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Abstract

1

Nowadays attacks on computer networks continue to advance at a rate out-

pacing cyber defenders’ ability to write new attack signatures. This paper illus-

trates a deep learning methodology for the binary classification of the network

traffic. The basic idea is to represent network flows as 2D images and use this

imagery representation of the network traffic to train a Generative Adversar-

ial Network (GAN) and a Convolutional Neural Network (CNN). The GAN is

trained to produce new images of unforeseen network attacks by augmenting

the training data used to learn a CNN-based intrusion detection model. The

advantage is that the 2D data mapping technique used builds images of the net-

work flows, which allow us to take advantage of deep learning architectures with

convolution layers. In addition, the GAN-based data augmentation allows us

to deal with the possible imbalance of malicious traffic that is commonly rarer

than the normal traffic in the network traffic. Specifically, it is used to simulate
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unforeseen attacks to train a robust intrusion detection model. The proposed

methodology leads to better predictive accuracy when compared to competitive

intrusion detection architectures on four benchmark datasets.

Keywords: Intrusion detection, Deep learning, Data augmentation, Image

encoding

1. Introduction

Nowadays intrusion detection systems represent one of the most power-

ful weapons of public and private organisations in the war against the ever-

increasing amount of network cyber attacks [1]. They are a mandatory line

of the network defence process to forewarn security administrators of signs of5

malicious network traffic. In this scenario, machine learning, with the ability to

conduct predictive analysis at a scale beyond human mean, plays a crucial role

in modern intrusion detection systems, due to its ability to detect new variants

of attack [2].

With the recent boom of deep learning in machine learning, the use of deep10

neural networks has definitely emerged as a valuable candidate solution for

intrusion detection problems [3, 4, 5, 6]. The non-linear activation layers of

deep neural networks may facilitate the discovery of effective models that keep

their effectiveness also under drifting conditions. This makes deep learning a

definitely relevant approach in network security, since thousands of zero-day15

intrusions commonly occur due to the addition of various protocols yielding

small variants of previously known cyber-attacks [7].

Although several studies [8, 4] have proved that deep learning algorithms

gain accuracy on traditional machine learning algorithms when large amounts

of data are available for training, even deep learning performance declines sig-20

nificantly in the case of learning from imbalanced data [9, 10, 11]. The network

traffic produces large amounts of data for deep learning, but the imbalance of

malicious data is a crucial issue to handle with these data: network intrusions

and malicious behaviour commonly represent a very small subset of all the net-
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work traffic [10]. On the other hand, malicious behaviour detection is highly25

critical for the health of a network. In general, the relative lack of malicious

data may cause improper inductive bias in a deep neural network, which cannot

be accepted since the high intrusion detection rate gained at the expense of

numerous false alarms will lead the loss of a high number of relevant packets

[12].30

As a traditional solution to intrusion imbalance, data may be re-sampled (i.e

the rare data are over-sampled, while the major data are down-sampled) before

learning to achieve the balanced condition. However, this solution may lead

to over-fitting with learning, since the same over-sampled data are repeatedly

learned. To limit over-fitting, various data augmentation methods have been35

formulated (e.g. SMOTE [13], ADASYN [14], RFMSE [15]), in order to avoid

cloning rare data. These methods sample rare data and use them to generate

new, artificial, rare-similar samples. However, these approaches often create

noise by ignoring the location of general data adjacent to the rare data. Recent

studies in deep learning have initiated the investigation of augmenting rare40

data through a generative adversarial process performed with GANs (Generative

Adversarial Networks)[16].

GANs allow us to create artificial data samples that are very similar to the

original data, by addressing over-fitting, class overlapping and noise. This is

made possible as GANs can re-sample data by specifying the desired rare class45

with an architecture that is designed to discriminate the real signal (intrusion)

from the fake one.

Because of the excellent performance of GANs in image data augmentation

[17], in this paper we investigate the viability of training GANs in intrusion

detection problems once an appropriate image representation of network flows50

has been adopted. Following this idea, we illustrate a deep learning intrusion

detection methodology, named MAGNETO (iMAge based Gan enhanced convo-

lutional NEural neTwOrk), which leverages the power of image-defined GANs

to deal with intrusion imbalance when learning from historical network flows.

In particular, we handle the imbalance condition in the binary classification of55

3



network traffic by focusing on the task of detecting any cyber-attack at the net-

work level. Further investigations are requested to extend this study to classify

attack families and deal with the class imbalance in the classification of attack

families. This may reduce the workload of human analysts who investigate the

functionality of the network traffic.60

The primary contribution of this study is the evaluation of the effectiveness

of learning an intrusion detection model from an appropriate two-dimensional

(2D) imagery representation of network flows. The adopted imagery represen-

tation, based on the study of [18], allows us to delineate potential data patterns

(e.g. edges, shading changes, shapes), that appear on neighbour pixels once65

these pixels encode similar features of network flows. Leveraging the collection

of images representing historical network flows, we are able to train a 2D Con-

volutional Neural Network (CNN) and build an accurate intrusion detection

model. This is a classification model that takes advantage of convolution filters

on spatially close features of network flows, in order to discriminate intrusions70

from normal behaviour. From this point of view, this study is boosted by the

amazing results recently achieved with convolutions in image classifications [19].

In particular, it contributes to validating the idea that computer vision can aid

in solving cybersecurity problems by providing the techniques to account for

the spatial continuity phenomenon among traffic characteristics. These char-75

acteristics have been commonly overlooked in state-of-the-art intrusion detec-

tion methods. The empirical validation confirms that by making this step, we

have achieved an important milestone in cybersecurity. In fact, the proposed

image-based classification model gains accuracy compared to various intrusion

detection models, comprising those already using convolutions or different deep80

learning architectures, to yield the final data flow classifications.

The additional contribution is the improvement of the performance of the

proposed imaging-based intrusion detection methodology by the introduction

of a GAN architecture for augmenting images of intrusions and balancing the

training data processed to learn the classification model. From this point of85

view, this study shows that the image augmentation through GANs can be
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more effective than the application of traditional data augmentation techniques

in dealing with the imbalance of intrusions. It limits the overfitting and makes

the classification model finally learned more robust to the class overlapping,

noise and change (possibly occurring with new attacks). This arises in the90

increase in the number of intrusions detected, which is not achieved at the

expense of any significant increase in the number of false alarms.

We note that both 2D CNNs and GANs have been widely explored, also

in combination, in the computer vision literature. 2D CNNs have also been

explored in intrusion detection in [20, 21], but these studies resort to improper95

image transformations of non-image data, which do not capture possible spa-

tial continuity among traffic characteristics (see details in Section 2.1). This

improper transformation has made the subsequent use of convolutions less ef-

fective. This is confirmed by our comparative empirical validation (see Section

5.5). On the other hand, GANs have recently been used to augment samples in100

rare attack families, but both the augmentation and the subsequent classifica-

tion are always trained in 1D space (see details in Section 2.2). The augmented

training set is used to train a Random Forest in [10], and a Logistic Regression

or an SVM or a Feed-forward Deep Neural Network in [22]. So, to the best of

our knowledge, the novelty of this study is:105

• The specific formulation adopted for the considered learning components,

that allows us to capture and model the phenomenon of data continuity

across traffic characteristics when generating the image form of data flows.

In addition, the proposed formulation allows us to account for this proper

imagery representation of the network flows, in order to deal with the110

imbalance issue (by training GANs on imagery data) and learn a robust

classification model (by training 2D CNNs on balanced training sets ), as

in computer vision investigations.

• The effectiveness of the combination of these components in a methodology

that actually outperforms the intrusion detection accuracy of several state-115

of-the-art competitors on various benchmark data sets.
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This paper is organised as follows. The related works are presented in Section

2. The formulated machine learning methodology is described in Section 3,

while the implementation details are reported in Section 4. The findings in the

evaluation of the proposed strategy are discussed in Section 5. Finally, Section120

6 refocuses on the purpose of the research, draws conclusions and illustrates

possible future developments.

2. Related works

The preeminence of deep learning to intrusion detection has been repeat-

edly assessed in the recent literature [5, 23]. With the boom of deep learn-125

ing, various deep learning architectures – Autoencoders [23, 24, 25, 26], Recur-

rent Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs)

[27, 28, 29, 6, 30], Generative Adversarial Networks (GANs) [31, 32, 33, 34]

and Convolutional Neural Networks (CNNs) [35, 36, 20, 21, 23, 37, 38] – have

been recently investigated for intrusion detection problems [5]. Since in this130

paper we revamp an intrusion detection pipeline that couples CNN and GAN

architectures, we mainly focus this literature overview on both recent studies

applying CNNs to discriminate intrusions from normal network traffic (see Sub-

section 2.1) and machine learning approaches, comprising GANs, to deal with

data imbalance in deep learning (see Subsection 2.2).135

2.1. Training CNNs for Intrusion Detection

The CNNs are a family of robust, popular neural networks designed to pro-

cess input data stored in arrays [17]. They are mainly investigated in computer

vision for processing 2-dimensional (2D) arrays of images [39, 40] or audio spec-

trograms [41]. However, they are also used for processing 3D arrays (videos and140

volumetric images) [42], as well as 1D arrays (signals) [43]. Regardless of their

dimension, CNNs perform well where there is spatial or temporal ordering in in-

put data. Both 1D and 2D CNNs have been recently experimented in intrusion

detection problems [35, 36, 20, 21, 23, 37, 44].
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Kwon et al. [35] process 1D arrays of network flow features studying the145

performance of 1D CNNs in network intrusion detection problems. They inves-

tigate how to optimise the structure of the architecture to gain accuracy in the

intrusion detection ability. To this aim, they compare three 1D CNNs designed

with growing architectural depth and investigate the impact of the depth of

internal layers on the accuracy of the classifier. Even though these authors as-150

sume that the deeper the architecture, the higher the accuracy, their evaluation

proves that the addition of new layers to a CNN architecture does not guarantee

gain in accuracy. This result inspires the idea that a light architecture (with a

few convolution layers) can already achieve high accuracy in intrusion detection.

