Near UV-irradiation of CuOx impregnated TiO₂ provides active species for hydrogen production through methanol photoreforming

Giuseppe Vitiello¹,², Laura Clarizia¹,* Wael Abdelrahem³,⁴, Serena Esposito⁵, Barbara Bonelli⁶, Nicoletta Ditaranto⁷, Alessandro Vergara⁸, Mallikarjuna Nadagouda⁹, Dionysios D. Dionysiou³,
Roberto Andreozzi¹, Giuseppina Luciani¹,* Raffaele Marotta¹

¹ Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, p.le Tecchio 80, 80125 Naples, Italy.
² CSGI - Center for Colloids and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
³ Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, United States.
⁴ Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt.
⁵ Department of Civil and Mechanical Engineering, University of Cassino and South of Lazio, Via G. Di Biasio 43, 03043 Cassino (FR), Italy.
⁶ Department of Applied Science and Technology and ISTM Unit of Turin-Polytechnic, Polytechnic of Turin, C.so Duca degli Abruzzi 24, I-10129 Turin, Italy.
⁷ Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy.
⁸ Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte S. Angelo, 80126 Naples, Italy.
⁹ Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45324, United States.
Abstract

Copper doped-TiO$_2$ (P25) nanomaterials have been intensively studied as promising catalysts for H$_2$ production by photo-reforming of selected organic compounds. However, the role of copper oxidation states on the improvement of photocatalytic activity is still debated. In this work, CuO$_x$-impregnated P25-TiO$_2$ catalysts were used for photocatalytic production of hydrogen from methanol. Copper species/oxidation states in the as-prepared catalysts were identified, and their transformations during the photocatalytic process were investigated. For this purpose, H$_2$ production rates were correlated to physico-chemical properties of Cu-impregnated P25-TiO$_2$ samples, both before and after photocatalytic process, by means of Raman, X-Ray Diffraction, Electron Paramagnetic Resonance spectroscopy, X-Ray Photoelectron Spectroscopy, Temperature-Programmed Reduction and High Resolution Transmission Electron Microscope techniques. Results revealed the presence of both Cu$_2$O and CuO deposits on the samples surface after calcination. Notably, under near-UV irradiation, copper(I, II) oxides undergo a partial dissolution process, followed by reduction to metallic copper Cu$_{(s)}$ by photogenerated electrons, boosting H$_2$ production rate. In particular, the fraction of highly dispersed CuO particles must be mainly involved in this process, thus accounting for an improved H$_2$ evolution. Our findings indicate that both Cu$_2$O and Cu$_{(s)}$ act as co-catalysts for H$_2$ generation, yet by different mechanisms. Overall this study, lies the basis to enhance catalytic performance of red-ox active systems through UV-irradiation approach.

Keywords: copper-based TiO$_2$, hydrogen production, photoreforming, photocatalysis, methanol.
1. Introduction

Limited availability of fossil fuels as well as their environmental impact has prompted scientific research towards cleaner and renewable energy sources. In this scenario, sunlight-driven H\textsubscript{2} production by either photo-reforming or water photo-splitting holds a great promise [1,2]. However, photoreforming-based technologies have far from practical application and poor efficiencies [1]. Thus, improvement and optimization of photocatalytic systems are crucial tasks to make this technology feasible [3]. Indeed, photocatalysts with appropriate band-gap and adequate stability for either organic photo-reforming or water-splitting under visible light irradiation with suitable energy efficiencies are still unavailable, and their development is considered a significant challenge in photocatalysis research.

Even though titanium dioxide in P25 form (80:20 w/w anatase:rutile) is considered one of the most promising commercial material for photocatalytic processes, it shows significant limitations, such as fast electron/hole recombination and absorption/activity restricted to the UV region due to its wide bandgap [4,5]. Among the various methods employed for improving TiO\textsubscript{2} features, doping with noble metals (Au, Pt, Pd) acting as co-catalysts has proven to be effective to enhance the photo-efficiency of titanium dioxide [3,6-8]. Alternatively, doping with transition metal ions such as Cu, Fe, Co, Ni is a cheaper promising option [4,7]. The advantages of adopting these species lie in their behavior as electron scavengers, thus limiting charge recombination [7]. In particular, copper loaded-P25 nanomaterials, prepared by impregnation method, have been proposed as promising catalysts for photo-reforming [9-11]. Although several studies have investigated the effect of copper loading on P25 nanoparticles for the photocatalytic hydrogen generation through reforming of organics (Table 1), the effect of copper oxidation state on the improvement in photocatalytic activity, is not yet entirely clarified. Different conflicting opinions have been provided on synergistic effects of active copper species in photocatalytic reactions.
Table 1 - Selected research papers devoted to testing Cu/P25 photocatalysts, prepared by impregnation method, in various photocatalytic processes.

