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20 Abstract 
 

21 Arcobacter butzleri is a zoonotic foodborne pathogen able to cause enteric and extraintestinal 
 

22 diseases. Its occurrence in foodstuff is well recognized worldwide but data on its presence in foods 
 

23 from Southern Italy are scarce. In this study the results on the occurrence and genotyping of 
 

24 Arcobacter spp. in bulk milk samples collected in Southern Italy are reported. Out of 484 samples, 
 

25 64 (13.2%) resulted positive for the presence of Arcobacter spp. using Real Time PCR but as few as 
 

26 31.2% of these samples turned out as positive by using the cultural method, showing an overall 
 

27 prevalence of 4.1%. All isolates were identified as A. cryaerophilus using the biochemical 
 

28 identification whilst the sequencing of the atpA gene revealed that all the isolates were A. butzleri. 
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29 Among the confirmed isolates, 16 different Sequence Types (ST) were identified using the Multi 
 

30 Locus Sequence Typing (MLST), 14 (87.5 %) of which were previously unreported. Our survey 
 

31 reveals the presence of A. butzleri in bulk tank milk from Southern Italy and highlights the 
 

32 discrepancy between the two approaches used both for the detection (i.e., real time PCR vs cultural method) 
 

33 and the identification (i.e., biochemical test vs aptA sequencing) of Arcobacter spp In addition, a large 
 

34 genetic diversity among the isolates was detected and this makes the identification of source of the 
 

35 infections very challenging in outbreaks investigation. 
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40 Introduction 
 

41 Arcobacter spp. has been associated with human and animal disease and it is considered an 
 

42 important foodborne pathogen (Collado and Figueras, 2011; Ho et al., 2006). The true incidence of 
 

43 human infections associated with Arcobacter is unknown, because these bacteria are not routinely 
 

44 investigated during human diarrheal diseases. In addition to this, a standardized protocol for their 
 

45 detection and characterization is not available (Collado and Figueras, 2011; Figueras et al., 2014). 
 

46 Among the several known Arcobacter species, A. butzleri, A. cryaerophilus and A. skirrowii have 
 

47 been recognized as those of clinical importance for animals and humans (Collado et al., 2011; 
 

48 Figueras at al., 2014; Hsu and Lee, 2015; Peréz-Cataluña et al., 2018; Ramees et al., 2017; 
 

49 Whiteduck-Léveillée et al., 2015). In humans, these species have been associated with enterocolitis, 
 

50 peritonitis and bacteremia (Jiang et al., 2010; Lappi et al., 2013; Mottola et al., 2016a; Webb et al., 
 

51 2016), while in animals they can cause gastroenteritis, mastitis, bacteremia and reproductive 
 

52 disorders (Arguello et al., 2015; Ho et al., 2006; Logan et al., 1982; Van Driessche and Houf, 2008; 
 

53 Whiteduck-Léveillée et al., 2016). Although the infectious dose has not yet been established, point- 
 

54 source outbreaks caused by Arcobacter spp. have been associated with well water ingestion, or with 
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55 the handling or consumption of contaminated raw or poorly-cooked animal food products. Also, 
 

56 direct contact with infected animals has been reported as a potential source of human infection 
 

57 (Fernandez et al., 2015). In fact, the presence of Arcobacter has been documented worldwide from 
 

58 a wide range of sources and hosts with A. butzleri as the most prevalent species, followed by A. 
 

59 cryaerophilus and A. skirrowii (Collado and Figueras, 2011; Fallas-Padilla et al., 2014; Ramees et 
 

60 al., 2017). Arcobacter spp. have also been isolated from faeces of healthy and sick humans and 
 

61 animals, including cattle, poultry, small ruminants, pigs and wild-living birds (Bogantes et al., 
 

62 2015; Collado et al., 2009; Van Driessche et al., 2003; Ottaviani et al., 2017). In addition, 
 

63 Arcobacter have been detected from different foods such as fresh and ready to eat vegetables 
 

64 (González and Ferrús, 2011; González et al., 2017; Mottola et al., 2016b), meat and meat products 
 

65 (Rivas et al., 2004; Rahimi, 2014, Lehmann et al., 2015), shellfish (Leoni et al., 2017; Levican et 
 

66 al., 2014; Mottola et al., 2016a), fish (Laishram et al., 2016), eggs (Lee et al., 2016) and drinking 
 

67 water (Ertas et al., 2010; Jalava et al., 2014; Jacob et al., 1998). However, for better evaluating the 
 

68 foodborne risk linked to Arcobacter spp., more information on its occurrence in foods is needed 
 

69 (Lappi et al., 2013). Regarding milk and dairy products, the detection of Arcobacter from these 
 

70 foodstuffs has been also reported (Logan et al., 1982; Pianta et al., 2007; Scullion et al., 2006) but 
 

71 data on the occurrence of Arcobacter spp. in raw milk are still scarce (Shah et al., 2011). In Italy, 19 
 

72 million tons of cow’s milk are produced every year (www.agri.istat.it), mostly intended for cheese 
 

73 making or direct consumption as pasteurized or sterilized milk. However, in the last few years, the 
 

74 sale of raw milk for direct consumption via vending machines could have increased the risk of 
 

75 contact between humans and zoonotic agents (Haran et al., 2012). Our work aims at improving the 
 

76 knowledge on the occurrence of Arcobacter spp. and its molecular characterization in bulk tank 
 

77 milk (BTM) samples collected in Southern Italy. 