Andresini et al. [36] also process 1D arrays of network flow features by155

evaluating the performance of 1D CNNs coupled with autoencoders and multi-

channel convolutions. First they consider two autoencoders separately learned

on normal and attack flows, respectively. Then they use samples reconstructed

with these autoencoders to define two new feature vectors. This allows the

representation of each network flow as a multi-channel sample. Finally, they160

adopt multi-channel parametric convolutions in the 1D CNNs, to learn the effect

of each channel on the others in the final intrusion detection model.

In place of 1D CNNs, Li et al. [20], as well as Kim et al. [21], consider 2D

CNNs. In fact, they focus their research on how network flows can be mapped

into 2D image arrays that express latent features of input data within a 2D data165

representation. In particular, Li et al. [20] describe a quantization method to

convert the value of each numeric feature into an 8-digit binary pixel. In this

way, feature vectors describing features of network flows can be converted into

8×8 pixels. The input representation built with this method is finally processed

as the input of two popular CNNs, that is, ResNet50 [45] and GoogLeNet [46].170

Kim et al. [21] extend the method described in [20] by introducing an RGB-like

encode of the data. They determine an N ×N encoding of network flow data,

which is built on (10 × N + M)/8 pixels, where N is the number of numeric

features and M the number of categorical features. This input representation

is processed in combination with GoogLeNet Inception V3 [46]. Experiments175
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described in [21] prove that their approach outperforms the seminal one in [20].

2D-CNNs are also investigated in malware detection. For example, in [47]

an application binary file is first read as a sequence of vectors of 8-bit unsigned

integer values. Then each binary value is converted into a decimal value (e.g.

the binary value [11111111] is converted into the decimal value [255]). Finally,180

the resulting decimal vector is reshaped into a 2D matrix that represents the

grey-scale image input to the 2D CNN. A similar imagery encoding approach is

described in [48].

All the above mentioned studies with 2D CNN architectures are close to

the research described here. In fact, similarly to the study presented in this185

paper, they transform the vector representation of network flows (or of malicious

applications) into images to train a 2D CNN architecture. However, in these

studies, features of network flows are arranged into imagery pixels of a 2D grid

by following the order according to which the features are stored in the original

vector form. As there is no certain correlation between the consecutive features190

of a vector, these imagery encoding methods cannot guarantee that the produced

images will show continuity in the intensities of feature values associated with

neighbour pixels – salt-and-pepper images are plausibly generated. On the

other hand, shifting the attention from cybersecurity to medicine, a proper

image encoding method to transform gene vector data to a well-organised image195

form has been recently introduced in [18]. This image encoding method differs

from the imaging approaches experimented in cybersecurity until now, since

it is able to associate similar gene features to neighbour pixels, by creating

the demanded continuity in the neighbour pixel intensity. In this paper, we

adapt the gene imaging encoding method described in [18] to fit the considered200

cybersecurity domain. In the comparative analysis with the state-of-the-art

intrusion detection systems that use image encoding methods, we provide the

evidence that modelling the continuity across features in the network traffic

image generation can aid in accuracy.
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2.2. Dealing with Imbalance in Deep Learning205

Due to the ubiquity of imbalanced data, techniques to improve the perfor-

mance of deep learning from imbalanced data are formulated with respect to

various domains. Lee et al. [49] describe a two-stepped learning pipeline to deal

with the imbalanced problem in the plankton classification with CNNs. In the

first step, they randomly under-sample majority classes and use the sample to210

pre-train a CNN. In the second step, they fine-tune the CNN with all the data.

Pouyanfar et al. [50] apply a real-time augmentation technique to balance the

landscape image dataset processed to train a CNN. They augment the training

set with a batch of new artificial images that are produced by applying tradi-

tional image transformation operations (i.e. shear, brightness, rotation, shift215

and slip) to the real images. They use transfer learning with an Inception net-

work [46], pre-trained using ImageNet data [51], to fine-tune the model. Wang

et al. [9], as well as Lin et al. [52] describe new loss functions that down-weight

the loss assigned to well-classified examples, by increasing the contribution of

rare class samples when training DNNs and CNNs, respectively.220

By focusing the attention on imbalance in intrusion detection, Zhang et

al. [53] describe an intrusion detection pipeline that integrates imbalanced class

processing with 1D CNNs. The imbalance condition is handled by combining in-

trusion data augmentation through the Synthetic Minority Over-Sampling Tech-

nique (SMOTE) and normal traffic under-sampling through clustering based on225

the Gaussian Mixture Model (GMM). Andresini et al. [54] describe a completely

different approach to deal with the imbalance condition in network intrusion

detection. Instead of augmenting the training set by creating new artificial in-

trusions, they learn the decision boundary that separates the normal training

samples from the intrusions. They re-assign the normal training samples that230

are close to the boundary to the opposite class and train the multi-channel 1D

CNN, already introduced in [36], on the modified training set.

A recent research trend in deep learning has mainly invested in dealing

with imbalance through data augmentation with GANs. These adversarial deep

neural networks [16] are mainly used in data augmentation [55, 56, 57, 58, 59, 10],235
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as well as in anomaly detection [60, 61, 62, 32]. They contribute to laying

the basis for adversarial training, in order to improve the robustness of neural

networks to new adversarial samples injected into the training set [63, 64]. There

are several research directions conducted in adversarial learning, e.g. defence

distillation [65] and gradient masking [66], to defend training from adversarial240

samples. In this paper, we focus on Generative Adversarial Learning.

GANs for data augmentation are mainly experimented in medicine [55, 56,

57] and remote sensing [58, 59], where they are commonly coupled with 2D

CNNs as deep neural networks for image classification. A few studies have

started the exploration of GANs for dealing with imbalance in cybersecurity. In245

[10] GANs are used for data augmentation of network traffic data represented

in 1D arrays of flow features, while a Random Forest is subsequently trained

with the augmented training set. A similar approach is illustrated in [22], with

GANs used for data augmentation, while Logistic Regression, SVMs or Feed-

forward Deep Neural Networks are trained for the classification. Shin et al. [67]250

propose the use of Sequence Generative approaches (SeqGAN and Seq2Seq) to

generate new data in a sequence of network flows. Finally, Wang et al. [68] use

the random feature nullification to build an adversary-resistant deep learning

model in malware detection.

All the above mentioned studies with GANs for data augmentation are close255

to the research described here, as they use GANs to generate rare adversar-

ial samples and achieve a balanced condition before training the classification

model. However, to the best of our knowledge, the GANs that have already

been experimented for data augmentation in network intrusion detection con-

sider array data, while the highest performance of GANs is commonly achieved260

with image data [17].

3. The intrusion detection methodology of MAGNETO

In this Section, we describe MAGNETO – a supervised deep learning method-

ology for learning a robust network intrusion model, by dealing with possible
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intrusion data imbalance. Let us consider:265

• X1D – a 1D feature vector that comprises M features X1, . . . , XM . Each

feature Xi describes an independent characteristic of a network flow (e.g.

the number of transmitted packets and the number of failed login).

• Y – a binary dependent target with “normal” and “attack” labels.

• (T, Y) – a training set that collects N historical network flows (training270

samples), spanned on X1D and labelled with Y . T is the N ×M matrix

that represents the training samples on the rows and the features of X1D

on the columns. Y is theN×1 vector that collects the labels of the training

samples. Every training sample ei ∈ (T,Y) is the couple composed of the

i-th row of T and the i-th label of Y, respectively.275

According to the imbalance condition, we expect the label “attack” to be a rare

class in Y (i.e. the number of attacks is significantly lower than the number

of normal network flows in the network traffic). MAGNETO inputs (T, Y)

and learns the intrusion detection function X1D 7→ Y through a three-stepped

methodology. This methodology cascades:280

• An image encoding step that transforms the training samples from the

1D feature vector form to a 2D image form – one 2D grey-scale image is

constructed for each 1D representation of a network flow.

• A GAN-based imagery data augmentation procedure that trains a GAN

architecture – specifically an Auxiliary Classifier GAN – ACGAN [69] –285

to learn the distribution of the imagery training set. It uses the generator

of the ACGAN to build new images of artificial attacks and balance the

training set.

• A 2D CNN architecture that is trained on the augmented imagery training

set to discriminate attacks from normal network flows.290

A block diagram of this methodology is illustrated in Figure 1, while the

adopted notation is introduced in Table 1.
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Figure 1: The block diagram of MAGNETO that takes the training set (T,Y) as input. (1) It

converts T into T2D by transforming each training sample from the non-image form to the

grey-scale image form. (2) It processes (T2D,Y) to train an ACGAN architecture and uses

the ACGAN generator to build new images of artificial attacks and balance the training set.

(3) It processes the augmented training set (T2D
⊕ ,Y⊕) to train a 2D CNN architecture that

discriminates attacks from normal network flows.