<table>
<thead>
<tr>
<th>Precursor</th>
<th>Calcination temperature (°C)</th>
<th>Cu oxidation state</th>
<th>Diagnostic technique</th>
<th>Application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(NO₃)₂×3H₂O</td>
<td>300 – 500 for 0.5 h</td>
<td>CuO</td>
<td>TPR, XRD</td>
<td>Hydrogen production</td>
<td>[12]</td>
</tr>
<tr>
<td>Cu(NO₃)₂×2.5H₂O</td>
<td>300 for 5 h (in air)</td>
<td>CuO</td>
<td>TPR</td>
<td>CO oxidation</td>
<td>[13]</td>
</tr>
<tr>
<td>Cu(NO₃)₂×2.5H₂O</td>
<td>300 for 5 h (in air)</td>
<td>CuO/Cu₂O</td>
<td>TPR, XRD, XPS, Raman</td>
<td>CO oxidation</td>
<td>[14]</td>
</tr>
<tr>
<td>Cu(NO₃)₂</td>
<td>400 for 16 h (in air)</td>
<td>CuO</td>
<td>TPR, XRD, FTIR</td>
<td>Hydrogenation of 1,3-cyclooctadiene</td>
<td>[15]</td>
</tr>
<tr>
<td>Cu(CH₃COO)₂×H₂O</td>
<td>250 for 4 h (in air)</td>
<td>Cu²⁺/Cu⁺</td>
<td>TPR, XPS, FTIR</td>
<td>Hydrogenation of crotonaldehyde</td>
<td>[16]</td>
</tr>
<tr>
<td>Cu(NO₃)₂</td>
<td>400 for 1h (in Helium)</td>
<td>CuO/Cu₂O</td>
<td>TPR, XPS, FTIR</td>
<td>CO oxidation</td>
<td>[17]</td>
</tr>
<tr>
<td>Cu(NO₃)₂</td>
<td>300 – 500 for 5 h</td>
<td>CuO/Cu₂O</td>
<td>DRS, XPS, FTIR</td>
<td>Hydrogen production</td>
<td>[18]</td>
</tr>
<tr>
<td>Cu(NO₃)₂×3H₂O</td>
<td>300 for 0.5 h (in air)</td>
<td>CuO/Cu₂O</td>
<td>XPS, XRD</td>
<td>Hydrogen production</td>
<td>[19]</td>
</tr>
<tr>
<td>Cu(CH₃COO)₂×H₂O or Cu(NO₃)₂</td>
<td>500 – 600 for 1 h (in Argon)</td>
<td>CuO/Cu₂O</td>
<td>XRF, XRD</td>
<td>Acetic acid decomposition, hydrogen production</td>
<td>[20]</td>
</tr>
<tr>
<td>Cu(NO₃)₂×3H₂O</td>
<td>400 for 2 h</td>
<td>CuO</td>
<td>XANES, EXAFS</td>
<td>Methylene blue degradation</td>
<td>[21]</td>
</tr>
<tr>
<td>Cu(NO₃)₂</td>
<td>350 for 4 h (in air)</td>
<td>CuO</td>
<td>XRD</td>
<td>Hydrogen production</td>
<td>[22]</td>
</tr>
<tr>
<td>Cu(NO₃)₂×3H₂O</td>
<td>350 for 2 h (in air)</td>
<td>Cu₂O</td>
<td>XPS, XRD</td>
<td>Hydrogen production</td>
<td>[23]</td>
</tr>
</tbody>
</table>
Several studies report that Cu$_2$O species are responsible for enhanced photocatalytic H$_2$ production from water [6, 7, 18, 29]. On the other hand, the presence of CuO was argued by different authors to be responsible for the enhanced separation of photoinduced electrons and holes [3, 22, 24, 25]. Similarly, Valero et al. proposed that easily reduced Cu$^{2+}$ species could be responsible for higher Cu/P25 photoactivity [30]. Other scientific studies also ascribe the improved photocatalytic activity of Cu/P25 systems to the presence of finely dispersed and easily reducible CuO$_x$ (Cu$^+$/Cu) species on the TiO$_2$ surface [31]. Such widespread variability in scientific conclusions is due to an intrinsic complexity of materials during photocatalytic experiments, along with different impregnation procedures for copper doping of P25 resulting in mixed oxidation states of copper on the catalyst surface. Tipically, copper exists in different oxidation states (Cu(0), Cu$^+$, Cu$^{2+}$), that can change under UV-irradiation [32-34].

In this scenario, the present paper aims at elucidating the nature of copper species in Cu/TiO$_2$ photocatalysts prepared via impregnation-calcination method. Moreover, evolution of copper species under UV-irradiation during phot-reforming process was investigated, in order to clearly identify the active species involved in H$_2$ production. Hydrogen production rates were compared and integrated...
with a detailed physico-chemical characterization of the catalyst before and after the photo-catalytic process, through a combined approach of complementary techniques, including X-Ray diffraction (XRD), X-Photoelectron Spectroscopy (XPS), Raman and Electron Paramagnetic Resonance (EPR) Spectroscopies, Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HR-TEM) as well as Temperature Programmed Reduction (TPR) analysis. This study is expected to deliver significant insights on the molecular factors responsible for the improved photocatalytic activity of Cu-based TiO$_2$ materials, thus providing critical guidelines for the design of new copper doped photocatalysts for UV-solar photoreforming.

2. Experimental procedures

2.1 Materials

Methanol (99.8% v/v), P25-TiO$_2$ (80:20 anatase: rutile), sodium nitrite (NaNO$_2$, purity \geq97.0%) used as filter and cupric nitrite hydrate (Cu(NO$_3$)$_2$·3H$_2$O, purity 99.9%) were purchased from Sigma Aldrich. Bi-distilled water was used for the preparation of the reacting mixtures.

2.2 Cu/P25 material preparation

Copper (0.5, 3, 6, 10 and 16 wt %) was loaded on P25-TiO$_2$ by impregnation method [18]. For each Cu-modified P25-TiO$_2$ sample (Cu/P25), a required amount of P25-TiO$_2$ was dispersed in Cu(NO$_3$)$_2$ aqueous solution. Excess water was evaporated to dryness with slow heating rate and constant stirring. The samples were dried at 110 °C and then calcined under nitrogen atmosphere for 5h at different temperatures ranging between 150 °C and 550 °C.

2.3 Photocatalytic runs

Photocatalytic runs were carried out in triplicate in an annular glass batch reactor (V=300 mL) covered with a layer of aluminum foil. The reactants and nitrogen gas were fed to the reactor through
its top inlet hole, while collection of outflow liquid and gaseous samples was performed at the bottom hole of the reactor at different reaction times. The reactor has been endowed with a high-pressure mercury vapor lamp (input power: 125 W) manufactured by Helios Italquartz emitting in both ultraviolet and visible range.