 
78 

 
79 

 
80 
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81 2. Matherials and methods 

 

82 2.1 Sampling 

 

83 The survey investigated two Italian Regions, Apulia and Basilicata, located in Southern Italy. 
 

84 On the whole, in these Regions are located 1.230 dairy farms with approximate 130.000 animals 
 

85 (www.vetinfo.it). A total of 484 BTM samples, corresponding to 39.4% of the total number of 
 

86 farms, were collected during 2014 to 2015. Specifically, the samples were from 396 dairy farms in 
 

87 Apulia and from 88 in Basilicata. The samples were aseptically collected in 500-mL sterile plastic 
 

88 containers, carried to laboratory in cooled containers within 24 hours after the of sampling. Samples 
 

89 were stored at -80 °C until analyzed. 

 
90 

 

91 2.2. Samples processing 
 

92 BTM samples were defrosted and mixed using an agitator; then, 10 mL of milk were added to 
 

93 90 mL of Arcobacter broth (Oxoid, Milan, Italy) supplemented with Cefoperazone, Amphotericin B 
 

94 and Teicoplanin (CAT selective supplement SR0174E; Oxoid) in sterile bags and homogenized 
 

95 using a stomacher (PBI International, Milan, Italy) at 11.000 rev min -1 for 1 min. Then, the bags 
 

96 were incubated at 30 °C under microaerophilic conditions (5% O2, 10% CO2, 85% N2) by means of 
 

97 the CampyGen gas generating system (Oxoid) for 48 h. 

 
98 

 
99 

 

100 2.3 Molecular screening 
 

101 2.3.1 DNA extraction from enrichment broth 
 

102 After incubation, 1 mL of enrichment broth was centrifuged at 13.000 rpm for 5 min at room 
 

103 temperature. The supernatant was discarded and the pellet was subjected to DNA extraction using 
 

104 the heat lysis and snap chilling method as described by Rasmussen et al., 2013 with some 
 

105 modifications. Briefly, 200 µL of sterile distilled water was added to the pellet and boiled in a water 
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106 bath at 100 °C for 15 minutes. The cell lysate was immediately transferred into ice and centrifuged 
 

107 at 13.000 rpm for 2 minutes. Supernatant was collected and used as DNA template for direct real- 
 

108 time PCR detection. 

 
109 109 

 

110 2.3.2 Real-time PCR 
 

111 Genus specific real-time PCR was performed in order to screen the presence of Arcobacter 
 

112 spp. directly on the bacterial lysate. The reactions were performed in a final volume of 25 µL, using 
 

113 1.25 µL EvaGreen 20X (Biotium, Hayward, USA), 0.2 nM of each dNTP, 2.5 µL of HotMaster Taq 
 

114 Buffer 10X (5PRIME, Hilden, Germany), 1 U of HotMaster Taq DNA Polymerase (5PRIME, 
 

115 Hilden, Germany), 5 pmol of each oligonucleotide primer and 2 µL of DNA template. The 
 

116 oligonucleotide primers used in this study (Arco-Fw and Arco-Rv), described by Gonzàlez et al., 
 

117 2014. The amplification profile was carried out as follows: 95 °C for 3 min, followed by 40 cycles 
 

118 consisting of 94 °C for 1 min, 60 °C for 1 min, and 72 °C for 1 min. A. butzleri ATCC 46916T, A. 
 

119 cryaerophilus ATCC 43158T and A. skirrowii ATCC 51132 were used as positive controls. In order 
 

120 to identify nonspecific products, the melting curve was generated at the end of each run, thus 
 

121 exposing the final PCR product to a temperature gradient from about 60 °C to 90 °C in 20 min. The 
 

122 PCR reactions were processed in Applied Biosystems® 7500 Fast Real-Time PCR System (Thermo 
 

123 Fisher Scientific, USA). All reactions were performed in duplicate. 

 
124 124 

 

125 2.4 Isolation and biochemical identification of Arcobater spp. 
 

126 Ten mL of real-time PCR Arcobacter spp. positive enrichment broths were filtered using 0.45 
 

127 µm membrane filters (Sartorius Stedim Biotech GmbH, Germany). Then, 200 µL of each filtered 
 

128 sample were   streaked   in   parallel   on   Columbia   Blood,   Modified   Charcoal   Cefoperazone 
 

129 Deoxycholate (MCCD) and Karmali Agar plates (Oxoid). Plates were incubated at 30 °C under 
 

130 microaerophilic conditions (5% O2, 10% CO2, 85% N2) as described above, for 3-4 days. After 
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131 incubation, five typical Arcobacter spp. colonies for each sample were picked, subcultured onto 
 

132 Columbia Blood Agar and incubated for 48 h at 30 °C under microaerophilic conditions. 
 

133 The colonies were confirmed morphologically by Gram staining and by determination of oxidase 
 

134 (Oxidase strips, Oxoid Microbact, Basingstoke, UK) and catalase activity (Mottola et al., 2016a; 
 

135 Mottola et al, 2016b). In addition, presumptive Arcobacter spp. colonies were further subjected to 
 

136 biochemical identification using API Campy® bioMerièux. The colonies identified as Arcobacter 
 

137 spp. were transferred onto Arcobacter broth (Oxoid, Basingstoke, UK) and incubated at 30 °C for 
 

138 48 h. 

 
139 

 

140 2.5 Molecular identification and MLST typing of Arcobacter isolates 
 

141 The extraction of DNA of isolates previously identified as Arcobacter spp. was performed 
 

142 using the GenomicPrep® kit (GE Helthcare. Illinois, USA) following the manufacturer’s 
 

143 instructions. The identification of the Arcobacter isolates was determined using the atpA gene 
 

144 sequencing as described by Miller at al., 2014. 
 

145 MLST was carried out on one identified isolate per positive sample using primers and conditions 
 

146 described by Miller et al., 2009. Specifically, the amplification and the sequencing of the seven 
 

147 housekeeping genes (aspA, atpA, glnA, gltA, glyA, pgm and tkt) included in the Arcobacter scheme 
 

148 of the PubMLST database were performed (http://pubmlst.org/arcobacter/). 
 