3.1. Image encoding

In the first step we map the 1D feature vector representation of the input

data onto the 2D image representation. First we find the spatial locations that295

the features of X1D occupy in a Cartesian plane and use these locations to

assign every feature of X1D to one pixel frame of X2D – the 2D grid with

size n ×m. Both n and m are user-defined parameters of the image encoding

step – they are selected so that M ≤ nm.2 Then we use X2D as the design

to transform every non-image sample into its image form. In particular, the300

grey-scale image of a sample is constructed by assigning each feature value of

2The satisfaction of this constraint is the necessary condition to allow, in theory, the

assignment of each feature of X1D to a distinct pixel frame of X2D. In Section 5.3.3, we

investigate the sensitivity of the proposed intrusion detection methodology to the set-up of

the image grid size.
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Table 1: Notation

Symbol Description

X1D 1D feature vector with M independent features X1, . . . , Xm

X2D 2D grid covering n×m pixel frames

Y binary target with labels in the set {normal, attack}

T,Y training set comprising N network flows spanned on X1D and labelled on Y

T training data matrix with size N ×M

Y training label vector with size N × 1

T′ transpose of T – data matrix with size M ×N

T2D training data hypercube of size N × n×m

T
2D
⊕ augmented training data hypercube

the sample to a pixel frame according to the feature-pixel association defined in

X2D. Mathematically this step allows us to transform the training data matrix

T of size N ×M into the training data hypercube T2D of size N × n×m.3

In this paper X2D is determined by replicating the imagery encoding pipeline305

introduced in [18]. Specifically:

• We determine T′ – the matrix of size M ×N – that is obtained by trans-

posing T. This matrix represents traffic characteristics of X1D on rows

and training samples on columns.

• We apply t-SNE [70]4 – a non-linear dimensionality reduction technique310

that is well-suited for the visualization of high-dimensional data in a 2D

Cartesian space. Specifically, we use t-SNE to transform the matrix T′

with size M × N to the matrix tsne(T′) with size M × 2. In this way,

we assign each traffic characteristic Xi ∈ X1D to a 2D point of a Carte-

sian plane with coordinates tsne(T′)[i, 1] and tsne(T′)[i, 2], respectively.315

The transformation is completed in two stages, according to the theory re-

ported in [70]. Initially, t-SNE determines a probability distribution over

each pair of traffic characteristics acquired on the training data flows (i.e.

3The feature locations, determined for the image encoding of the training set, are also used

to encode each non-image testing network flow into a 2D grey-scale image.
4In principle, any linear or non-linear dimensionality reduction technique can be used.
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on the row vectors of T′). The similarity of each traffic characteristic Xj

to characteristic Xi (with i 6= j) is measured as the conditional probabil-320

ity, p(Xj |Xi), that Xi would pick Xj as its neighbour, if neighbours were

picked in proportion to their probability density under a Gaussian centred

at Xi. Thus, similar characteristics are assigned to a higher probability,

while dissimilar characteristics are assigned to a lower probability. Finally,

t-SNE defines a similar probability distribution over the traffic character-325

istics in the Cartesian map, and it minimizes the Kullback–Leibler diver-

gence (KL divergence) between the two distributions with respect to the

locations of the characteristics in the map. Once t-SNE transformation

has been completed, the rows of tsne(T′) still represent the traffic charac-

teristics of X1D, while the columns of tsne(T′) define 2D coordinates that330

allow us to visualize the characteristics of X1D as points of a Cartesian

plane.

• We use the convex hull algorithm [71] to find the smallest rectangle (mini-

mum bounding box) containing all the 2D points associated via the t-SNE

transformation with the features of X1D, and rotate it to frame feature335

points to the 2D Cartesian plane in either a horizontal or vertical form.

The rotated rectangle can be represented by min(x), max(x), min(y) and

max(y)—the minimum and maximum coordinates along the 2D Carte-

sian axes x and y, respectively. It is segmented into a 2D grid X2D of

n × m equally-sized rectangular pixel frames with length max(x)−min(x)
n340

and width max(y)−min(y)
m .

Finally, every feature of X1D is one-to-one assigned to the pixel frame of

X2D that hosts its point location of tsne(T′), as it is rotated with the

convex hull algorithm.

One technical issue that may occur with the pipeline described above is that345

locations of various features of X1D may enter into collision since they fall in

the same pixel frame. In [18], intra-pixel collisions have been addressed by

constructing a pseudo-feature for each group of colliding features. The pseudo-
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feature, that is the average of the intra-pixel colliding features, is assigned to the

pixel frame, while the original colliding features are definitely discarded. This is350

an intra-pixel collision technique that performs feature construction. However,

in our opinion it presents a theoretical issue – it requires the computation of the

average of values measured on heterogeneous characteristics, while the average

operator is an aggregate of homogeneous values of the same characteristic.

To overcome this issue, we introduce a different intra-pixel collision tech-355

nique that operates as a feature selector instead of a feature constructor. In

particular, it abstains from averaging heterogeneous features, opting for a su-

pervised evaluation of the ability of colliding features to discriminate attacks

from normal network flows. To this aim, we rank each group of features enter-

ing into collision on a pixel frame, according to their Mutual Info. This measure360

is commonly used for feature scoring in classification problems [72], as it quan-

tifies the amount of information obtained about the target through observing

each feature to be analyzed.

An example of collision is shown in Figure 2 that sketches the transforma-

tion of the non-image traffic characteristics of CICIDS175 data flows into their365

imagery form. This example highlights groups of traffic characteristics that

collide during the imagery transformation (e.g. Fwd Packet Length Max—X7,

Avg Fwd Segment Size—X54 and Fwd Packet Length Mean—X9). The feature

of the collision group with the highest Mutual Info (i.e. Fwd Packet Length

Max) is selected and assigned to the pixel frame, while the remaining features370

colliding at the same pixel frame are discarded by achieving a feature selec-

tion objective. The effectiveness of the proposed Mutual Info-based intra-pixel

collision technique is empirically investigated in Section 5.3.1.

Final considerations concern the advantage of adopting this image encoding

for the subsequent steps of the learning methodology. It accounts for possible375

patterns of spatial continuity that arise among the network traffic features –

features which tend to assume similar values on the training samples are as-

5This dataset is subsequently used in the empirical validation described in Section 5.
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Figure 2: Mutual Info-based technique to manage intra-pixel feature collisions in the CI-

CIDS17 dataset (see details in Section 5.1). x7, x54 and x9 denote the traffic characteristics:

Fwd Packet Length Max, Avg Fwd Segment Size and Fwd Packet Length Mean, respectively.

sociated with neighbouring pixel frames. Figure 3a shows the image form of

the traffic characteristics of CICIDS17. So, it allows us to build images of the

network traffic, which depict a continuity in the grey-scale intensities at neigh-380

bouring pixels. For example, the traffic characteristics Idle Max (X77) and Fwd

IAT Max (X24), that are contiguous on the image grid (since they are assigned

to close pixel frames), commonly measure similar values on the data flows of

CICIDS17 (as shown in Figure 3b). On the other hand, Idle Max (X77) and

Destination Port (X1), that are assigned to distant pixel frames on the image385

grid, measure dissimilar values on the same data flows (as shown in Figure 3c).

This data continuity in the imagery representation of data flows may be helpful

for the use of convolution layers in both the imagery data augmentation per-

formed through an ACGAN and the image classification performed through a

2D CNN architecture. To further explain the presence of the pixel continuity390

phenomenon with the adopted image transformation, let us consider Figure 4

that shows the 2D images of both a normal network flow (Figures 4a and 4b)

and an attack network flow (Figures 4c and 4d). Figures 4a and 4c show the

grey-scale images of the selected samples as they are built through the image
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(a) Image representation

(b) Contiguous characteristics (c) Distant characteristics

Figure 3: The image representation of the traffic characteristics of dataset CICIDS17 (Figure

3a). The training samples of CICIDS17 are plotted along the contiguous traffic characteristics

Idle Max (X77) and Fwd IAT Max (X24), respectively (Figure 3b), as well as along the distant

traffic characteristics Idle Max (X77) and Destination Port (X1), respectively (Figure 3c). All

the features are scaled between 0 and 1.

encoding step illustrated above. Figures 4b and 4d show the grey-scale images395

of the same samples, which are built by the naive method. The naive method

assigns consecutive sample feature values to consecutive pixel frames by pro-

ceeding from the left to the right and from the top to the bottom of the 2D

grid. We note that a progressive gradation of grey continuity is evident on the

neighbour pixels of the images built by MAGNETO, while a salt and pepper grey400

distribution emerges in the images built with the naive method.
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(a) Normal (MAGNETO) (b) Normal (naive method)

(c) Attack (MAGNETO) (d) Attack (naive method)

Figure 4: Image representations of both a normal sample and an attack sample collected in

dataset CICIDS17 (see details in Section 5.1). Figures 4a and 4c show the 2D grey-scale

images of the normal and the attack sample, respectively, as they are built by MAGNETO.

Figures 4b and 4d show the the 2D grey-scale images of the normal and the attack sample,

respectively, as they are built by the naive method.

3.2. GAN-based imagery data augmentation

In the second step, we train an Auxiliary Classifier GAN (ACGAN) [69] to

generate synthetic images of artificial attacks and achieve the balance of the

training set.405

GANs are generative deep modelling approaches, originally formulated to

work in the unsupervised manner [16], which have been recently used for gen-

erating synthetic images in computer vision applications [17]. They allow the

construction of synthetic data that are similar to the training repository of real

data. Based upon the seminal theory illustrated in [16], a GAN architecture410

is a two-player minimax game, in which the generator network (G) competes
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against the adversary discriminator network (D). The training stage proceeds

by alternately updating the parameters of both G and D, optimising the objec-

tive function. G takes noise samples as input and uses them to generate new

examples of the data. D takes the fake images created by G and the real training415

samples as input and tries to distinguish real and fake samples.

The recent literature describes several families of GANs, both unsupervised

(as in the original formulation) and supervised [73]. In this study we consider a

supervised GAN – Auxiliary Classifier GAN (ACGAN) [69] – with convolution

layers.6 We opt for a supervised GAN as supervision allows us to take advantage420

of labels to jointly learn an inference mechanism to separate samples in different

classes. This contributes to improving the quality of the data augmentation. In

particular, the ACGAN architecture uses labels to directly apply cross-entropy

loss to discriminator D, giving the discriminator an additional role in the classifi-

cation. Specifically, the objective function optimised by the two-player minimax425

game of ACGAN is defined as follows:

minGmaxDV (G,D) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y))), (1)

where:

• Ex∼pdata(x)[logD(x|y)] is the log probability that D predicts the real image

x as genuine, given the label y;

• Ez∼pz(z)[log(1− D(G(z|y))) is the log probability that D predicts the G’s430

generated data as fake, given the label y and with the latent variable z

randomly drawn from prior pz(z).