The lamp had ultraviolet emission peaks at 305, 313, and 366 nm corresponding to irradiances of 2.23×10⁻⁶, 2.76×10⁻⁶ and 3.37×10⁻⁶ (E/s). The visible emission peaks at 405, 408, 436, and 546, corresponded to irradiances of 6.18×10⁻⁷, 1.41×10⁻⁷, 1.03×10⁻⁶, and 1.16×10⁻⁶ E/s, respectively. The reactor was cooled at 25 °C during each run by means of a thermostatic bath (Falc GTR 90).

In order to evaluate the response of the photocatalytic system under visible light irradiation, during the experimental runs water in the cooling jacket was replaced by 1M NaNO₂ solution absorbing ultraviolet radiation, as reported elsewhere [35]. The pH of the solution was monitored by means of an Orion 420Aþ pH–meter (Thermo).

In order to avoid the undesired reaction of dissolved oxygen with photogenerated electrons, before starting the photocatalytic runs, a nitrogen stream was bubbled into the solution for 30 minutes for removing atmospheric oxygen. Moreover, throughout the experiments, nitrogen was continuously fed at a flow rate (Q_N₂) of 0.3 L/min to prevent any entrance of air into the reactor. For each run, fixed amounts of photocatalysts and methanol (10% v/v) were added to 300 mL of aqueous solution; the resulting suspension was sonicated and fed into the batch reactor under magnetic stirring. The liquid samples, collected at different reaction times, were quickly filtered on regenerated cellulose filters (pore diameter 0.20 μm, Scharlau) and the filtrate was used to measure dissolved copper and formic acid concentrations. The gaseous samples were recovered from the reactor outlet in Tedlar gas sampling bags and then used to evaluate hydrogen concentration.

Dissolved copper concentration was measured by means of a colorimetric method using an analytical kit (Macherey–Nagel) based on oxalic acid bis–cyclohexylidene hydrazide (cuprizone). A UV/Vis spectrometer (Cary 100 UV–Vis, Agilent) has been employed for the measurements at a wavelength of 585 nm.
Hydrogen concentration was measured by a gas-chromatograph (Agilent 7820A) equipped with a HP–PLOT Molesieve 5A column (Agilent) and a TCD detector using argon as carrier gas. During the experiments, the radiation transmitted by the reactor was measured by means of a radiometer (not shown in the figure) in the range 315-400 nm and 401-1100 nm.

2.4 Physico-chemical characterization of the Cu/P25 nanomaterials

A physico-chemical investigation on Cu/P25 nanomaterials was performed by using a combined approach of different analytical techniques, such as High Resolution Transmission Electron Microscope (HR-TEM, X-Ray Diffraction (XRD), Temperature-Programmed Reduction (TPR), Raman, Electron Paramagnetic Resonance (EPR), and X-Ray Photoelectron Spectroscopy (XPS) spectroscopies. Also, the specific surface area (SBET) of catalysts was also determined through BET porosimetry. Finally, H2 Temperature Programmed Reduction (H2-TPR) analysis was also performed. The characterization was specifically focused on Cu(3%)/P25 and Cu(10%)/P25 catalysts before and after their use in the photo-reforming process.

BET analysis allowed determining the specific surface area (SBET), that was evaluated by generating seven-point isotherms at 77 K for N2 adsorption (Autosorb-1, Quantachrome) using the charred sample capable of providing a specific surface area equal to 5 m² in the sample cell.

Raman spectra of the prepared catalysts were performed by using a confocal Raman Microscope (Jasco, NRS-3100). Both the 514 nm line of an air-cooled Ar+ laser (Melles Griot, 35 LAP 431-220) and the 647 nm line of a water-cooled Kr+ laser (Coherent Innova 302C) were used. The laser line was injected into an integrated Olympus microscope and focused to a spot size of approximately 2 mm by using a 100× or 20× objective. A holographic notch filter was used to reject the excitation laser line. Raman scattering was collected by using a Peltier-cooled 1024×128 pixel CCD photon detector (Andor DU401BVI). For most systems, it took 60s to collect a complete data set. XRD measurements were performed using a PANalytical diffractometer with a nickel filter and Cu Kα radiation.
EPR experiments were carried out by means of X-band (9 GHz) Bruker Elexys E-500 spectrometer (Bruker, Rheinstetten, Germany), equipped with a super-high sensitivity probe head. Solid samples were transferred to flame-sealed glass capillaries which, in turn, were coaxially inserted in a standard 4 mm quartz sample tube. Measurements were performed at room temperature. The instrumental settings were as follows: sweep width, 1500 G; resolution, 1024 points; modulation frequency, 100 kHz; modulation amplitude, 1.0 G. 16 scans were accumulated to improve the signal-to-noise ratio.

TPR measurements were carried out in a laboratory flow apparatus, using a 5% H₂/Ar (Q= 20 cm³/min), with a heating rate of 10 °C/min up to 800 °C. The sample (60 mg) was loaded in a quartz down-flow cell with a K thermocouple in close contact with the sample.

The nanoparticles morphology and crystallinity were investigated using a JEOL (JEM-2010F) high resolution-transmittance electron microscope (HR-TEM) with the filed transmission of 200 kV. To prepare the samples for HR-TEM, the catalysts were suspended in ethyl alcohol and sonicated for 45 min, then fixed on a Lacy Carbon grid (LC300, EMS) by the drop-casting method.