149 The PCR products were purified using ExoSAP-IT according to supplier recommendations (GE 
 

150 Healthcare). Sequence reactions were carried out using BigDye 3.1 Ready reaction mix (Life 
 

151 Technologies) according to the manufacturer’s instructions. The sequenced products were separated 
 

152 with a 3130 Genetic Analyzer (Life Technologies). Sequences were imported and assembled with 
 

153 Bionumerics 7.6 software (Applied Maths, Belgium). Any new alleles and STs were assigned by 
 

154 submitting the DNA sequences to the Arcobacter MLST database (https://pubmlst.org/arcobacter/). 

 
155 155 

 
156 156 

http://pubmlst.org/arcobacter/)
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157 3. Results 

 

158 3.1 Molecular screening 

 

159 The Real-Time PCR performed on enrichment broth from each BTM sample gave positive 
 

160 results for Arcobacter spp. in 64/484 (13.2 %) BTM samples. Specifically, all the positive samples 
 

161 were from Apulia (64/396) and none of Basilicata samples were positive for Arcobacter spp. 

 

162 3.2 Confirmation of Real-Time PCR screening by cultural methods and identification of Arcobacter 
 

163 isolates 
 

164 The cultural analysis carried out on the 64 Real-Time PCR positive enrichment broth showed 
 

165 typical Arcobacter colonies in 20 (31.2%) samples. On the whole, 4.1 % of BTM samples were 
 

166 positive for Arcobacter spp. Biochemical tests identified all isolates as A. cryaerophilus. Since the 
 

167 API Campy® test misidentifies all Arcobacter species as A. cryaerophilus, all the isolates identified 
 

168 as A. cryaerophilus were considered Arcobacter spp. The sequencing of the atpA gene revealed that 
 

169 all the isolates were A. butzleri. 

 
170 170 

 

171 3.3 Multi-Locus Sequence Typing 
 

172 All the 20 A. butzleri isolates were successfully typed by MLST allowing the identification of 
 

173 81 alleles of which 15 (18.5%) were previously unreported. A total of 16 STs were identified of 
 

174 which 14 (87.5 %) STs were previously unreported and resulted from new allele’s sequences 
 

175 (Table 1). 

 
176 176 

 

177 4. Discussion 

 

178 Arcobacter spp., is an important pathogen with an increasing interest for public health and 
 

179 food safety because of its frequent detection in different foods and its link to gastrointestinal 
 

180 diseases in humans (Fong et al., 2007). In addition, it represents a common pathogen isolated from 
 

181 fecal samples from people with acute enteric disease and it is responsible for traveler’s diarrhea 
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182 (Collado and Figueras, 2011; Figueras et al., 2014; Van den Abeele et al., 2014). In order to 
 

183 perform proper food safety risk assessments, data on the presence of Arcobacter spp. and related 
 

184 genotypes circulating in foods are needed. Given the identification of Arcobacter spp. (especially A. 
 

185 butzleri) in raw milk and the evidence of Arcobacter spp. transmission to human that is also 
 

186 possible through the consumption or handling of contaminated raw milk led researchers to have 
 

187 more attention in this subject. Therefore, many authors focused their research on the topic through 
 

188 publication of data on Arcobacter spp. prevalences in Europe, Asia and Southern America (Ertas et 
 

189 al., 2010; Milesi, 2010; Pianta et al., 2007; Revez et al., 2013; Scullion et al., 2006; Serraino et al., 
 

190 2013a; Shah et al., 2012; Yesilmen et al., 2014). Surveys on BTM detected prevalence rates of 
 

191 5.8%, 15% and 46% in Malaysia, Finland and Northern Ireland, respectively (Revez et al., 2013; 
 

192 Scullion et al., 2006; Shah et al., 2012). In our survey the prevalence of Arcobacter spp. in BTM 
 

193 samples was low (4.1%) if compared to other Italian studies reporting a prevalence rate of 26% in 
 

194 BTM produced in Nothern Italy and of 57% as a result of an on in-line milk filters survey of dairy 
 

195 farms authorized to produce raw milk for direct human consumption (Milesi, 2010; Serraino et al., 
 

196 2013a). Many factors could explain the remarkable difference between the prevalence rates reported 
 

197 in literature, such as, the different sampling methods, the absence of a standardized protocol for the 
 

198 detection of Arcobacter, but also the hygienic standard protocols adopted on farms, the feeding 
 

199 type, the climate, etc. (Collado and Figueras 2011; Hsu and Lee, 2015). In our study, all the isolates 
 

200 were identified as A. butzleri by molecular methods; these results were in agreement with other 
 

201 studies where A. butzleri was the main species isolated from raw milk and dairy plants (Ertas et al., 
 

202 2010; Giacometti et al., 2015a; Ferreira et al., 2017; Milesi, 2010; Nieva-Echevarria et al., 2013; 
 

203 Pianta et al., 2007; Shah et al. 2012; Revez et al., 2013: Scuillon et al., 2006; Yesilmen et al., 
 

204 2014). On the other hand, A. butzleri was the only species isolated probably because of the lack of 
 

205 standardized isolation protocols for Arcobacter spp. other than A. butzleri. In fact, our isolation 
 

206 procedure requires the use of an enrichment step that promotes the growth of A. butzleri which 
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207 could mask the presence of other Arcobacter species (Levican et al. 2016). This could represent a 
 

208 procedure’s drawback. 
 

209 Furthermore, the difference in findings between the molecular screening and cultural analysis are 
 

210 probably due to the viable but non-culturable (VNC) state of Arcobacter spp. in response to adverse 
 

211 environmental conditions (Mottola et al., 2016a) or to the presence of free DNA deriving from dead 
 

212 bacterial cells. Notably, our study highlighted that a strong discrepancy between the biochemical 
 

213 and the molecular identification of Arcobacter exists. In fact, all the isolates were identified as A. 
 