6In principle, any supervised GAN architecture, e.g. Conditional Generative Adversarial

Nets (CGANs), [74] or even an unsupervised GAN may be used in alternative to ACGANs.

We select the ACGAN architecture by accounting for the conclusions recently drawn in [75],

which prove that this architecture is able to generate better quality and globally coherent

images than several GAN competitors.
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In addition, the output of D includes both the probability that the image is

real and its class label. Finally, the convolution layers allow us to take advantage

of the spatial continuity in the imagery pixels. The implementation details of435

the architecture are reported in Section 4.

In the algorithm, we first process the imagery training set (T2D,Y) to train

the ACGAN architecture. Subsequently, we use the generator of the trained

ACGAN to construct a number of artificial images with the “attack” class bal-

ancing the number of intrusions in the training set. Finally, we inject the artifi-440

cial attacks into the original training set, thus building the augmented, balanced

imagery training set (T2D
⊕ ,Y⊕). Some examples of images of artificial attacks

produced with the ACGAN are shown in Figure 5.

3.3. 2D CNN

In the third step we train a 2D Convolutional Neural Network (2D CNN)445

[76] to discriminate attacks from normal network flows, based on the image form

of the samples.

The main advantage of training a 2D CNN architecture here is capturing

possible spatial contiguity in images [77]. Since the produced image represen-

tation of the input data allows us to depict potential data patterns arising at450

neighbour pixels, a 2D CNN allows us to take advantage of the specific conti-

nuity behaviour embedded in the considered feature space grid inside the input

region of the training data.

The 2D CNN implemented in MAGNETO is designed, according to the the-

ory reported in [76], as a special kind of a fully connected feed-forward neural455

network, introducing local filters (convolution) and weight sharing.

Every convolutional layer convolves a set of filters that are replicated along

the whole input to process small local parts of the input [76]. In particular, given

an image x, the k-th feature map at location (i, j) in a given convolutional l-th

layer is determined by the weight matrix Wl
k and the bias vector bl

k of the k-th

filter on the l-th layer with a non-linear activation function σ(), such that:

hli,j,k = σ(Wl
k ∗ xl

i,j + bl
k), (2)
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Figure 5: Images of artificial attacks generated through the generator G of the ACGAN that

is trained on the imagery training set of CICIDS17.

where xl
i,j is the input patch centered at location (i, j) of the l-th layer and ∗

represents the convolution function. The kernel Wl
k is shared for each possible

location (i, j), thus reducing the model complexity and making the network

easier to train. The theory in [76] also describes the use of pooling as a means460

to generate a lower resolution version of a convolutional layer, by offering better

translation invariance. However, recent studies have highlighted that including

explicit pooling operations does not always improve the performance of CNNs

[78]. Based upon these conclusions, here we leave out pooling layers. The
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implementation details of the designed 2D CNN are reported in Section 4.465

In short, in this step we process the augmented imagery training set (T2D
⊕ , Y⊕)

to train the 2D CNN architecture. The higher layers of this architecture use

broader filters, which work on lower resolution inputs to process more complex

parts of the input. The output layer uses softmax as the activation function

[17], to deal with the classification task and discriminate the images of attacks470

from the images of normal network flows.

4. Implementation details

We have implemented both the pre-processing step and the three steps – im-

age encoding, GAN-based data augmentation and 2D CNN – of the MAGNETO

methodology in Python 3.6. The source code is available online.7 The deep475

neural network architectures have been developed in Keras 2.3.18 – a high-level

neural network API with TensorFlow 2.29 as the back-end.

The pre-processing step includes the operation to scale the input numeric

features, using the Min-Max scale (as it is implemented in the Scikit-learn 0.22.2

library10). This operation is done to process features with values in compa-480

rable ranges. In addition, pre-processing includes the implementation of the

one-hot-encoder mapping – a transformation commonly used in the intrusion

detection literature [20, 21, 35] – to transform input categorical features into

numerical features. Finally, it integrates an autoencoder to condense large one-

hot-encoding input vectors that may introduce data sparseness in the input485

data. Autoencoders [79] are unsupervised neural networks that consist of both

an encoder – mapping the input to a hidden code in a bottleneck layer – and a

decoder – producing the reconstructed input from the hidden code. The output

7https://github.com/Kyanji/MAGNETO
8https://keras.io/
9https://www.tensorflow.org/

10https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html
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of the bottleneck layer is used to obtain a non-linear representation of the input

with reduced dimensionality.11
490

The autoencoder architecture implemented in MAGNETO comprises 3 fully-

connected (FC) layers of 128×64×128 neurons and one dropout layer, in order

to prevent the overfitting phenomenon. The mean squared error (mse) is used

as the loss function. The classical rectified linear unit (ReLu) [83] is selected

as the activation function for each hidden layer, while for the last layer the495

Linear activation function is used. In the pre-processing step, implemented for

MAGNETO, we scale the output of the encoder with the Min-Max scaler and

process it in place of the original input in the subsequent steps.

As regards the first step, the image encoding technique is implemented to

convert the (pre-processed) input data from the 1D original feature vector to500

the 2D image form. By default, the imagery form of the data is produced with

a 10× 10 grid. In any case, we perform the experiments, illustrated in Section

5.3.3, to analyse the sensitivity of the performance of MAGNETO to the set-up

of the image size.

In the second step, the ACGAN architecture is implemented following the505

description in [84]. 12. In the generator, the Conv2DTranspose layers are alter-

nated with Batch Normalization layers to stabilize learning, by normalizing the

input to have zero mean and unit variance. Batch Normalization is not used in

the discriminator. The rectified linear unit (ReLu) [83] is used as the activation

function for each layer of the generator, except for the output layer, where the510

sigmoid activation is used. The LeakyReLu function [85] is used for the dis-

criminator. The generator learns to generate fake images from a 100-dim input

random noise vector with uniform distribution. The gradient-based optimisa-

tion is performed using the RMSprop update rule [86]. Finally, the auxiliary

11The use of autoencoders for dimensionality reduction has been widely investigated in the

cybersecurity literature [80, 81, 82].
12The original code of the ACGAN implementation described in [84] can be downloaded

at https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras/tree/

master/chapter5-improved-gan
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Figure 6: The ACGAN architecture of MAGNETO. For each convolutional layer, the number

of filters (F), the kernel size (K) and the stride size are reported in brackets. For each dense

layer, the number of neurons is reported in brackets.

module, added to perform the classification, comprises two Dense layers and515

a final softmax layer for the classification. This ACGAN updates two distinct

loss functions: (1) the binary cross-entropy used to train the discriminator and

estimate the probability that the input image is real and (2) the categorical

cross-entropy predicting the class label of the image, respectively. The details

of the configuration of this ACGAN architecture are reported in Figure 6.520

As regards the third step, a 2D CNN architecture is implemented with three

Convolutional layers, two Dropout layers and three Fully-Connected (FC) layers.
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Table 2: Hyper-parameter search space for both autoencoder and 2D CNN architectures.

autoencoders classifier

batch size {25, 26, 27, 28, 29 } {25,26, 27, 28, 29 }

learning rate [0.0001, 0.001] [0.0001, 0.001]

dropout [0,1] [0,1]

kernel size - [2,4]

The network takes a 2D imagery training set as input and predicts a Bernoulli

probability. The rectified linear unit (ReLu) [83] is selected as the activation

function for each layer. This decision is motivated by the recent literature525

[38], which has proved that the best results are commonly achieved by using

this activation function. Finally, the binary-cross entropy is used as the loss

function. The details of the configuration of this 2D CNN architecture are

reported in Figure 7. We note that the described 2D CNN architecture does

not include any pooling operations. This decision follows the conclusions drawn530

in [78], which have already highlighted that including explicit pooling operations

does not always improve the performance of CNNs.

Final details concern the estimation of the hyper-parameters used in both

the autoencoders and the 2D CNN architectures. For each dataset, an au-

tomatic hyper-parameter optimisation is conducted using the tree-structured535

Parzen estimator algorithm, as implemented in the Hyperopt library [87]. This

hyper-parameter optimisation is done by using 20% of the entire training as a

validation set, according to the Pareto Principle [88]. In particular, we randomly

select the validation set with the stratified sampling procedure [89]. Therefore,

we automatically choose the hyper-parameter configuration that achieves the540

best validation loss. The values of the hyper-parameters automatically explored

with the tree-structured Parzen estimator are reported in Table 2. In both these

networks, we perform the gradient-based optimisation using the Adam update

rule [90]. We initialise the weights following the Xavier scheme. Finally, we set
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Conv2D(F=32, stride=1)

Dropout

Conv2D(F=64, stride=1)

Dropout

Conv2D(F=128, stride=1)

Flatten()

Dense(256)

Dense(1024)

Softmax

Attack Normal

Figure 7: The 2D CNN architecture of MAGNETO. For each convolutional layer, the number

of filters (F) and the stride size are reported in brackets. For each dense layer, the number of

neurons is reported in brackets.

the maximum number of epochs equal to 150 by retaining the best models and545

using an early stopping approach that achieves the lowest loss on the validation

set (the same set used for the hyper-parameter optimisation).