X-ray Photoelectron Spectroscopy (XPS) analysis was performed with a Versa Probe II Scanning XPS Microprobe spectrometer (Physical Electronics GmbH). The measurements were done with a monochromatized AlKα source (X-ray spot 100 μm), at a power of 24.4 W. Wide scans and detailed spectra were acquired in Fixed Analyzer Transmission (FAT) mode with a pass energy of 117.40 eV and 29.35 eV, respectively. An electron gun was used for charge compensation (1.0V 20.0 μA). All binding energies were referenced to C1s at 284.8±0.1 eV for adventitious hydrocarbon. Data processing were performed using MultiPak software v. 9.5.0.8.

There is no need to add any description because XAES information are derived from XPS experiments.

3. Results and Discussion

3.1 Photocatalytic runs

3.1.1 Effect of photocatalyst copper content on H₂ generation
P25-based samples with different copper weight percentages, in the range 0.5-16 wt%, were tested for hydrogen generation through photoreforming of methanol. Fig. 1A shows H\textsubscript{2} production rate of Cu(3%)/P25 after calcination at 350 °C; this trend, approaching a plateau within about 120 minutes, is representative of all compositions. During the photocatalytic run, the suspension turned from light teal to deep indigo, thus suggesting that a change in copper oxidation state occurred under UVA irradiation [19]. After 180 minutes of reaction, UVA radiation was cut off by inserting a NaNO\textsubscript{2} solution (1 M) into the cooling system, as described in the Experimental section. Such procedure allowed to test the photocatalytic activity under merely visible light irradiation. No hydrogen generation was recorded for any catalysts tested under merely visible light irradiation, thus indicating that such system are active only under UV irradiation. Furthermore, hydrogen production rates were remarkably higher than values obtained over bare P25-TiO\textsubscript{2} calcined under inert atmosphere at 350 °C for 5 hours (0.55 μmol/min) and comparable to the values measured by Jung et al. by using H\textsubscript{2}-treated Cu/P25 samples [19].

Figure 1B depicts the change in solution pH during the photoreforming run. There was no changes in pH, that kept constant at about 6.5 throughout the experiment. Furthermore, no trace of dissolved copper was appreciated throughout the experiment, thus suggesting a high stability of the photocatalyst.

Fig. 1C shows hydrogen production rate as a function of copper content. A non-monotonic trend was appreciated, with catalysts containing 3% and 6% weight percentages of copper displaying comparable similar values of hydrogen production rate, which were also the highest recorded.

All Cu/P25 systems showed higher absorption capability than bare P25-TiO\textsubscript{2} both in the UV and visible range (Figure S1A-B), although this did not result in a catalytic activity of the Cu-doped catalyst under visible light irradiation.
Figure 1 - Panel A: Hydrogen production rate over (●) Cu(3%)/P25 and (☓) bare P25-TiO₂, both calcined under inert atmosphere at 350 °C for 5 hours. After 180 minutes of reaction, UVA radiation has been cut off by inserting 1 M NaNO₂ solution into the cooling system. Catalysts load =150 ppm. [CH₃OH]₀ = 2.47 M. T=25 °C. P=1 atm. The insets represent the colour suspension with Cu(3%)/P25 before and after 120 min of reaction. Panel B: Solution pH throughout the photoreforming run over Cu(3%)/P25 catalyst calcined under inert atmosphere at 350 °C for 5 hours. After 180 minutes of reaction, UVA radiation was cut off by inserting 1M NaNO₂ solution into the cooling system. Cu(3%)/P25 catalyst load=150 ppm. [CH₃OH]₀ = 2.47 M. T=25 °C. P=1 atm. For each value, 12% error was considered, based on the results of a reproducibility photoreforming run performed over Cu(3%)/P25 calcined at 350 °C. Panel C: Plateau values of hydrogen production rate recorded over P25-TiO₂ catalysts calcined under inert atmosphere at 350 °C for 5 hours with different copper content. Weight percentages of copper: 0.5%, 3%, 6%, 10%, 16%.Cu/P25-TiO₂ catalysts load=150 ppm. [CH₃OH]₀ = 2.47 M. T=25 °C. P=1 atm.

3.1.2 Effect of photocatalyst calcination temperature on H₂ generation

Cu/P25 samples calcined under inert N₂ atmosphere for 5 hours at different temperatures were tested for hydrogen generation through photo-reforming of methanol. Calcination temperatures were investigated in the range of 150-550 °C (Figure S2, Supplementary Information). Similar values of hydrogen generation rates were acheived by using catalysts calcined at 150-350 °C, though, further increase in calcination temperature showed detrimental results in terms of photoefficiency for hydrogen generation. Once again, no hydrogen evolution was recorded by excluding UV irradiation for all catalysts tested.
3.2 Characterization of the fresh photocatalysts

Detailed physico-chemical characterizations of Cu/P25 samples were carried, before and after photocatalytic experiments, in order to investigate changes in catalysts’ properties upon use for H₂ production under near-UV irradiation. In particular, copper oxidation states in Cu deposited species on P25 surface were assessed both before and after photocatalytic experiment with the aim of revealing their role in the enhancement of photocatalytic H₂ production.

The measured values of BET surface specific area (S_{BET}) for Cu/P25 catalysts calcined at different temperatures or with different Cu loads are summarised in Table S1 (Supplementary Information).

No particular changes were observed before and after use (data not shown), but a significant decrease in the surface area was recorded for the catalyst calcined at 550 °C, likely due to some aggregation phenomenon. Specifically, the highest surface area of 41 m²/g was recorded for Cu(3%)/P25 calcined at 350 °C.

