parts: ML for KG and KG for ML.732

The former uses ML techniques to augment or construct a KG. With respect to interpretability,733

the idea is that a KG is a human-readable representation of information. Once it is constructed,734

it can be used to produce an answer that is highly interpretable, because we can identify the facts735

and inference rules from which the answer was derived. The problem is that the construction736

itself, which is often a complex process, remains uninterpretable. The same also applies to work737

that uses LLMs for KG construction, such as [63, 99], which use BERT-based models to build a738

clinical KGs for clinical and financial applications, respectively. Once constructed, the KG can739

perhaps be used in an interpretable way, but the LLM that constructs it is not interpretable.740

Methods which use then use the KG as input to another stage, may see interpretability gains at741

those other stages. For example, [16] iteratively use a KG to augment the training data, and then742

use predictions from augmented training data to extend the KG. However, the initial creation of743

the KG remains uninterpretable.744

In the other direction, there are several works which aim to use KGs to enhance the performance745

of ML models. There, the possible approaches to using KG for interpretable ML models can,746

following [154] be divided into three types, pre-model, post-model and in-model.747

Pre-model, refers to using the KG as input to a DNN often referred to as “conditioning on748

the KG”, [100]. The idea is that the KG contains higher-quality structured information than749

images or free-form text, which can then be used by the DNN to solve the given task. This could750

potentially help interpretability if the network uses an attention mechanism that can be inspected751

to see which parts of the KG are attended to, as shown by [212] (although, interestingly, the752

authors were not motivated by explainability in the design of their model). A similar method753

was later also used by [221]. Similarly, [223] proposed a question-answering model that attends754

to paths in a KG from a question to the answer, and claims the attention map over these paths755

constitutes an explanation of the model output. However, these provide at best, only partial756

interpretability, because it is unclear how/why the model’s attention mechanism focuses on the757

information from the KG that it does.758

Post-model, refers to obtaining the output of a ML model, and then invoking a KG to try to759

produce an explanation for where that output came from. For example, [53] proposes a visual760

classifier that matches the predicted classes to KG entities, and then uses the KG structure to761

give an explanation. Similarly, [169] claims to propose an explainable textual entailment model762

that, after predicting whether one text entails another, finds evidence for this entailment in a KG.763

The problem with generating post-hoc explanations is that they depend only on the model output764

and not on the processes internal to the model which produced that output, even though it is765

precisely the latter that explanations are supposed to shed light on. Two different ML models766

that produced the same output by very different means would, by methods such as [169] and767

[53], automatically receive the same ‘explanation’. For example, consider two visual classifiers768

which both assign the same label to an input image. Suppose one of these classifiers has been769

trained on and memorized the test set, while the other has actually learnt relevant visual features770

and used these to infer the label. We would surely want the explanation for the outputs of these771

two classifiers to be different, but if we use only the assigned label to produce an explanation,772

then they will automatically be the same. Thus, post-model XAI methods that invoke a KG after773

prediction are precluded from the outset from producing satisfactory explanations, because the774

explanation is independent of internal model behaviour (given the output), which is exactly the775

thing we want to explain.776

In-model, the third manner of enhancing ML models with a KG, involves the KG during the777
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training of the model itself. In the case of DNNs, this faces the difficulty of connecting discrete778

data from the KG, to a continuous loss function. Beyond some exploratory work, [100, 165], few779

methods have attempted this approach. Additionally, even if one successfully improved predictive780

performance, it is not immediately obvious that it would improve interpretability. It is possible781

that such an in-model method, were it to be designed, would involve a complex interactive passing782

of information between a KG and a DNN, which is highly uninterpretable. One such method783

did explicitly target explanations [162], however this was a bespoke system that requires the784

KG to consist of part-whole relationships only, as well as additional annotation of the images of785

object-part classes.786

The use of KGs for intepretable ML remains an open problem, either to devise787

a generalizable method of infusing KG in ML training that demonstrably improves788

interpretability, or to determine that such a method is not feasible. At the moment, there is789

interest in the use of KGs for interpretable ML, but we do not have a KG-based method that790

demonstrably improves interpretability in ML. This gap in the research was also noted by [38].791

Moreoever, in order for KGs to be of significant help for explainability, we contend that they must792

be involved internally in the model itself. Using machine learning to generate KGs means that793

this generation process itself is not interpretable, and invoking the KG after the operation of the794

machine learning model means that it cannot distinguish between models that produced the same795

output, even if by very different means.796

3.5 Benchmark datasets, and metrics797

The ever-expanding number of available methods targeting KG construction, refinement, or usage798

in ML approaches entails a need for appropriate benchmark datasets and metrics to evaluate their799

capabilities. Some datasets are considered as de facto standards to evaluate approaches developed800

for KG-related tasks such as FB15k-237 and WN18RR for link prediction, or Citeseer for node801

classification. However, we claim that current datasets do not suffice for a sound and802

complete evaluation of the capabilities of developed approaches. Indeed, they present803

several issues such as:804

unwanted leakages between train and test sets;805

absence of shared patterns between train and test sets;806

lack of necessary characteristics to support the use of background knowledge in ML models807