5. Empirical evaluation and discussion

For this empirical evaluation, we use four benchmark datasets, which are

commonly considered in the network intrusion detection literature (Section 5.1).550

Each dataset includes both a labelled training set – processed to learn the intru-

sion detection model – and a testing set – considered to evaluate the intrusion
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detection ability of the trained model (Section 5.2). The presentation of the

empirical results is organised as follows. We start this study by analysing the

effectiveness of the traffic image encoding technique, as it is coupled with the555

proposed 2D CNN architecture (Section 5.3). We proceed to explore the perfor-

mance of the proposed imagery data augmentation step in the presence of the

intrusion imbalance (Section 5.4).

We complete the study by presenting a brief discussion of additional recent

evaluation results already reported in the recent intrusion detection literature,560

by processing the datasets also considered in this study (see Section 5.5).

5.1. Dataset description

We consider four benchmark intrusion detection datasets, that is, KDD-

CUP99,13 UNSW-NB1514, CICIDS1715 and AAGM17.16

KDDCUP99 is commonly used for the evaluation of intrusion detection sys-565

tems also in recent studies [91, 33, 31]. The dataset comprises four categories of

attacks: Denial of Service Attack (DoS), User to Root Attack (U2R), Remote

to Local Attack (R2L) and Probing Attack. We consider 10%KDDCUP99Train

for the learning stage, while we use the entire testing set, denoted as KDD-

CUP99Test, for the evaluation stage.17 This experimental scenario, with both570

10%KDDCUP99Train and KDDCUP99Test, is often used in the literature (e.g.

[36, 24]).

UNSW-NB15 is a hybrid dataset that includes the realistic modern normal

activities and the synthetic contemporary attack behaviour extracted from net-

work traffic monitored in 2015 [92]. It consists of one training set and one575

13http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
14https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA-NB15-Datasets/
15https://www.unb.ca/cic/datasets/ids-2017.html
16https://www.unb.ca/cic/datasets/android-adware.html
1710%KDDCUP99Train and KDDCUP99Test are populated with the data stored in kd-

dcup.data 10 percent.gz and corrected.gz at http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html
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testing set, which have recently been used in the evaluation of various intru-

sion detection methodologies [21, 93, 94, 44]. The attack records of this dataset

are classified into nine families: Fuzzers, Analysis, Backdoors, DoS, Exploits,

Generic, Reconnaissance, Shellcode and Worms.f

CICIDS17 is generally used in the evaluation of anomaly detection method-580

ologies with the training performed on the first day [95, 96]. However, a few

recent studies consider these data also in the evaluation of classification method-

ologies as we do in this paper [21, 97, 98, 99, 54]. The dataset comprises six

attack families: Brute Force Attack, Heartbleed Attack, BotNet, DoS/DDoS

Attack, Web Attack and Infiltration Attack. In our experimental study we con-585

sider the training and testing sets of CICIDS17 built according to the strategy

described in [21]. Specifically, we build one training set with 100K samples and

one testing set with 900K samples. Both training and testing samples are ran-

domly selected from the entire 5-day log. For the creation of both the training

and testing set we use the stratified random sampling preserving 80% normal590

flows vs 20% attacks as in the original log.

AAGM17 contains traffic data captured from Android applications – mal-

ware, adware and benign apps. The traffic data are obtained by installing An-

droid apps on real (NEXUS 5) smartphones in a semi-automated manner [100].

After running the apps, the generated traffic is captured with CICFlowMeter595

and transformed into samples divided into two classes (malicious and normal).

Specifically, attacking samples represent the malicious traffic generated by some

popular adware families (Airpush, Dowgin, Kemoge, Mobidash and Shuanet)

and malware families ( AVpass, FakeAV, FakeFlash/FakePlayer, GGtracker and

Penetho). In the original dataset, the number of normal apps was higher than600

the number of malicious apps (80% normal vs 20%) attack. This distribution is

preserved in the sample training and testing sets prepared for this study.

A summary of the features of the datasets considered in this experimental

investigation is reported in Table 3. We note that the malicious traffic is im-

balanced in both CICIDS17 and AAGM17 datasets that both consist of 80%605

normal flows and 20% attacks. KDDCUP99 and UNSW-NB15 include cate-
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gorical features that require numeric transformation with the one-hot-encoding

technique. In these datasets the autoencoder architecture, described in Section

4, is used to reduce the high dimensionality and the data sparseness possibly

introduced with one-hot-encoding.610

In addition, KDDCUP99, UNSW-NB15 and CICIDS17 collect various fami-

lies of attacks occurring in the flow based between hosts, while AAGM17 focuses

on malicious families targeting Android platforms. In this study we investi-

gate the binary classification problem. So, all the datasets are divided into

two classes: normal and attack. All the attack categories contained in each615

dataset are grouped under a unique class label. However, few studies in cy-

bersecurity have recently investigated how to classify the attack family. The

classification of the attack families is investigated in [101, 102, 103, 104] for

KDDCUP99, [105, 106, 107, 108] for UNSW-NB15 and [109] for CICIDS17.

Moreover, some studies focus on detecting only one type of attack, i.e. botnet620

attacks [110, 111, 112]. Although our study investigates a simpler problem (dis-

criminating attacks from normal data flows and postponing the attack family

classification to future investigation), we have analyzed the performance of the

proposed methodology on datasets comprising different typologies and number

of attack families.625

5.2. Experimental setting

The overall accuracy performance of the proposed methodology is measured

by analysing the F1-score of the intrusion detection models learned. This is the

harmonic mean of Precision and Recall, where Precision measures the ability of

an intrusion detection system to identify only the attacks, while Recall can be630

thought as the system’s ability to find all the attacks. The higher the F1-score,

the better the balance between Precision and Recall achieved by the algorithm.

On the contrary, the F1-score is not so high when one measure is improved at

the expense of the other. In addition, we consider Accuracy (that is measured

in the evaluation of various competitors). This is the ratio of flows correctly635

labelled on all flows tested. All these metrics are computed on the testing set of
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Table 3: Dataset description. For each dataset we collect: the number of features, the total

number of network flow samples collected in the dataset, the number of attack families, the

number of normal network flows (and the percentage of their total size), as well as the number

of attacking flows (and the percentage of their total size).

Dataset

KDDCUP99 UNSW-NB15 CICIDS2017 AAGM17

Features

Total 42 43 79 80

Binary 6 2 18 3

Categorical 3 3 - -

Numerical 32 37 60 76

Class 1 1 1 1

Attack families Total 4 9 6 10

Training set

Total 494021 82332 100000 100000

Normal flows 97278 (19.7%) 37000 (44.9%) 80000 (80%) 80000 (80%)

Intrusions 396743 (80.3%) 45332 (55.1%) 20000 (20%) 20000 (20%)

Testing set

Total 311029 175341 900000 100000

Normal flows 60593 (19.5%) 56000 (31.9%) 720000 (80%) 80000 (80%)

Intrusions 250436 (80.5%) 119341 (68.1%) 180000 (20%) 20000 (20%)

the considered dataset. In every experiment each testing sample is represented,

similarly to a training sample, such as a 2D image. This representation is

computed by applying the image encode that has been learned in the training

stage.640

The efficiency performance is evaluated with the computation time spent

training the intrusion detection model. The computation time is collected on

a Linux machine with an Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz and

32GB RAM. All the experiments are executed on a single GeForce RTX 2080.

The computation Time is measured in minutes.645

5.3. Image encoding and 2D CNN analysis

The study of the effectiveness of both the image encoding step and the 2D

CNN architecture of MAGNETO is conducted on the four datasets illustrated
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in Section 5.1. It is performed by considering MAGNETO−GAN – the configu-

ration of MAGNETO that performs the training stage, leaving-out the imagery650

data augmentation step. As MAGNETO−GAN roughly reproduces the pipeline of

DeepInsight [18] by introducing: (i) a new Mutual Info-based intra-pixel feature

collision technique and (ii) a different light 2D CNN architecture, this study fo-

cuses on assessing the viability of these two novel components. In addition, we

evaluate the sensitivity of the performance of MAGNETO−GAN to the imaging655

size.

5.3.1. Intra-pixel feature collision

We start this study evaluating the accuracy of the 2D CNN architecture

illustrated in Section 3 with respect to the intra-pixel collision technique imple-

mented in the image encoding step. To this aim, we compare the performance660

of:

• MAGNETO−GAN which manages each group of traffic features that collide

at the same pixel, by selecting the one with the highest Mutual Info. This

configuration assigns only the selected feature to the collision pixel filtering

out the un-selected features (see details in Section 3).665

• MAGNETO−GAN
+AVG which integrates the intra-pixel collision technique of

DeepInsight described in [18]. This configuration replaces each group of

traffic features that collide on a pixel with an artificial, new feature that

is built by applying the average operator. It assigns the new artificial

feature – computed as the average of the features that enter into collision670

on the same pixel frame – to the colliding pixel in place of the features

that collide on the pixel, while all the intra-pixel colliding features are

filtered-out.

Table 4 reports the overall accuracy performance of both MAGNETO−GAN

and MAGNETO−GAN
+AVG . Since these configurations train the light 2D CNN archi-675

tecture proposed in this paper (see the implementation details in Section 4),

this comparative analysis allows us to study properly the consequence of the
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intra-pixel collision technique in the proposed pipeline. Collected results con-

firm that MAGNETO−GAN commonly gains accuracy by using Mutual Info to

manage intra-pixel collisions. This conclusion can be equally drawn from the680

analysis of both OA and F1 in all the datasets. However, we note that F1 is lower

than OA in both CICIDS17 and AAGM17. This happens since the attack class

(the positive class of our evaluation) is imbalanced in these two datasets. How-

ever, in this imbalanced scenario, F1 – combining both precision and recall for

the minority attack class – is a better performance measure to expose the “best”685

class distribution [113]. Additional considerations concern the difference of the

performance achieved by the tested methods on the analysed datasets. The

accuracy performance is higher in KDDCUP99 and CICIDS17 than in UNSW-

NB15 and AAGM17. This conclusion is equally drawn by analysing both OA

and F1 and it is independent of the adopted collision management technique.690

We believe that this behaviour may depend on the variety of attack families

in the considered datasets. In fact, KDDCUP99 and CICIDS17 collect attacks

from 4 families and 6 families, respectively. UNSW-NB15 and AAGM17 col-

lect attacks from 9 families and 10 families, respectively. The more varied the

attack profiles, the more complex the intrusion detection task. This analysis695

contributes to highlighting that a crucial future direction of this work is the

systematic investigation of how to account for the attack family information

in a multi-class setting, in order to improve the stability of the performance

of the proposed approach on the variety of attack families. In any case, this

analysis already provides the evidence of the worth of our idea that opting for a700

supervised approach, that accounts for the class information, may improve the

quality of the encoded traffic images and, consequently, the robustness of the

intrusion detection model finally trained with these images.