XRD spectra were collected in order to assess crystalline properties in the catalysts. Figure 2A shows XRD spectra of bare P25, fresh Cu(3%)/P25 and Cu(10%)/P25 calcined at 350 °C for 5h. Peaks of anatase and rutile structures appeared in all samples. Furthermore, XRD profiles of the fresh Cu(3%)/P25 samples did not show any diffraction peaks of CuOₓ species, in agreement with the low amount of Cu. On the contrary, XRD spectrum of Cu(10%)/P25 sample highlighted two diffraction peaks at about 36.5° and 38.5°, displaying the presence of CuO [19]. Comparison of the peak intensities of rutile and anatase revealed the typical composition of P25 samples that was not altered neither by Cu impregnation (Figure 2A). Furthermore, no relevant changes in peak position and intensity were appreciated the XRD patterns of samples treated up to 450 °C (Figure S3), revealing that thermal treatment did not significantly alter the samples crystalline structure.
Figure 2 – XRD patterns (panel A), Raman spectra (panel B) and normalized EPR spectra (panel C) of bare P25, fresh Cu(3%)/P25 and Cu(10%)/P25 calcined at 350 °C for 5h.
Raman and EPR spectra were also recorded in order to define the oxidation state of copper impregnated on the P25 surface for materials before their use (Figure 2B-C). Concerning the fresh Cu/P25 catalyst, Raman spectra were recorded on Cu(3%)/P25 and Cu(10%)/P25 samples (Figure 2B) also compared to P25 as reference material. Both catalysts showed a peak at 290 cm$^{-1}$, which is ascribable to the Raman band of CuO. Although it is usually detected around 279 cm$^{-1}$, and is associated to an A_g mode [37], the upshift in wavenumbers observed in our experiments compared to pure CuO can occur either due different structuring or to interactions with the hosting matrix (herein TiO$_2$). On the other hand, the typical most intense Raman band of Cu$_2$O and corresponding to the second order overtone 2Γ_{12}’ (216 cm$^{-1}$) [36] was never visible in any analysed catalyst (Figure 2B).

The presence of cupric species in pre-used (fresh) Cu(3%)/P25 and Cu(10%)/P25 catalysts was also confirmed by EPR spectra (Figure 2C) showing an asymmetric signal for both samples at a g-factor of ~2.0800, which is larger than the g-value of free electron $g_e = 2.0023$ and is related to the presence of Cu$^{2+}$ in the distorted octahedral coordination of TiO$_2$ [38]. The broadness of the EPR spectra indicates the presence of dipolar interaction among neighboring Cu$^{2+}$ ions that leads to the increase in the width of the EPR signal.

Therefore, XRD, EPR and Raman analyses confirm the presence of CuO in Cu/P25 samples. Morphology, crystal structure and copper oxidation states were also assessed through TEM analyses. Figure 3A shows HR-TEM and Fast Fourier Transform (FFT) analyses for fresh Cu(3%)/P25 sample calcined at 350 °C. An interplane distance of $d_{CuO} = 0.231$ nm calculated from the HR-TEM micrograph (Figure 3A), corresponding to the (111) plane of CuO, further confirmed its presence on TiO$_2$ ($d_{TiO_2} = 0.33$ nm), in accordance with XRD, Raman and EPR results. Moreover, FFT image (inset of Figure 3C) clearly justified the existence of TiO$_2$ material in amorphous structure with some clear spots related to the co-existed CuO particles.
Changing Cu composition in Cu/P25 catalyst to 10% while maintaining the calcination temperature at 350 °C did not lead to a significant alteration in the catalyst structure (Figure 3B), however larger surface deposits were appreciated (Figure 3B). To further clarify the oxidation state of surface Cu-species, samples were analyzed by means of XPS analysis. Higher temperatures led to an increase of copper surface availability, as evident from Cu/Ti atomic ratio in Cu(3%)/P25 samples (Table S2).

At 550 °C aggregation phenomena of copper particles can occur, resulting in higher Cu detected amount in the same analyzed spot. A similar trend is shown when the catalysts were prepared with increasing bulk copper loading, even at the lowest calcination temperature (Table S3). Actually, both the total copper increase and the eventual surface aggregation phenomena could contribute to the increase of copper amount detected on the surface. Indeed, the observed increase in Cu surface availability was not proportional to the overall Cu content; actual difference between them got wider with increasing copper loading, suggesting a different size distribution of copper species on TiO₂ surface. Apart from total surface copper availability, XPS measurements were aimed at elucidating Cu and Ti oxidation state of Ti on TiO₂ surface. Figure 4A shows Ti2p XP spectral region of fresh Cu(3%)/P25 and Cu(10%)/P25 catalysts. XPS spectra of all catalysts with different copper loadings are reported in Figure S5.
Figure 4 - Ti2p XP spectra of the fresh Cu(3%)/P25 and Cu(10%)/P25 catalysts calcined at 350 °C (A). Cu2p3/2 XP spectra of the fresh Cu(3%)/P25 sample at different calcination temperatures (B). Ti2s XP+Cu LMM XAE spectra of Cu(3%)/P25 and Cu(10%)/P25 calcined at 350 °C (C) and of Cu(3%)/P25 at different calcination temperatures (D).