(e.g., presence of inverse axioms, hierarchy of classes or properties).808

scattering of datasets across several repositories hindering their discovery and re-usage809

In the following, we briefly illustrate and discuss each of these issues and propose possible ways to810

overcome them.811

Several datasets have been made available to the community over the past few years, e.g.,812

by using (fragments of) open KGs [17, 150, 157]. At first, the presence of patterns in train and813

test sets was regarded with a concern for unwanted leakages. For example, the two datasets814

FB15k and WN18 were previously widely adopted to evaluate link prediction approaches. It815

was later discovered that both datasets present data leakage between train and test sets due816

to inverse relations [43, 184]. A link prediction approach can then easily learn to predict a test817

triple (t, r−1, h) if triple (h, r, t) is in the train set, where r−1 denotes the inverse relation of r.818

Two filtered versions named FB15k-237 [184] and WN18RR [43] were thus created by filtering819

such triples, to avoid spurious performance measures. Nevertheless, patterns such as inversion,820

symmetry, hierarchy or composition and their capture by KGE models are now argued to be of821

interest, especially if adequately considered in the experimental and evaluation setting [118, 24].822

In particular, some authors claim that test triples should be inferrable from patterns learned823

and premises existing in the train set. This imposes additional constraints when constituting824
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datasets but enables to evaluate the ability of KGE models to efficiently model, capture, and825

implement those patterns [118, 24]. In this view, train sets should contain samples of premises and826

conclusions of the considered patterns to learn. Test sets should contain conclusions that can be827

inferred from patterns learned and premises in train sets. This empirical evaluation is of interest to828

substantiate some theoretical guarantees of model design or, conversely, to outline some unexpected829

abilities. For instance, some KGE models such as RotatE [177] are theoretically designed to830

capture patterns such as symmetry, antisymmetry, inversion, and composition and should be831

evaluated accordingly. It follows that detecting (and potentially removing) some patterns is an832

important step of dataset preprocessing. For now, detection (and removal) of inverses is performed833

statistically, as featured in the AYNEC/AYNEXT system [10, 170]. They detect whether two834

relations r1 and r2 are inverses of each other if some proportions of triples involving r1 have their835

counterpart involving r2. The identification of other patterns also relies on statistical approaches836

such as rule mining for their detection [118]. It is noteworthy that ontologies provide definitions of837

inverses, symmetric predicates and hierarchies of properties and classes. Hence, besides statistical838

approaches, ontological axioms should be taken into account to detect or implement patterns.839

Indeed, train sets could be completely based on ontological axioms and deductive reasoning to840

feature the needed patterns to learn or remove some unwanted ones.841

Also, we previously outlined the interest in studying the role and usage of background knowledge842

in ML models. For now, datasets are often regarded as simple graph data without consideration for843

(or association with) additional knowledge potentially provided by ontologies. Beside improving844

datasets by adding triples respecting patterns or removing unwanted ones, the association of845

ontological axioms with datasets could support the development of learning techniques, settings,846

and models that consider them, following our claim for further consideration of knowledge in847

KGE models. To illustrate, instead of enriching datasets with triples respecting patterns, models848

could be evaluated on their ability to consider patterns stated by ontological axioms to predict849

missing triples in the test set. It is noteworthy that knowledge is already leveraged to enrich850

the training process in some proposals. For instance, Type-Constrained Negative Sampling [98]851

replaces the head or the tail of a triple with an entity of the same type when generating negative852

triples. d’Amato et al. [36] use a reasoner to deduce additional triples from axioms defining853

equivalent classes, equivalent properties, inverses, or subclasses. Similarly, Iana and Paulheim [79]854

test whether materializing all triples induced by transitive properties, symmetric properties, and855

sub-properties leads to improved embeddings. Ontological information is also needed to evaluate856

the semantics captured by KGE models. In this view, Jain et al. [80] relies on the existence857

of types of entities. They learn embeddings on the YAGO3-10 and FB15k-237 datasets with858

various KGE models and then use these embeddings to predict entity types with classification or859

clustering approaches. Their analysis shows that semantic representation in the embedding space860

is not universal across models. In a similar fashion, the DLCC node classification benchmark861

was introduced to evaluate the capability of classification approaches to reproduce classes defined862

by Description Logic Constructors [150]. For example, the constructor ∃r.⊤ is used to group863