Further considerations are formulated to explain the fact that UNSW-NB15

is more sensitive than the remaining datasets to the adopted feature collision705

management mechanism. Similar to KDDCUP99, this dataset contains cat-

egorical characteristics (e.g. protocol and service) managed during the pre-

processing through the combination of one-hot-encoding and the autoencoder.
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On the other hand, UNSW-NB15 comprises attacks from 9 families, while KD-

DCUP99 comprises attacks from 4 families only. So, we maintain that the710

numeric transformation of categorical characteristics introduces a bias in the

image representation (as the data mapped to the image are different from the

original ones). The greater the variety of attacks, the greater the bias (as ob-

served by comparing KDDCUP99 to UNSW-NB15). On the other hand, the

bias is partially overcome by using the proposed supervised mechanism to man-715

age collisions. This consideration requires further investigations in the future.

For example, we may explore algorithms for supervised embedding to account

for (multi-)class information (on the attack families) and improve the numeric

transformation of the categorical data [114].

Final comments concern the low F1 that MAGNETO−GAN achieves on AAGM17720

(even if it does better than MAGNETO−GAN
+AVG ). The classification task is very

complex in this dataset due to the presence of the imbalance attack condition,

coupled with the large variety of attack families. However, the scenario of this

dataset is quite different from the other datasets. AAGM17 collects malicious

families of attacks targeting Android platforms, while KDDCUP99, UNSW-725

NB15 and CICIDS17 collect families of attacks occurring in the flows between

hosts.

5.3.2. 2D CNN

We proceed in this study by comparing the performance of the two 2D CNN

architectures implemented in MAGNETO−GAN and DeepInsight [18], respectively.730

To this aim, we compare:

• The 2D CNN architecture of MAGNETO−GAN, that is described in Section

4 with three convolution layers and three dense layers.

• The 2D CNN of DeepInsight [18], that is a more complex architecture that

consists of two parallel CNN architectures, where each one comprises four735

convolutional layers.

Both these 2D CNN architectures are trained using the tree-structured Parzen
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Table 4: Intra-pixel feature collision: overall accuracy performance of MAGNETO−GAN and

MAGNETO−GAN
+AVG measured with OA and F1 on the testing sets of KDDCUP99, UNSW-NB15,

CICIDS17 and AAGM. The best results are in bold.

Dataset #Collisions Algorithm OA F1

KDDCUP99Test 11
MAGNETO−GAN 93.29 95.66

MAGNETO−GAN
+AVG 92.84 95.35

UNSW-NB15Test 7
MAGNETO−GAN 89.73 91.97

MAGNETO−GAN
+AVG 73.89 83.87

CICIDS17Test 21
MAGNETO−GAN 98.49 96.28

MAGNETO−GAN
+AVG 98.13 95.45

AAGM17Test 55
MAGNETO−GAN 88.03 66.79

MAGNETO−GAN
+AVG 87.21 61.18

estimator algorithm for the automatic hyper-parameter optimisation. Accord-

ing to the description reported in [18], the 2D CNN architecture of DeepInsight

is coupled with the average-based intra-pixel collision technique.740

Table 5 reports the accuracy performance of both MAGNETO−GAN and

DeepInsight. In addition, Figure 8 compares the computation times spent in

minutes training the 2D CNNs of both MAGNETO−GAN and DeepInsight. The

analysis of the accuracy performance reveals that the light 2D CNN architecture,

designed for MAGNETO, learns a more accurate intrusion detection model than745

that implemented in DeepInsight. This confirms the conclusions drawn by Kwon

et al. [35], who have verified that the addition of new layers to a CNN architec-

ture does not guarantee gain in intrusion detection accuracy. On the other

hand, the analysis of the computation times highlights that MAGNETO−GAN

learns a more accurate intrusion detection model than DeepInsight, spending750

less time in training the 2D CNN architecture. This computation time perfor-

mance depends on the high cost of a convolution layer, that is O(nl−1s
2
l nlm

2
l )

[115] with l – the index of a convolution layer, nl – the number of filters at layer
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l, s2
l – the size of the 2D filters at layer l and m2

l – the size of the output feature

map at layer l. The 2D CNN trained in MAGNETO−GAN is a light architecture755

with three convolution layers, while 2D CNN trained with DeepInsight [18] is a

more complex architecture implementing two parallel CNNs with four convo-

lutional layers per CNN. Although DeepInsight uses parallelisation to speed-up

the training of parallel networks, it is slower than MAGNETO−GAN. Finally,

we note that the considerations reported in Section 5.3.1 on the complexity of760

the intrusion detection task in AAGM17 may explain the lower F1 measured by

both MAGNETO−GAN and DeepInsight on AAGM17 also in this experiment. In

particular, our idea is that the lower F1 achieved in this dataset may depend on

the high variety of attack families (i.e. 10 different attack families in AAGM)

in the processed data. We believe that this condition increases the complex-765

ity of the task of detecting attacks without taking advantage of a multi-class

characterisation of the attack families.

Table 5: Baseline analysis: overall accuracy performance of MAGNETO−GAN measured with

OA and F1 on the testing sets of KDDCUP99, UNSW-NB15, CICIDS17 and AAGM. The

best results are in bold.

Dataset Algorithm OA F1

KDDCUP99Test
MAGNETO−GAN 93.29 95.66

DeepInsight [18] 92.80 95.32

UNSW-NB15Test
MAGNETO−GAN 89.73 91.97

DeepInsight [18] 68.29 81.10

CICIDS17Test
MAGNETO−GAN 98.49 96.28

DeepInsight [18] 97.56 94.11

AAGM17Test
MAGNETO−GAN 88.03 66.79

DeepInsight [18] 83.90 56.24
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Figure 8: Computation time spent in minutes by both MAGNET0−GAN and DeepInsight train-

ing the intrusion detection models from the training sets of KDDCUP99, UNSW-NB15, CI-

CIDS17 and AAGM.

5.3.3. Image encoding size

We complete the study of the effectiveness of the intrusion detection model

trained through MAGNETO−GAN, by exploring the sensitivity of its performance770

to the size of the image encoding. We perform this study using CICIDS17 and

processing squared images of size varying among 8×8, 9×9, 10×10 (baseline),

11 × 11 and 12 × 12. The image size 9 × 9 delimits the minimum grid area

that encloses a number of pixel frames that is greater than the number of traffic

characteristics to map in the image grid. So, the baseline size 10 × 10 is the775

minimum size that guarantees the availability of an overhead of pixel frames in

the grid, in order to reduce the collision risk. Figure 9 shows an example of

an attack network flow encoded using the various tested image sizes. Table 6

reports the overall accuracy achieved by testing the trained intrusion detection

models, as well as the time spent in minutes completing the training phase. As780

expected, the accuracy decreases with the image size 8×8, as this configuration

does not guarantee the availability of a number of pixel frames greater than (or

equal to) the number of traffic characteristics to map into the grid. On the other

hand, the larger the size of the images, the lower the number of collisions, but

the more time spent completing the training phase. In any case, decreasing the785
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(a) 8 × 8 (b) 9 × 9 (c) 10 × 10 (d) 11 × 11 (e) 12 × 12

Figure 9: An attack of CICIDS17Train encoded with the image size set equal to 8× 8 (Figure

9a), 9 × 9 (Figure 9b), 10 × 10 (Figure 9c), 11 × 11 (Figure 9d) and 12 × 12 (Figure 9e).

number of collisions and, consequently, increasing the number of features finally

selected for the deep learning does not lead to a gain in accuracy. This is a

further confirmation of the effectiveness of the feature selection ability coupled

with our proposal of image encoding of network flows. In general, the best

accuracy is achieved with the baseline, that is, when the image size is set equal790

to 10× 10.

Table 6: Image encoding size analysis: overall accuracy performance measured with OA and

F1 and training computation time (in minutes) of MAGNETO−GAN by varying the size of the

images in CICIDS17.

Size # Collisions OA F1 Time

8× 8 38 97.94 95.05 3.50

9× 9 31 98.38 96.02 6.10

10× 10 21 98.49 96.28 10.10

11× 11 15 98.47 96.21 10.84

12× 12 9 98.04 95.27 11.47

5.4. Data augmentation analysis

The study of the effectiveness of the imagery data augmentation step is

performed by considering CICIDS17 and AAGM17, where the original traffic

data are imbalanced. For this analysis, we consider the full configuration of795
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MAGNETO that cascades traffic data imagery encoding, GAN-based imagery

data augmentation and 2D CNN. Our goal is to:

• Explore the sensitivity of the accuracy of MAGNETO along the balance

size of the training set that can be achieved by producing new training

images of artificial attacks.800

• Analyse the sensitivity of the accuracy of MAGNETO along the imbalance

size of the training set.

• Prove the effectiveness of our GAN-based imagery data augmentation step

compared to that of state-of-the-art artificial data augmentation tech-

niques, such as SMOTE [13] and ADASYN [14], that neglect the imagery805

format.