In all the spectra, the characteristic peaks of Ti2p3/2 and Ti2p1/2 were observed at BE values of 458.7±0.1 eV and 464.4±0.1 eV, respectively, and were assigned to Ti4+ in TiO2 [1]. A possible interaction between Cu species and P25 would result not only in the BE shift but also in the change of the spin-orbit splitting value in the Ti2p signal [1]. Nevertheless, no significant variation was
observed neither changing the copper loading nor increasing the calcination temperature (Figure 4A, Figure S5 in Supplementary Information); the value was measured to be constant and equal to 5.7 eV, therefore no Cu incorporation into the TiO$_2$ lattice could be hypothesized [2]. Figure 4B reports Cu$_2$p$_{3/2}$ XP spectra of the Cu(3%)/P25 catalyst calcined at different calcination temperatures. After curve-fitting procedures, the main peak was identified at BE=932.4±0.1eV in all the cases and was ascribed to Cu$^+/$/Cu0 species [1,3]. Furthermore, shake up satellites were visible (940-945 eV) along with a peak at 934.0±0.1eV, that was assigned to Cu$^{2+}$ species [1,3]. The copper spectral regions of the catalysts prepared at higher bulk copper loadings (Figure 4A, Figure S5) as well as at different calcination temperatures (Figure 4B) showed similar results. Particularly, for Cu(3%)/P25 sample at different temperatures, a main peak due to Cu$^+/$/Cu0 species along with variable amounts of Cu$^{2+}$, depending on the Cu loading, was detected (Figure 4B). Since the binding energies of Cu$^+$ and Cu0 are not distinguishable based on Cu$_2$p$_{3/2}$ XP peak, the spectral region relative to X-ray excited Auger copper spectra (XAES Cu$_{LMM}$) was investigated to fully elucidate the oxidation state of the reduced copper species. Figure 4 reports Cu$_{LMM}$ spectra for fresh Cu(3%)/P25 and Cu(10%)/P25 samples treated at 350 °C (C) and 3%Cu bulk loading at different calcination temperatures (D). A further challenge in the Cu$^+/$/Cu0 discrimination was represented from the partial overlapping of Cu$_{LLM}$ and the predominant Ti2s spectral regions (black line in Figure 4D). Nevertheless, the main peak for copper was still detectable in all the samples and was found at KE=916.3±0.3 eV. Moreover, the Auger parameter – the sum of the binding energy from XPS and the kinetic energy from XAES – was calculated to be 1848.7±0.1 eV. Both the values demonstrated that the Cu$^+/$/Cu0 peak is ascribable to Cu$^+$ species [3]. However, the absence of Cu0 traces could not be completely ruled out under these experimental conditions, since the peak would fall at KE=918.6 ±0.2 eV, overlapped with Ti2s peak [41]. Similar results were obtained for XPS spectra of the samples at different calcination temperatures (Figure 4D). When the relative abundance of Cu$^{2+}$ is increased, the peak is shifted to slightly higher KE values, according to KE values for oxidized copper species (Figure 4C) [3].
To get a greater insight into the Cu-TiO$_2$ interaction as function of the annealing temperature, the reducibility of the samples was studied by means of the TPR technique. The TPR profile of Cu(3%)/P25 sample after calcination at 350 °C is shown in Figure 5A, while the TPR profiles of Cu(3%)/P25 sample after calcination at 250, 450 and 550 °C are reported in Figure S6 (Supplementary Information). All of them are reported in the temperature range characteristic of copper oxide reduction [14, 30, 44], where instead TiO$_2$ reduction was hardly observed.

Figure 5 – Panel A: TPR profile of Cu(3%)/P25 sample calcined at 350 °C. Panel B: H$_2$ evolution rate (○) and percentage of TPR 3rd peak area (●) as a function of calcination temperature for Cu(3%)/P25 sample.

As indicated by the curve fit analysis, the samples showed a distribution of copper species; conversely, the unsupported CuO showed a single peak at 400 °C [42,43]. The hydrogen consumption relative to each fitting peak for Cu(3%)/P25 is listed in Table 2 and Table S4 along with T_{max} values.

<table>
<thead>
<tr>
<th>Sample</th>
<th>T_{max} (°C)</th>
<th>Hydrogen consumption (µmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(3%)/P25</td>
<td>138, 246, 290</td>
<td>101, 76, 759</td>
</tr>
</tbody>
</table>

Table 2 - Results of TPR measurements for fresh Cu(3%)/P25 sample calcined at 350 °C

The assignment of the reduction peak at lower temperature is quite controversial: it is generally ascribed to the reduction of highly reducible Cu$^{2+}$ species, though the presence of Cu$^+$ species cannot be ruled out [30]. Indeed, Chen et al. [14] assigned the TPR peak in this range to the reduction of Cu$^+$
species in Cu(3%)/P25 sample. The formation of Cu\(^{+}\) species was ascribed to the presence of oxygen-defect vacancies in the TiO\(_2\) structure. The presence of isolated Cu\(^{+}\) species and small CuO clusters with reduction peaks at 157 °C and 208 °C, respectively was also proposed by Minsu Jung et al. [44,45].

Samples treated at 250 °C and 350 °C, i.e. Cu(3%)/P25_250 and Cu(3%)/P25_350, showed the highest hydrogen consumption in correspondence of the peak at about 280-290 °C associable to small and/or highly dispersed CuO particles. TPR profile gradually changed by increasing the calcination temperature, leading to a decrease of the peak at 280-290 °C and to the occurrence of another reduction peak at higher temperature. Peaks located in the 320-400 °C temperature range are indicative of the formation of bulky CuO species [42,43]. Thus, it can be inferred that a lower calcination temperature resulted in a better dispersion of copper species on the support. As far as the overall H\(_2\) consumption is concerned, it was much higher with respect to the stoichiometric amount as calculated under the hypothesis of the occurrence of all Cu as Cu\(^{2+}\) species. This likely indicated some spillover phenomena of H\(_2\) occurring over the support with the likely partial reduction of the latter, as generally observed for copper doped anatase [46].

The influence of calcination temperature on hydrogen production rate is reported in Figure 5B, together with the percentage of amount of the third peak area in TPR analysis. Actually, evolved H\(_2\) amount appeared closely related to the fraction of highly dispersed CuO particles strongly interacting with the support, probably accounting for the third peak area in TPR analysis (Table 2 and Table S4).