214 cryaerophilus using a miniaturize biochemical identification kit and as A. butzleri when using the 
 

215 molecular approach. This could be due to the difficult of identification of Arcobacter at species 

 

216 level by biochemical tests; in fact the API Campy® test misidentifies all Arcobacter species as A. 
 

217 cryaerophilus These findings are noteworthy because they show that the epidemiological studies 
 

218 carried out  using one or other identification  method  could  have been affected by the chosen 
 

219 technique. 
 

220 The ability of A. butzleri to grow between 4 and 10 °C, to survive to sanitizing procedures and 
 

221 adhere to glass, stainless steel and plastic surfaces and to form biofilm, could promote its survival, 
 

222 colonization and persistence in farms, milking equipment and dairy plants, becoming a source of 
 

223 contamination for milk and dairy products (Assanta et al., 2002; Kjeldgaard et al., 2009; 
 

224 Rasmussen et al., 2013; Mottola et al., 2016 a,b; Giacometti et al., 2014;2015 a,b; Badilla-Ramírez 
 

225 et al. 2016; Serraino et al., 2013 a,b; Serraino and Giacometti, 2014). Contaminated raw milk and 
 

226 dairy products represent a potential source of human infections, having significant food safety and 
 

227 human health implications, especially for immunocompromised people for which the consumption 
 

228 of cheese manufactured from unpasteurized milk in small processing facilities employing traditional 
 

229 production technologies could represent a risk factor (Giacometti et al., 2015 b; Serraino et al., 
 

230 2013 a). 
 

231 It is well known that Arcobacter spp. population show a great genetic diversity hindering the 
 

232 epidemiologic studies, especially when the source of infection must be traced. In our study, among 
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233 20 genotyped isolates, five belonged to the already known ST66 and ST420. Both genotypes ST66 
 

234 and ST420 were reported in a previous survey on dairy plants in Italy (De Cesare et al., 2016) . The 
 

235 detection of the genotypes ST66 and ST420 from our samples, supports the hypothesis that some 
 

236 genotypes could be associated with specific foods. Our study led to the identification of new alleles 
 

237 and new STs, confirming that the A. butzleri population has a great genetic diversity (Alonso et al., 
 

238 2014; De Cesare et al., 2015; Merga et al., 2011; Merga et al., 2013; Miller et al., 2009; Perez- 
 

239 Cataluna et al., 2017; Rasmussen et al., 2013). In fact, in the present study the 87.5 % of the 
 

240 detected STs were unreported; the presence of new alleles among the seven analysed loci, or from 
 

241 new combinations of known alleles, highlights a high diversity among the strains and confirms that 
 

242 recombination is possible in A. butzleri (Alonso et al., 2014). Among new alleles, the gene glyA 
 

243 was the most diverse, confirming the diversity observed by Pérez-Cataluña et al. (2017). 
 

244 On the other hand, other authors have also reported a high heterogeneity among isolates using 
 

245 different genotyping techniques such as Pulsed-Field Gel Electrophoresis (PFGE), Multiple Locus 
 

246 Variable-Number Tandem Repeat Analysis (MLVA), Amplified Fragment Length Polymorphism 
 

247 (AFLP), Random Amplification of Polymorphic DNA (RAPD), and Enterobacterial Repetitive 
 

248 Intergenic Consensus (ERIC-PCR) (Forsythe, 2006; Douidah et al., 2014; Ramees et al., 2014). 
 

249 However, in comparison with other genotyping methods, MLST is a good typing method because it 
 

250 gives fast and comparable results, and has been used as a routine molecular typing procedure for 
 

251 Arcobacter spp. in several studies (Ramees et al., 2014). 
 

252 In conclusion, our study clearly shows the presence of A. butzleri in BTM in Southern Italy and a 
 

253 large genetic diversity between the isolates, contributing effectively to fill up the knowledge gap on 
 

254 this foodborne pathogen. The presence of A. butzleri in raw milk, could represent a hazard for 
 

255 consumers; thus, its presence should be carefully taken into account by both dairy food business 
 

256 operators and competent authority for reducing the foodborne risk linked to this pathogen. 

 
257 257 

 
258 258 
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Table 1 A. butzleri MLST analysis results. 
 
 

Isolate Herd aspA atpA glnA gltA glyA pgm tkt ST 

1 Herd 27 15 10 1 17 19 2 13 66 

2 Herd 34 15 10 1 17 19 2 13 66 

3 Herd 38 6 23 1 11 494 58 199 627 

4 Herd 63 48 25 41 19 487 101 272 633 

5 Herd 64 15 10 1 17 186 102 13 628 

6 Herd 70 77 209 1 17 637 339 199 634 

7 Herd 155 5 5 9 15 120 7 6 629 

8 Herd 166 20 39 34 19 104 340 51 635 

9 Herd 167 23 17 17 19 461 11 65 630 

10 Herd 184 209 15 186 48 638 74 86 646 

11 Herd 227 5 5 5 15 66 11 10 420 

12 Herd 241 309 210 4 146 467 58 14 636 

13 Herd 242 20 20 11 19 639 255 11 647 

14 Herd 244 13 12 1 208 640 290 165 648 

15 Herd 261 310 133 11 19 19 123 271 637 

16 Herd 271 20 12 11 19 458 11 10 631 

17 Herd 274 15 10 1 17 19 2 13 66 

18 Herd 312 5 5 5 15 66 11 10 420 

19 Herd 344 48 25 41 19 487 101 272 633 

20 Herd 351 17 15 15 12 66 102 17 632 
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36 Abstract 
 

37 Arcobacter butzleri is a zoonotic foodborne pathogen able to cause enteric and extraintestinal 
 

38 diseases. Its occurrence in foodstuff is well recognized worldwide but data on its presence in foods 
 