• Study the effectiveness of our idea of training a 2D CNN from the GAN-

augmented training set instead of using the GAN discriminator for the

final data flow classification.

5.4.1. Varying balance size810

We analyse the performance of the GAN-based imagery data augmentation

step of MAGNETO by varying the balance size. In particular, we increase the

percentage of attacks from 20% (as in the original dataset) to 30%, 40% and

50% of the entire training set.

Figures 10a and 11a show the F1-score of MAGNETO, measured by vary-815

ing the training balance size in CICIDS17 and AAGM17, respectively. In both

datasets, the trend of the F1-score highlights that the intrusion detection model

takes advantage of the imagery data augmentation step. In particular, the

learned intrusion detection model progressively gains accuracy, as new images

of artificial attacks are injected into the training set to achieve a balanced con-820

dition. This confirms the conclusions already drawn in [11] according to which

the performance of a deep neural network can be improved by completing its

training with balanced data.
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Figure 10: Accuracy performance (axis Y), measured with F1-score – F1 – (Figure 11a),

Recall – R – (Figure 10b) and Precision – P (Figure 10c) – of MAGNETO on CICIDS17Test,

by varying the size of the balance (axis X) – the percentage of attacks on the entire training

set – between 20% (original dataset) to 30%, 40% and 50% (augmented datasets).

To study this performance in depth, we also explore the trend of Recall (Fig-

ures 10b and 11b) and Precision (Figures 10c and 11c) in both the datasets. We825

note that the overall improvement detected with the F1-score is always coupled

with the improvement of Recall – the ability to find all new attacks improves

as the balance size increases within the training stage. In addition, the increase

in Recall is commonly coupled with the increase in Precision – the ability to

detect attacks correctly. The only exception is observed on AAGM17, when830

the balance size is set equal to 40%. In fact, this configuration of MAGNETO

achieves a precision that is lower than that achieved at the balance size of 30%,

although it is higher than that achieved on the baseline when no imagery data

augmentation (balance size =20 %) has been performed.

5.4.2. Varying the imbalance size835

We analyse the robustness of the proposed methodology to the size of the im-

balance phenomenon by varying the amount of attack flows in the training set.

For these experiments, we consider both CICDS2017 and AAGM17 datasets,

which consist of 80% normal flows and 20% attacks. To stress the initial im-

balance condition of these datasets, we consider all the training normal flows,840

and a sample of the attack flows randomly extracted from the training set. In

this way, we generate three new training set trails consisting of: (1) 85% nor-
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Figure 11: Accuracy performance (axis Y), measured with F1-score – F1 – (Figure 11a), Recall

– R – (Figure 11b) and Precision – P – (Figure 11c) – of MAGNETO on AAGM2017Test, by

varying the size of the balance in the final training set (axis X) – the percentage of attacks

on the entire training set – between 20% (original dataset) to 30%, 40% and 50% (augmented

datasets).

mal flows and 15% attacks, (2) 90% normal flows and 10% attack and (3) 95%

normal flows and 5% attacks.

Figures 12a and 12b plot the F1-score measured when both MAGNETO and845

MAGNETO−GAN are trained by varying the initial size of the attack imbalance

in the training sets and tested on the original testing sets, CICDS2017Test and

AAGM17Test, respectively. MAGNETO is run to increase the percentage of

attacks to 50% of the entire training set. We note that diminishing the initial

number of attacks (and consequently stressing the imbalance condition) leads to850

a decrease in the F1-score in both algorithms. However, MAGNETO continues

outperforming MAGNETO−GAN independently of the initial balance degree in

the training set. In short, these results show that, although the data generation

process loses effectiveness as less attack data are available for supervising both

the generator and discriminator of the GAN architecture, the GAN-based im-855

agery data augmentation step still gains accuracy, even when it starts from an

extremely imbalance condition.

5.4.3. GAN vs SMOTE and ADASYS

We compare the performance of the GAN-based imagery data augmentation

step implemented in MAGNETO to that of the state-of-the-art data augmenta-860
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Figure 12: Accuracy (axis Y) measured by F1-score – F1 – of MAGNETO and MAGNETO−GAN

by varying the percentage of initial attacks in the training set (axis X). The F1-score is

computed on CICIDS2017Test (Figure 12a) and AAGM17Test (Figure 12b), respectively.

tion techniques – SMOTE [13]18 and ADASYN [14].19 To this aim, we define

two variants of MAGNETO – denoted as SMOTE and ADASYN. They adopt

the same image encoding of the network traffic data and the same 2D CNN

architecture (described in Sections 3 and 4) as MAGNETO, while they replace

GAN-based data augmentation with SMOTE and ADAYS, respectively.865

Figures 13 and 14 show the F1-score, Recall and Precision of MAGNETO,

SMOTE and ADASYN in CICIDS17 and AAGM17, respectively. The compared

configurations are run with 50/50 balance in the training set. The results yielded

confirm that the GAN-based imagery data augmentation step introduced in this

paper outperforms the considered state-of-the-art data augmentation techniques870

in terms of both F1-score (Figures 13a and 14a) and Precision (Figures 13b and

14b). The behaviour of the compared configurations in terms of Recall (Fig-

ures 13b and 14b) requires additional considerations. In fact, MAGNETO, that

18We use the implementation of SMOTE in https://imbalanced-learn.readthedocs.io/

en/stable/generated/imblearn.over_sampling.SMOTE.html with default parameter set-up.
19We use the implementation of ADASYN in https://imbalanced-learn.readthedocs.

io/en/stable/generated/imblearn.over_sampling.ADASYN.html#imblearn.over_sampling.

ADASYN with a default parameter set-up.
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Figure 13: Accuracy (axis Y) – measured with F1-score – F1 – (Figure 13a), Recall – R

– (Figure 13b) and Precision – P – (Figure 13c) – MAGNETO, SMOTE and ADASYS on

CICIDS2017Test with 50/50 balance in the training set.

MAGNETO SMOTE ADASYN
Algorithm

30

40

50

60

70

80

F1

73.61

30.67
35.16

(a) F1

MAGNETO SMOTE ADASYN
Algorithm

30

40

50

60

70

80

R

68.62

30.12
35.13

(b) R

MAGNETO SMOTE ADASYN
Algorithm

30

40

50

60

70

80

90

P

79.38

31.24
35.19

(c) P

Figure 14: Accuracy (axis Y) – measured with F1-score – F1 – (Figure 14a), Recall – R –

(Figure 14b) and Precision – P – (Figure 14c) – of MAGNETO, SMOTE and ADASYS on

AAGM2017Test with 50/50 balance in the training set.

achieves the highest Recall in AAGM17, exhibits a Recall drop in CICIDS17.

However, examining in depth the overall performance of the three intrusion de-875

tection models learned on CICIDS17, we note that the observed Recall drop is

negligible – it diminishes from 99.91 (ADASYN) and 99.64 (SMOTE) to 99.15

(MAGNETO). On the other hand, the Precision gain is significant – it increases

from 90.10 (ADASYN) and 96.12 (SMOTE) to 98.12 (MAGNETO).

Additional considerations can be formulated to explain the poor performance880

of the data augmentation in SMOTE and ADASYS in AAGM17. To this pur-

pose, we analyze the distribution of the training samples of both CICIDS17

and AAGM17, respectively. They are plotted in Figures 15a and 15b, respec-
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(a) CICID17Train (b) AAGM17Train

Figure 15: Training samples in CICIDS17Train (Figure 15a) and AAGM17 Test (Figure 15b).

The top two principal components of the samples are plotted on the axes X and Y, respectively.

tively, by projecting the top two principal components of the training samples

onto a 2D Cartesian plane. Figure 15a depicts dense clusters of attacks in CI-885

CIDS17Train. Figure 15b highlights salt and pepper attacks in AAGM17Train.

By considering that both SMOTE and ADASYS base the data augmentation on

neighbour samples, neighbourhoods of salt and pepper attacks can reasonably

lead to the construction of non-representative artificial attacks in AAGM17.

5.4.4. GAN + 2D CNN analysis890

To prove the effectiveness of cascading the GAN and the 2D CNN architec-

tures, we compare the accuracy of MAGNETO to that of three baselines that

use the GAN-trained model as a classifier. This analysis is possible as we ac-

count for the class supervision during the learning step for data augmentation

by training a supervised GAN architecture (ACGAN). Specifically, we compare:895

• MAGNETO—the data flow classification is performed with the 2D CNN

model trained on the GAN-augmented training set.

• GAN— the data flow classification is performed with the discriminator

function that has been trained within the GAN architecture, including

also a softmax layer to classify the samples.900
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Figure 16: Accuracy measured by F1-score – F1 – of MAGNETO, GAN, NN1 and NN2 on

CICIDS2017Test (Figure 16a) and AAGM17Test (Figure 16b), respectively

• NN1— the data flow classification is performed by using a deep neural

network that replicates the architecture of the GAN discriminator and

uses initial weights randomly initialized, following the Xavier scheme.

• NN2— the data flow classification is performed by training a deep neural

network that replicates the architecture of the GAN discriminator and905

uses the weights learned with the GAN discriminator as initial weights of

the model.

Figures 16a and 16b plot the F1-score achieved by the compared configura-

tions on CICDS2017Test and AAGM17Test, respectively. The results confirm

that the combination of GAN + 2D CNN adopted in MAGNETO is able to gain910

accuracy in both datasets compared to the architectures using only the GAN

model. On the other hand, the poor performance obtained by considering the

GAN architecture for the classification task can be attributed to the different

task addressed when training the discriminator. In fact, when we train an AC-

GAN architecture, we are able to use the class information also for learning a915

data flow classification function within the discriminator. However, in this con-

text, the learning focus mainly rotates on learning a discriminator that achieves

the best separation between the real samples and the generated ones [116].
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5.5. Competitor analysis

We compare the accuracy performance achieved by MAGNETO to that of920

several competitors selected from the recent state-of-the-art literature. In par-

ticular, we consider the following competitors:

• 1D Convolutional Neural Network-based competitors (1D CNN): CNN-1D

[44], CNN4 [38],MINDFUL [36] and THEODORA [54].