3.3 Characterization of the used Cu/P25 photocatalysts

The Cu/P25 catalysts were also analyzed after their use to assess any evolution of Cu oxidative state during photocatalytic runs, so as to identify the nature of Cu-active species towards H\(_2\) evolution as well as their role in photocatalytic. Particularly, this investigation was carried out on both Cu(3%)/P25 and Cu(10%)/P25 samples, calcined at 350 °C. Specifically, Raman spectra of both
samples after photocatalytic run, reported in Figure 6A, indicated that no peak ascribable to the presence of cupric species was observed. This result was also confirmed by the EPR evidence indicating that these considered samples did not show any paramagnetic signal. Since no significant release of cupric ions was appreciated during photoreforming tests, obtained results suggest the reduction of the copper during the photoreforming process. Actually, the indigo color of the final suspension supported a change of the oxidation state of copper deposited on titania, further confirmed by XRD diffraction analysis too. Notably, XRD patterns of used Cu(10%)/P25 collected after the photocatalytic run, no longer showed diffraction peaks of CuO phase and clearly indicated the presence of Cu(0) diffraction peaks (Figure 6B). Unfortunately, due to the low Cu content, this peak was not detectable in the XRD spectrum of the used Cu(3%)/P25 sample.

Figure 6 – Panel A: Raman spectra of bare P25, used Cu(3%)/P25 and Cu(10%)/P25 samples calcined at 350 °C for 5h. Panel B: XRD patterns of bare P25, Cu(0), used Cu(3%)/P25 and Cu(10%)/P25 calcined at 350 °C for 5h.

HR-TEM and FFT analyses were performed on used Cu(3%)/P25 catalyst calcined at 350 °C, showing co-existence of Cu$_2$O and Cu0 on the TiO$_2$ particles, thus indicating CuO reduction (Figures 7) during the photocatalytic experiment. It is noteworthy mentioning the co-existence of Cu$_2$O and Cu0 in the used Cu/P25 catalysts was deduced from the indicated face (111) that corresponds to both Cu$_2$O and
Cu0 [47], the latter also confirmed by XRD analysis. Again, Cu$_2$O (111) and Cu0 (111) were the dominant copper species in the 10%Cu-containing catalyst (Figure S7).

![Figure 7 - HR-TEM for used Cu(3%)/P25 sample calcined at 350 °C.]

The comparison of XPS copper spectra of Cu(3%)/P25 before and after use are reported in Figure 8 while Cu/Ti ratio for the same samples are reported in Table S5 (Supplementary Information).
Figure 8 - Cu2p3/2 XP spectra for Cu(3%)/P25_350°C fresh and after use. Corresponding CuLMM XAE spectra in the inset.

From XPS and XAES results no specific differences could be derived on the surface of the catalyst before and after use. Both spectra presented a small amount of Cu2+ (peak at BE= 934.0±0.1 eV, along with shake up features) and the predominant Cu7+/Cu0 oxidation state on the catalyst’s surface (main peak at BE=932.4±0.1 eV). Moreover, XAES peaks are completely overlapped. Furthermore, Cu0 peak, if any, is overlapped with Ti2s peak in XAE spectrum: this makes any possible change in Cu0 amount hardly appreciable in the studied systems [41]. Finally, Cu/Ti ratio slightly increased after use (Table S5), probably due a different distribution of surface copper species.

Despite Cu-doped TiO2 have been intensively studied for H2 production through photo-reforming, published results are still controversial on the activity of different Cu oxidation states [12, 18-26]. Our results clearly showed that calcination of Cu(NO3)2×3H2O-impregnated P25 samples under nitrogen atmosphere leads to a mixture of CuO and Cu2O nanostructures on P25 surface. The former
was clearly evidenced by bulk characterization techniques, in particular EPR and Raman spectroscopy. Furthermore, XPS analysis proved the presence of surface Cu₂O as the predominant CuOₓ species. The poor CuO amount measured through this methodology, can be explained considering this technique revealing composition of the more exposed layer on the surface. These results supported earlier reports, where both oxidation states are observed for copper [14, 16-20, 28]. Furthermore, as a major point, from TPR analysis different populations of CuOₓ species could be distinguished on the catalysts. A highly dispersed fraction of small and dispersed CuO particles strongly interacting with the support was appreciated on the catalysts with the highest H₂ evolution rate. During photocatalytic process, CuOₓ based deposits were reduced to Cu₂O/Cu⁰ and concurrently a morphological evolution was also appreciated (Figure 9). Notably, broaded deposits with less defined morphology were observed in Cu(3%)/P25 sample after use, while larger CuOₓ surface deposits were observed in Cu(10%)/P25 sample. Previous reports provided evidence of Cu²⁺ reduction to Cu⁺ [19, 33] and to Cu⁰ [33] under UVA irradiation; however, even this aspect is still debated.
Experimental findings and in particular morphological evolution from HR-TEM analysis as well as Cu changes in copper surface availability after use (Table S5, Supplementary Information) suggested that CuO\textsubscript{x} species undergo in situ dynamic nanostructuring during photocatalytic run. The process is driven by the dissolution-redeposition of CuO\textsubscript{x} deposits on the TiO\textsubscript{2} surface under UV irradiation [48]. In more detail, CuO\textsubscript{x} species must be involved in a dissolution process, leading to Cu2+ ions, that upon illumination are reduced to Cu\textsubscript{2}O and then to Cu, by photo-generated electrons, according to the following equations, both involving dissolved Cu ions:

\[
\begin{align*}
\text{Cu}^{2+} + e^{-} & \rightarrow \text{Cu}^{+} & & \text{E}^\circ \ (\text{Cu}^{2+}/\text{Cu}) = 0.16 \text{ V} \\
\text{Cu}^{+} + e^{-} & \rightarrow \text{Cu}^{0} & & \text{E}^\circ \ (\text{Cu}^{2+}/\text{Cu}) = 0.52 \text{ V}
\end{align*}
\]

In fact, electrochemical potentials of both semi-reactions are higher than H+ species, supporting the hypothesis of Cu2+ and Cu+ preferential reduction by TiO\textsubscript{2} photogenerated electrons. The excess of electrons in the Cu deposits, accompanied by the consumption of photogenerated holes by methanol, allowed for the deposits to keep a metallic state throughout the reaction, as experimentally ascertained. Actually, negative electrochemical potential of solid state reduction

\[
\text{Cu}_2\text{O} + \text{H}_2\text{O} + 2e^- \rightarrow 2\text{Cu}^{0} + 2 \text{OH}^- & \quad \text{E}^\circ = -0.360 \text{ V}
\]
further supports the hypothesis of reduction from solution.