39 from Southern Italy are scarce. In this study the results on the occurrence and genotyping of 
 



2 

 

 

40 Arcobacter spp. in bulk milk samples collected in Southern Italy are reported. Out of 484 samples, 
 

41 64 (13.2%) resulted positive for the presence of Arcobacter spp. using Real Time PCR but as few as 
 

42 31.2% of these samples turned out as positive by using the cultural method, showing an overall 
 

43 prevalence of 4.1%. All isolates were identified as A. cryaerophilus using the biochemical 
 

44 identification whilst the sequencing of the atpA gene revealed that all the isolates were A. butzleri. 
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45 Among the confirmed isolates, 16 different Sequence Types (ST) were identified using the Multi 
 

46 Locus Sequence Typing (MLST), 14 (87.5 %) of which were previously unreported. Our survey 
 

47 reveals the presence of A. butzleri in bulk tank milk from Southern Italy and highlights the 
 

48 discrepancy between the two approaches used both for the detection (i.e., real time PCR vs cultural method) 
 

49 and the identification (i.e., biochemical test vs aptA sequencing) of Arcobacter spp In addition, a large 
 

50 genetic diversity among the isolates was detected and this makes the identification of source of the 
 

51 infections very challenging in outbreaks investigation. 

 
36 
 

39 Key Words: Arcobacter, Genotyping, Multi Locus Sequence Typing (MLST), Real-time PCR, 
 

40 Bulk Tank Milk 
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78 Introduction 
 

79 Arcobacter spp. has been associated with human and animal disease and it is considered an 
 

80 important foodborne pathogen (Collado and Figueras, 2011; Ho et al., 2006). The true incidence of 
 

81 human infections associated with Arcobacter is unknown, because these bacteria are not routinely 
 

82 investigated during human diarrheal diseases. In addition to this, a standardized protocol for their 
 

83 detection and characterization is not available (Collado and Figueras, 2011; Figueras et al., 2014). 
 

84 Among the several known Arcobacter species, A. butzleri, A. cryaerophilus and A. skirrowii have 
 

85 been recognized as those of clinical importance for animals and humans (Collado et al., 2011; 
 

86 Figueras at al., 2014; Hsu and Lee, 2015; Peréz-Cataluña et al., 2018; Ramees et al., 2017; 
 

87 Whiteduck-Léveillée et al., 2015). In humans, these species have been associated with enterocolitis, 
 

88 peritonitis and bacteremia (Jiang et al., 2010; Lappi et al., 2013; Mottola et al., 2016a; Webb et al., 
 

89 2016), while in animals they can cause gastroenteritis, mastitis, bacteremia and reproductive 
 

90 disorders (Arguello et al., 2015; Ho et al., 2006; Logan et al., 1982; Van Driessche and Houf, 2008; 
 

91 Whiteduck-Léveillée et al., 2016). Although the infectious dose has not yet been established, point- 
 

92 source outbreaks caused by Arcobacter spp. have been associated with well water ingestion, or with 
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93 the handling or consumption of contaminated raw or poorly-cooked animal food products. Also, 
 

94 direct contact with infected animals has been reported as a potential source of human infection 
 

95 (Fernandez et al., 2015). In fact, the presence of Arcobacter has been documented worldwide from 
 

96 a wide range of sources and hosts with A. butzleri as the most prevalent species, followed by A. 
 

97 cryaerophilus and A. skirrowii (Collado and Figueras, 2011; Fallas-Padilla et al., 2014; Ramees et 
 

98 al., 2017). Arcobacter spp. have also been isolated from faeces of healthy and sick humans and 
 

99 animals, including cattle, poultry, small ruminants, pigs and wild-living birds (Bogantes et al., 
 

100 2015; Collado et al., 2009; Van Driessche et al., 2003; Ottaviani et al., 2017). In addition, 
 

101 Arcobacter have been detected from different foods such as fresh and ready to eat vegetables 
 

102 (González and Ferrús, 2011; González et al., 2017; Mottola et al., 2016b), meat and meat products 
 

103 (Rivas et al., 2004; Rahimi, 2014, Lehmann et al., 2015), shellfish (Leoni et al., 2017; Levican et 
 

104 al., 2014; Mottola et al., 2016a), fish (Laishram et al., 2016), eggs (Lee et al., 2016) and drinking 
 

105 water (Ertas et al., 2010; Jalava et al., 2014; Jacob et al., 1998). However, for better evaluating the 
 

106 foodborne risk linked to Arcobacter spp., more information on its occurrence in foods is needed 
 

107 (Lappi et al., 2013). Regarding milk and dairy products, the detection of Arcobacter from these 
 

108 foodstuffs has been also reported (Logan et al., 1982; Pianta et al., 2007; Scullion et al., 2006) but 
 

109 data on the occurrence of Arcobacter spp. in raw milk are still scarce (Shah et al., 2011). In Italy, 19 
 

110 million tons of cow’s milk are produced every year (www.agri.istat.it), mostly intended for cheese 
 

111 making or direct consumption as pasteurized or sterilized milk. However, in the last few years, the 
 

112 sale of raw milk for direct consumption via vending machines could have increased the risk of 
 

113 contact between humans and zoonotic agents (Haran et al., 2012). Our work aims at improving the 
 

114 knowledge on the occurrence of Arcobacter spp. and its molecular characterization in bulk tank 
 

115 milk (BTM) samples collected in Southern Italy. 

 
78 

 
79 

 
80 
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90 2. Matherials and methods 

 

91 2.1 Sampling 

 

92 The survey investigated two Italian Regions, Apulia and Basilicata, located in Southern Italy. 
 

93 On the whole, in these Regions are located 1.230 dairy farms with approximate 130.000 animals 
 

94 (www.vetinfo.it). A total of 484 BTM samples, corresponding to 39.4% of the total number of 
 

95 farms, were collected during 2014 to 2015. Specifically, the samples were from 396 dairy farms in 
 

96 Apulia and from 88 in Basilicata. The samples were aseptically collected in 500-mL sterile plastic 
 

97 containers, carried to laboratory in cooled containers within 24 hours after the of sampling. Samples 
 

98 were stored at -80 °C until analyzed. 