nodes having a particular outgoing relation. Interestingly, they propose two gold standards: one864

based on the real graph DBpedia and another synthetic standard that is generated by a gold865

standard generator publicly available. The analysis of ontological information captured by KGE866

models also motivates new metrics besides traditional metrics such as precision, recall, Hits@K,867

or Mean Reciprocal Rank. For example, Hubert et al. introduced the Sem@K metric [76, 75, 77]868

to measure the number of predicted triples that respect domain and range of relations among the869

top-K predicted triples. This metric can thus be seen as measuring the ability of KGE models870

to capture the semantic profiles of relations. The aforementioned work highlights an interest in871

using ontological information in KGE model design, learning process, or evaluation. Consequently,872
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we advocate for the further development of benchmark datasets that include various ontological873

axioms, separately or combined. The availability of such datasets would in turn encourage and874

support the development of neuro-symbolic methods leveraging such axioms. However, it is875

noteworthy that not all current benchmarks offer the ontological information that is needed by876

particular approaches. That is why some authors resort to synthetic KG generators [125, 150],877

sometimes with a fixed ontology. To further this research direction, synthetic KG generators878

should be enriched with the synthetic generation of schemas with different levels of expressiveness879

and constructs. This would allow an on-demand generation of specific ontologies and knowledge880

graphs featuring the needed ontological axioms.881

To further support the research community, we also call for a more systematic approach in882

the development, characterisation, and collection of benchmark datasets. For now, benchmark883

datasets (or versions of) are scattered across several repositories such as GitHub or Zenodo. This884

leads to some of them being widely adopted (e.g., FB15k-237) and some other to be only re-used885

in a few papers. A unified repository, similar to the UCI Machine Learning repository19, is886

needed to encourage their reuse and adoption by the community. Constituting such a repository887

first requires to crawl (semi-)automatically several sources, including GitHub or Zenodo, and888

links in papers available in digital libraries, arXiv, or PapersWithCode. Additionally, given that889

different approaches may leverage different characteristics of datasets (e.g., DL constructors [150],890

sub-properties [36, 79], domain and range of predicates [78], patterns in train and test sets [118]),891

datasets should be qualified w.r.t. the presence or absence of these characteristics. This would help892

researchers and developers to select suitable datasets to evaluate their approaches. To this aim,893

scalable automatic methods need to be developed to crawl and analyse KG-based datasets in the894

wild and detect a broad range of characteristics including those aforementioned. This qualification895

process will produce metadata that enrich usual dataset metadata such as providers, or licence.896

To represent these new dataset metadata, an additional perspective thus lies in extending existing897

ontologies describing datasets (e.g., VoID, DCAT). Ontologies introduced to describe mining898

processes and their features such as DMOP [89] could offer sources of inspiration in this matter.899

4 Conclusion900

The interrelation between knowledge graphs and machine learning has been supporting advances901

in both fields. Machine learning methods have indeed allowed efficient construction and refinement902

of large knowledge graphs. Conversely, knowledge graphs have been leveraged in various machine903

learning tasks to improve performance, e.g., in question answering, or image classification.904

However, this interrelation still does not consider parts of knowledge graphs and ML methods905

summarised in Table 1 that we deem important and offering promising research directions. In906

particular, we believe KGs constitute a major structure for prompting Large Languages Models907

and could allow researchers to formalise interactions (e.g., providing contexts in prompts, or908

deciding prompt sequencing). Additionally, rich semantics of KGs and knowledge actionable by909

various forms of reasoning capabilities could benefit KGE models through a deeper integration.910

This could lead to improved performance, or a better handling or generation of informative911

negatives which are essential in model learning. Regarding informative negatives, we also believe912

that symbol-based ML, which is particularly adapted to the symbolic structure of KGs, could913

provide an interesting perspective, especially with the mining of disjointness axioms. KGs are914

human- and machine-interpretable, and thus are a promising structure on which construct in-model915

interpretable ML models. Nevertheless, the infusion of KGs directly within ML models and an916

19 https://archive.ics.uci.edu/

https://archive.ics.uci.edu/
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actual demonstration of the production of more interpretable and reliable explanations are open917

challenges. To assess improved performance or interpretability of ML models thanks to KGs,918

extensive experimental evaluations are needed, which require datasets showcasing different levels919

of semantics, or schema constructs to assess their individual impacts. That is why, we also call for920

a more systematic collection and characterization of datasets, as well as the creation of synthetic921

KG generators to enrich the collection of available benchmarks.922

In our view, such integrations and interactions open promising challenges to foster both fields923

of research. We believe these directions to be stepping stones to place KGs as central assets924

towards neuro-symbolic and explainable AI.925
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