• 2D Convolutional Neural Network-based competitors (2D CNN): Grey-scale925

[20], [21] and RGB [21].

• Long Short-Term Memory Neural Network-based competitor (LSTM): BLSTM

[29].

• Recurrent Neural Network-based competitor (RNN): BRNN [29].

• Deep Neural Network-based competitors (DNN): DNN 4 Layers [117], DNN3930

[118], DNN4 [38], DBN [24] , A+DBN [24], MLP [44], WnD [25], MLP [25],

SAE [25] and AIDA [26].

• GAN Network-based competitors (GAN): AnoGAN [62] [32], Efficient GAN

[31], ALAD [32] and MAD-GAN [33].

Both the 2D CNN-based competitors and the GAN-based competitors are the935

nearest related to MAGNETO. In fact, the 2D CNN-based competitors, similarly

to MAGNETO, experiment various 2D image encoding technique to transform

network flows into imagery data and to train a 2D CNN architecture. In any

case, they all use image encoding techniques that transform 1D vector data

into 2D imagery data without accounting for patterns of inter-feature spatial940

continuity. On the contrary, MAGNETO adapts an image encoding technique,

originally formulated for gene data, to transform network traffic data into im-

ages, depicting contiguity in data intensity across neighbour pixels. This allows

MAGNETO to train deep learning architectures that are effectively able to take

advantage of convolutions on continuous and contiguous data pixels. On the945

other hand, the GAN-based competitors use GAN architectures, but with a goal
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that is different from data balance. In fact, they mainly perform generative

adversarial learning for anomaly detection (i.e. to detect the samples of the

minority class as anomalies). Finally, THEODORA is the other competitor that,

similarly to MAGNETO, tries to increase the number of attacks in the training950

set. However, MAGNETO produces new artificial attacks, which augment the

training set, while THEODORA assigns the label “attack” to normal training

samples that are close to attacking ones.

For all the methods in this comparative study, we collect the Accuracy

and F1-score, as these metrics are commonly provided in the reference stud-955

ies. The collected results are reported in Table 7 for all the datasets. The

results of MAGNETO−GAN are collected on all the datasets. The results with

MAGNETO are collected in CICIDS17 and AAGM17, as both these datasets

present an imbalance condition. These results show that both MAGNETO and

MAGNETO−GAN outperform their competitors, including both the 2D CNN-960

based competitors ( Grey-scale and RGB evaluated on UNSW-NB15 and CI-

CIDS2017 in the reference studies), the GAN-based competitors (AnoGAN, Ef-

ficient GAN, ALAD and MAD-GAN [33], evaluated on KDDCUP99 in the ref-

erence study) and THEODORA (evaluated in all the datasets). The only ex-

ceptions are observed with UNSW-NB15. In this dataset, MAGNETO−GAN is965

outperformed by WnD, MINDFUL, THEODORA and AIDA. However, we note

that WnD uses embedding, while we use the one-hot-encoding of categorical

data and subsequently the autoencoder. So, the difference in the performance

may also be due to the pre-processing stage. On the other hand, MINDFUL,

THEODORA and AIDA, that are at any rate outperformed by both MAGNETO970

and MAGNETO−GAN in the remaining datasets, use richer information than

MAGNETO. In particular, they enrich the vector of the original network traffic

characteristics with new information, that is synthesised through autoencoders

trained on normal data and attack data, separately. This result paves the way

for future developments of MAGNETO, which aim at investigating how the qual-975

ity of the training data can be improved by synthesising normal-based and/or

attack-based information and injecting this information into the image encoding
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Table 7: Competitor analysis: The accuracy metrics of the competitors are collected from the

reference papers. “-” denotes that no value is reported in the reference paper.

Dataset Category Description OA F1

KDDCUP99

MAGNETO−GAN 2D CNN 93.29 95.66

MINDFUL [36] 1D CNN 92.49 95.13

CNN4 [38] 1D CNN 92.47 -

DNN4Layers [117] DNN + Text-based encoding 93.00 95.50

DNN-3 [118] DNN 93.00 95.50

DNN4 [38] DNN 92.88 -

DBN [24] DNN 91.40 -

A+DBN [24] Autoencoder + DBN 92.10 -

BLSTM [29] LSTM - 93.27

BRNN [29] RNN - 91.82

THEODORA [54] 1D CNN + Label re-assignment 92.97 95.46

AIDA [26] Autoencoder + MLP 92.36 95.04

AnoGAN [62] [32] GAN - 88.65

Efficient GAN [31] GAN 93.72

ALAD [32] GAN - 95.01

MAD-GAN [33] GAN - 90.00

UNSW-NB15

MAGNETO−GAN 2D-CNN 89.73 91.97

MINDFUL [36] 1D CNN 93.40 95.29

CNN-1D [44] 1D CNN 89.80 91.30

Grey-scale[20][21] 2D CNN 80.00 84.00

RGB [21] 2D CNN 83.00 86.50

DNN4Layers [117] DNN + Text-based encoding 76.50 90.10

MLP [44] DNN 86.60 88.90

WnD [25] DNN + Embedding 91.20 -

MLP [25] MLP 86.70 -

SAE [25] Autoencoder 88.20 -

THEODORA [54] 1D CNN + Label re-assignment 92.47 94.75

AIDA [26] Autoencoder + MLP 90.54 92.71

CICIDS17

MAGNETO−GAN 2D-CNN 98.49 96.28

MAGNETO 2D-CNN+ GAN 99.48 98.71

MINDFUL [36] 1D CNN 97.90 94.93

Grey-scale [20][21] 2D-CNN - 82.00

RGB [21] 2D-CNN - 89.00

THEODORA [54] 1D CNN + Label re-assignment 98.03 95.25

AIDA [26] Autoencoder + MLP 94.50 85.80

AAGM17

MAGNETO−GAN 2D-CNN 88.03 66.79

MAGNETO 2D-CNN + GAN 90.16 73.61

MINDFUL [36] 1D CNN 86.15 51.62

THEODORA [54] 1D CNN + Label re-assignment 87.62 65.92

AIDA [26] Autoencoder + MLP 86.06 57.78

step.

6. Conclusions

Machine learning methods, formulated in the intrusion detection literature,980

are often not effective in dealing with the imbalance condition of attacks in

47



historical network traffic. In this study we address the network intrusion detec-

tion problem by proposing a multi-stage methodology, denoted as MAGNETO,

that combines image encoding, GAN-based data augmentation and 2D CNN.

In particular, we use an image encoding technique that accounts for patterns of985

inter-feature spatial continuity to map the 1D feature vector representation of

the network flows into a 2D imaging representation of these data. 2D data are

used to train both an ACGAN and a 2D CNN architecture. ACGAN is used

to produce new images of artificial attacks dealing with imbalance and possibly

simulating unforeseen network attacks. 2D CNN is trained on the augmented990

imagery training set as a CNN-based intrusion detection model.

We evaluate the effectiveness of the proposed methodology using four bench-

mark datasets that contain network flows collected in different years. The ex-

perimental analysis proves the viability of the multiple steps of the proposed

methodology. In addition, it proves that MAGNETO gains accuracy compared995

to several, recently defined, state-of-the-art competitors, using deep learning

and, in a few cases, image encoding of data, 2D CNNs and/or GANs.

As future work we plan to explore the effectiveness of the used image en-

coding method, by carrying out experiments using common CNN architectures

like those based on ResNet, Inception or LeNet, as well as new variants of GAN1000

models, such as Wasserstein Generative Adversarial Networks (WGAN)[119] or

Bi-Directional Big GANs (BigBiGAN) [120]. In addition, we plan to explore

how the RGB mapping, that was already explored in [21], can be used in combi-

nation with the image encoding technique used here as a base for an enhanced

imaging representation of the network traffic. We also intend to explore the1005

possibility of gaining accuracy by injecting additional information, expressing

patterns of normal and/or attacking behaviour, into the image encoding step.

In addition, motivated by the increasing interest in intrusion detection sys-

tems able to recognise the attack family, we plan to extend this investigation

to the classification of the intrusion families. Indeed, the evaluation of the per-1010

formance of the proposed binary classification methodology, that we have con-

ducted on datasets comprising different types and number of attack families,

48



has assessed that the proposed methodology can outperform state-of-the-art bi-

nary competitors. However, it has also achieved different results, depending on

the variety of attacks in each dataset. In general, the more varied the attack1015

profiles, the more complex the intrusion detection task and, hence, the lower

the ability of a binary pattern to cover all attack variants simultaneously. To

address this issue, we consider the possibility of formulating a multi-class exten-

sion of the proposed binary classification methodology, in order to classify the

intrusion families. This would require the exploration of the imbalance issue1020

also in relation to the presence of rare attack families within malicious traf-

fic. In principle, the multi-class classification would be possible if we explored

a combination strategy (e.g. one-versus-all or one-versus-one) [121] to frame

the proposed binary methodology in the multi-class scenario. Alternatively,

the multi-class classification could be performed by replacing the binary cross-1025

entropy loss with the categorical cross-entropy loss in the deep neural network

architectures. However, both solutions require further investigation.

Finally, the proposed methodology does not provide detailed information

on the structure and characteristics of different attacks. Therefore, explainable

artificial intelligence techniques (e.g. Grad-CAM [122] or Activation Maximiza-1030

tion [123]) may be an additional research direction here. To this end, we plan to

explore how the information provided by the explanation of image classifications

may aid in identifying a description of the attack signature, by highlighting the

traffic characteristics that are the most relevant for the classification of each

attack family.1035
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