 
90 

 

98 2.2. Samples processing 
 

99 BTM samples were defrosted and mixed using an agitator; then, 10 mL of milk were added to 
 

100 90 mL of Arcobacter broth (Oxoid, Milan, Italy) supplemented with Cefoperazone, Amphotericin B 
 

101 and Teicoplanin (CAT selective supplement SR0174E; Oxoid) in sterile bags and homogenized 
 

102 using a stomacher (PBI International, Milan, Italy) at 11.000 rev min -1 for 1 min. Then, the bags 
 

103 were incubated at 30 °C under microaerophilic conditions (5% O2, 10% CO2, 85% N2) by means of 
 

104 the CampyGen gas generating system (Oxoid) for 48 h. 

 
98 

 
99 
 

138 2.3 Molecular screening 
 

139 2.3.1 DNA extraction from enrichment broth 
 

140 After incubation, 1 mL of enrichment broth was centrifuged at 13.000 rpm for 5 min at room 
 

141 temperature. The supernatant was discarded and the pellet was subjected to DNA extraction using 
 

142 the heat lysis and snap chilling method as described by Rasmussen et al., 2013 with some 
 

143 modifications. Briefly, 200 µL of sterile distilled water was added to the pellet and boiled in a water 
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144 bath at 100 °C for 15 minutes. The cell lysate was immediately transferred into ice and centrifuged 
 

145 at 13.000 rpm for 2 minutes. Supernatant was collected and used as DNA template for direct real- 
 

146 time PCR detection. 

 
147 109 

 

148 2.3.2 Real-time PCR 
 

149 Genus specific real-time PCR was performed in order to screen the presence of Arcobacter 
 

150 spp. directly on the bacterial lysate. The reactions were performed in a final volume of 25 µL, using 
 

151 1.25 µL EvaGreen 20X (Biotium, Hayward, USA), 0.2 nM of each dNTP, 2.5 µL of HotMaster Taq 
 

152 Buffer 10X (5PRIME, Hilden, Germany), 1 U of HotMaster Taq DNA Polymerase (5PRIME, 
 

153 Hilden, Germany), 5 pmol of each oligonucleotide primer and 2 µL of DNA template. The 
 

154 oligonucleotide primers used in this study (Arco-Fw and Arco-Rv), described by Gonzàlez et al., 
 

155 2014. The amplification profile was carried out as follows: 95 °C for 3 min, followed by 40 cycles 
 

156 consisting of 94 °C for 1 min, 60 °C for 1 min, and 72 °C for 1 min. A. butzleri ATCC 46916T, A. 
 

157 cryaerophilus ATCC 43158T and A. skirrowii ATCC 51132 were used as positive controls. In order 
 

158 to identify nonspecific products, the melting curve was generated at the end of each run, thus 
 

159 exposing the final PCR product to a temperature gradient from about 60 °C to 90 °C in 20 min. The 
 

160 PCR reactions were processed in Applied Biosystems® 7500 Fast Real-Time PCR System (Thermo 
 

161 Fisher Scientific, USA). All reactions were performed in duplicate. 
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163 2.4 Isolation and biochemical identification of Arcobater spp. 
 

164 Ten mL of real-time PCR Arcobacter spp. positive enrichment broths were filtered using 0.45 
 

165 µm membrane filters (Sartorius Stedim Biotech GmbH, Germany). Then, 200 µL of each filtered 
 

166 sample were   streaked   in   parallel   on   Columbia   Blood,   Modified   Charcoal   Cefoperazone 
 

167 Deoxycholate (MCCD) and Karmali Agar plates (Oxoid). Plates were incubated at 30 °C under 
 

168 microaerophilic conditions (5% O2, 10% CO2, 85% N2) as described above, for 3-4 days. After 
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169 incubation, five typical Arcobacter spp. colonies for each sample were picked, subcultured onto 
 

170 Columbia Blood Agar and incubated for 48 h at 30 °C under microaerophilic conditions. 
 

171 The colonies were confirmed morphologically by Gram staining and by determination of oxidase 
 

172 (Oxidase strips, Oxoid Microbact, Basingstoke, UK) and catalase activity (Mottola et al., 2016a; 
 

173 Mottola et al, 2016b). In addition, presumptive Arcobacter spp. colonies were further subjected to 
 

174 biochemical identification using API Campy® bioMerièux. The colonies identified as Arcobacter 
 

175 spp. were transferred onto Arcobacter broth (Oxoid, Basingstoke, UK) and incubated at 30 °C for 
 

138 48 h. 

 
139 
 

230 2.5 Molecular identification and MLST typing of Arcobacter isolates 
 

231 The extraction of DNA of isolates previously identified as Arcobacter spp. was performed 
 

232 using the GenomicPrep® kit (GE Helthcare. Illinois, USA) following the manufacturer’s 
 

233 instructions. The identification of the Arcobacter isolates was determined using the atpA gene 
 

234 sequencing as described by Miller at al., 2014. 
 

235 MLST was carried out on one identified isolate per positive sample using primers and conditions 
 

236 described by Miller et al., 2009. Specifically, the amplification and the sequencing of the seven 
 

237 housekeeping genes (aspA, atpA, glnA, gltA, glyA, pgm and tkt) included in the Arcobacter scheme 
 

238 of the PubMLST database were performed (http://pubmlst.org/arcobacter/). 
 