Indeed, Cu$_2$O reduction to metallic Cu was not revealed by previous studies on Cu impregnated TiO$_2$ [19], however these differences should depend on the size of CuO$_x$ deposits and their interaction with TiO$_2$ surface, strongly influencing their reducibility.

Actually, change in size and distribution of Cu species on the surface, as evidenced by HR-TEM, supports this mechanism. Metallic Cu nanoparticles, should act as a co-catalyst for H$_2$ production, attracting photogenerated electrons from TiO$_2$ and promoting their transfer to the protons [19], according to the scheme in Figure 10.

At the same time, upon illumination, Cu$_2$O should inject photoelectrons into TiO$_2$ conduction band and hosting holes from TiO$_2$ valence band (Figure 10). Electrons injected into TiO$_2$ bands should be involved in H$^+$ reduction, thus accounting for H$_2$ production since the beginning of the photocatalytic run. The increased presence of holes in Cu$_2$O may limit further reduction of the Cu$^+$ to Cu0 as well as methanol oxidation, thus accounting for constant pH values during photo-reforming. Both processes restrict electron/hole recombination phenomena and account for improved photocatalytic activity of Cu doped P25 [19].

Figure 10 - Proposed hydrogen photogeneration mechanism for Cu/Cu$_2$O/TiO$_2$ system.
4. Conclusions

Altogether, our photocatalytic tests and the in-depth investigation on impregnated Cu/P25 systems elucidated the nature of copper species active in hydrogen production on Cu/P25 systems. Our findings showed that:

1) Both CuO and Cu$_2$O nanostructures were obtained onto Cu/P25 by impregnation and further heat treatment in nitrogen.

2) The sample allowing the highest H$_2$ production rates showed the highest fraction of finely dispersed CuO nanostructures, that during the photocatalytic process, CuO$_x$ species undergo an in situ dynamic nanostructuring, leading to a significant change in both oxidation state and size distribution. This evolution is probably based on a dissolution-redeposition process. In particular, CuO$_x$ species were involved in a dissolution process, followed by reduction of Cu$^{2+}$ ions to Cu$^+$ and Cu0 by photo-generated electrons.

3) Both Cu$_2$O and Cu0 acted as co-catalysts for H$_2$ generation. Upon illumination, the former injected photoelectrons into TiO$_2$ conduction band. The latter acted as a co-catalyst, hosting photogenerated electrons from TiO$_2$ and mediating their transfer to the protons. Both processes restricted electron/hole recombination phenomena and accounted for improved photocatalytic activity of Cu doped P25.

The obtained findings clearly outline Cu/P25 catalysts as complex and dynamic systems. Their evolution during photocatalytic process must be influenced by solution properties as well as by preparation conditions of the catalyst itself, that markedly affect both size distribution and dispersion of Cu species, and ultimately lead to different ratios between copper oxidation states on the catalyst surface, thus affecting H$_2$ production rate.

The present work highlights that in situ catalysts transformation could improve their performance, lying the basis to explore this strategy to optimize activity of other catalytic systems.
References

Z. He, J. Fu, B. Cheng, J. Yu, S. Cao, Cu$_2$(OH)$_2$CO$_3$ clusters: Novel noble-metal-free

L.S. Yoong, F.K. Chong, Binay K. Dutta, Development of copper-doped TiO$_2$ photocatalyst
https://doi.org/10.1016/j.energy.2009.07.024

C. S. Chen, J. H. You, J. H. Lin, Y. Y. Chen, Effect of highly dispersed active sites of
https://doi.org/10.1016/j.catcom.2008.06.003

Effect of Ti$^{3+}$ on TiO$_2$-Supported Cu Catalysts Used for CO Oxidation, Langmuir 28 (2012)
9996–10006. https://doi.org/10.1021/la301684h

F. Boccuzzi, A. Chiorino, G. Martra, M. Gargano, N. Ravasio, B. Carrozzini, Preparation,
Characterization, and Activity of Cu/TiO$_2$Catalysts. I. Influence of the Preparation Method on
https://doi.org/10.1006/jcat.1997.1475

F. Coloma, F. Marquez, C. H. Rochester, Determination of the nature and reactivity of copper
https://doi.org/10.1039/B005331G

G. Wu, N. Guan, L. Li, Low temperature CO oxidation on Cu–Cu$_2$O/TiO$_2$ catalyst prepared

K. Lalitha, G Sadanandam, V D Kumari, M Subrahmanyam, B Sreedhar, N Y Hebalkar, Highly
Stabilized and Finely Dispersed Cu$_2$O/TiO$_2$: A Promising Visible Sensitive Photocatalyst for
Continuous Production of Hydrogen from Glycerol:Water Mixtures, J. Phys. Chem. C 114

M. Jung, J. N. Hart, J Scott, Y H Ng, Y Jiang, R Amal, Exploring Cu oxidation state on TiO$_2$ and

A. Heciak, A. W. Morawski, B. Grzmil, S. Mozia, Cu-modified TiO$_2$ photocatalysts for
decomposition of acetic acid with simultaneous formation of C$_1$–C$_3$ hydrocarbons and
https://doi.org/10.1016/j.apcatb.2013.03.044
29