239 The PCR products were purified using ExoSAP-IT according to supplier recommendations (GE 
 

240 Healthcare). Sequence reactions were carried out using BigDye 3.1 Ready reaction mix (Life 
 

241 Technologies) according to the manufacturer’s instructions. The sequenced products were separated 
 

242 with a 3130 Genetic Analyzer (Life Technologies). Sequences were imported and assembled with 
 

243 Bionumerics 7.6 software (Applied Maths, Belgium). Any new alleles and STs were assigned by 
 

244 submitting the DNA sequences to the Arcobacter MLST database (https://pubmlst.org/arcobacter/). 

 
245 155 

 
246 156 

http://pubmlst.org/arcobacter/)
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247 3. Results 

 

248 3.1 Molecular screening 

 

249 The Real-Time PCR performed on enrichment broth from each BTM sample gave positive 
 

250 results for Arcobacter spp. in 64/484 (13.2 %) BTM samples. Specifically, all the positive samples 
 

251 were from Apulia (64/396) and none of Basilicata samples were positive for Arcobacter spp. 

 

252 3.2 Confirmation of Real-Time PCR screening by cultural methods and identification of Arcobacter 
 

253 isolates 
 

254 The cultural analysis carried out on the 64 Real-Time PCR positive enrichment broth showed 
 

255 typical Arcobacter colonies in 20 (31.2%) samples. On the whole, 4.1 % of BTM samples were 
 

256 positive for Arcobacter spp. Biochemical tests identified all isolates as A. cryaerophilus. Since the 
 

257 API Campy® test misidentifies all Arcobacter species as A. cryaerophilus, all the isolates identified 
 

258 as A. cryaerophilus were considered Arcobacter spp. The sequencing of the atpA gene revealed that 
 

259 all the isolates were A. butzleri. 

 
260 170 

 

261 3.3 Multi-Locus Sequence Typing 
 

262 All the 20 A. butzleri isolates were successfully typed by MLST allowing the identification of 
 

263 81 alleles of which 15 (18.5%) were previously unreported. A total of 16 STs were identified of 
 

264 which 14 (87.5 %) STs were previously unreported and resulted from new allele’s sequences 
 

265 (Table 1). 

 
266 176 

 

267 4. Discussion 

 

268 Arcobacter spp., is an important pathogen with an increasing interest for public health and 
 

269 food safety because of its frequent detection in different foods and its link to gastrointestinal 
 

270 diseases in humans (Fong et al., 2007). In addition, it represents a common pathogen isolated from 
 

271 fecal samples from people with acute enteric disease and it is responsible for traveler’s diarrhea 
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272 (Collado and Figueras, 2011; Figueras et al., 2014; Van den Abeele et al., 2014). In order to 
 

273 perform proper food safety risk assessments, data on the presence of Arcobacter spp. and related 
 

274 genotypes circulating in foods are needed. Given the identification of Arcobacter spp. (especially A. 
 

275 butzleri) in raw milk and the evidence of Arcobacter spp. transmission to human that is also 
 

276 possible through the consumption or handling of contaminated raw milk led researchers to have 
 

277 more attention in this subject. Therefore, many authors focused their research on the topic through 
 

278 publication of data on Arcobacter spp. prevalences in Europe, Asia and Southern America (Ertas et 
 

279 al., 2010; Milesi, 2010; Pianta et al., 2007; Revez et al., 2013; Scullion et al., 2006; Serraino et al., 
 

280 2013a; Shah et al., 2012; Yesilmen et al., 2014). Surveys on BTM detected prevalence rates of 
 

281 5.8%, 15% and 46% in Malaysia, Finland and Northern Ireland, respectively (Revez et al., 2013; 
 

282 Scullion et al., 2006; Shah et al., 2012). In our survey the prevalence of Arcobacter spp. in BTM 
 

283 samples was low (4.1%) if compared to other Italian studies reporting a prevalence rate of 26% in 
 

284 BTM produced in Nothern Italy and of 57% as a result of an on in-line milk filters survey of dairy 
 

285 farms authorized to produce raw milk for direct human consumption (Milesi, 2010; Serraino et al., 
 

286 2013a). Many factors could explain the remarkable difference between the prevalence rates reported 
 

287 in literature, such as, the different sampling methods, the absence of a standardized protocol for the 
 

288 detection of Arcobacter, but also the hygienic standard protocols adopted on farms, the feeding 
 

289 type, the climate, etc. (Collado and Figueras 2011; Hsu and Lee, 2015). In our study, all the isolates 
 

290 were identified as A. butzleri by molecular methods; these results were in agreement with other 
 

291 studies where A. butzleri was the main species isolated from raw milk and dairy plants (Ertas et al., 
 

292 2010; Giacometti et al., 2015a; Ferreira et al., 2017; Milesi, 2010; Nieva-Echevarria et al., 2013; 
 

293 Pianta et al., 2007; Shah et al. 2012; Revez et al., 2013: Scuillon et al., 2006; Yesilmen et al., 
 

294 2014). On the other hand, A. butzleri was the only species isolated probably because of the lack of 
 

295 standardized isolation protocols for Arcobacter spp. other than A. butzleri. In fact, our isolation 
 

296 procedure requires the use of an enrichment step that promotes the growth of A. butzleri which 
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297 could mask the presence of other Arcobacter species (Levican et al. 2016). This could represent a 
 

298 procedure’s drawback. 
 

299 Furthermore, the difference in findings between the molecular screening and cultural analysis are 
 

300 probably due to the viable but non-culturable (VNC) state of Arcobacter spp. in response to adverse 
 

301 environmental conditions (Mottola et al., 2016a) or to the presence of free DNA deriving from dead 
 

302 bacterial cells. Notably, our study highlighted that a strong discrepancy between the biochemical 
 

303 and the molecular identification of Arcobacter exists. In fact, all the isolates were identified as A. 
 

304 cryaerophilus using a miniaturize biochemical identification kit and as A. butzleri when using the 
 

305 molecular approach. This could be due to the difficult of identification of Arcobacter at species 

 

306 level by biochemical tests; in fact the API Campy® test misidentifies all Arcobacter species as A. 
 

307 cryaerophilus These findings are noteworthy because they show that the epidemiological studies 
 

308 carried out  using one or other identification  method  could  have been affected by the chosen 
 

309 technique. 
 

310 The ability of A. butzleri to grow between 4 and 10 °C, to survive to sanitizing procedures and 
 

311 adhere to glass, stainless steel and plastic surfaces and to form biofilm, could promote its survival, 
 

312 colonization and persistence in farms, milking equipment and dairy plants, becoming a source of 
 

313 contamination for milk and dairy products (Assanta et al., 2002; Kjeldgaard et al., 2009; 
 

314 Rasmussen et al., 2013; Mottola et al., 2016 a,b; Giacometti et al., 2014;2015 a,b; Badilla-Ramírez 
 

315 et al. 2016; Serraino et al., 2013 a,b; Serraino and Giacometti, 2014). Contaminated raw milk and 
 

316 dairy products represent a potential source of human infections, having significant food safety and 
 

317 human health implications, especially for immunocompromised people for which the consumption 
 

318 of cheese manufactured from unpasteurized milk in small processing facilities employing traditional 
 

319 production technologies could represent a risk factor (Giacometti et al., 2015 b; Serraino et al., 
 

230 2013 a). 
 

276 It is well known that Arcobacter spp. population show a great genetic diversity hindering the 
 

277 epidemiologic studies, especially when the source of infection must be traced. In our study, among 
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278 20 genotyped isolates, five belonged to the already known ST66 and ST420. Both genotypes ST66 
 

279 and ST420 were reported in a previous survey on dairy plants in Italy (De Cesare et al., 2016) . The 
 

280 detection of the genotypes ST66 and ST420 from our samples, supports the hypothesis that some 
 

281 genotypes could be associated with specific foods. Our study led to the identification of new alleles 
 

282 and new STs, confirming that the A. butzleri population has a great genetic diversity (Alonso et al., 
 

283 2014; De Cesare et al., 2015; Merga et al., 2011; Merga et al., 2013; Miller et al., 2009; Perez- 
 

284 Cataluna et al., 2017; Rasmussen et al., 2013). In fact, in the present study the 87.5 % of the 
 

285 detected STs were unreported; the presence of new alleles among the seven analysed loci, or from 
 

286 new combinations of known alleles, highlights a high diversity among the strains and confirms that 
 

287 recombination is possible in A. butzleri (Alonso et al., 2014). Among new alleles, the gene glyA 
 

288 was the most diverse, confirming the diversity observed by Pérez-Cataluña et al. (2017). 
 

289 On the other hand, other authors have also reported a high heterogeneity among isolates using 
 

290 different genotyping techniques such as Pulsed-Field Gel Electrophoresis (PFGE), Multiple Locus 
 

291 Variable-Number Tandem Repeat Analysis (MLVA), Amplified Fragment Length Polymorphism 
 

292 (AFLP), Random Amplification of Polymorphic DNA (RAPD), and Enterobacterial Repetitive 
 

293 Intergenic Consensus (ERIC-PCR) (Forsythe, 2006; Douidah et al., 2014; Ramees et al., 2014). 
 

294 However, in comparison with other genotyping methods, MLST is a good typing method because it 
 

295 gives fast and comparable results, and has been used as a routine molecular typing procedure for 
 

296 Arcobacter spp. in several studies (Ramees et al., 2014). 
 

297 In conclusion, our study clearly shows the presence of A. butzleri in BTM in Southern Italy and a 
 

298 large genetic diversity between the isolates, contributing effectively to fill up the knowledge gap on 
 

299 this foodborne pathogen. The presence of A. butzleri in raw milk, could represent a hazard for 
 

300 consumers; thus, its presence should be carefully taken into account by both dairy food business 
 

301 operators and competent authority for reducing the foodborne risk linked to this pathogen. 

 
302 257 

 
303 258 
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Table 1 A. butzleri MLST analysis results. 
 
 

Isolate Herd aspA atpA glnA gltA glyA pgm tkt ST 

1 Herd 27 15 10 1 17 19 2 13 66 

2 Herd 34 15 10 1 17 19 2 13 66 

3 Herd 38 6 23 1 11 494 58 199 627 

4 Herd 63 48 25 41 19 487 101 272 633 

5 Herd 64 15 10 1 17 186 102 13 628 

6 Herd 70 77 209 1 17 637 339 199 634 

7 Herd 155 5 5 9 15 120 7 6 629 

8 Herd 166 20 39 34 19 104 340 51 635 

9 Herd 167 23 17 17 19 461 11 65 630 

10 Herd 184 209 15 186 48 638 74 86 646 

11 Herd 227 5 5 5 15 66 11 10 420 

12 Herd 241 309 210 4 146 467 58 14 636 

13 Herd 242 20 20 11 19 639 255 11 647 

14 Herd 244 13 12 1 208 640 290 165 648 

15 Herd 261 310 133 11 19 19 123 271 637 

16 Herd 271 20 12 11 19 458 11 10 631 

17 Herd 274 15 10 1 17 19 2 13 66 

18 Herd 312 5 5 5 15 66 11 10 420 

19 Herd 344 48 25 41 19 487 101 272 633 

20 Herd 351 17 15 15 12 66 102 17 632 
 



 

 

Highlights 

 

Bulk tank milk produced in southern Italy is contaminated by Arcobacter butzleri. 

 

Large genetic diversity of A. butzleri isolated from bulk tank milk in southern in Italy and 

identification of 14 previously unreported sequence-types. 

Great discrepancy of the two technical approaches used for the identification of Arcobacter 

 

spp. 
 


