This is the pre-print of the paper: S. De Candia; M. Falcitelli, Curvature of C\_5 ⊕ C\_12 -manifolds; Mediterr. J. Math. 16 (2019), no. 4, Paper No. 105, 23 pp

DOI: https://dx.doi.org/10.1007/s00009-019-1382-2

### CURVATURE OF $C_5 \oplus C_{12}$ -MANIFOLDS

SALVATORE DE CANDIA AND MARIA FALCITELLI

ABSTRACT. The Chinea-Gonzalez class  $C_5 \oplus C_{12}$  consists of the almost contact metric manifolds that are locally described as double-twisted product manifolds  $I \times_{(\lambda_1,\lambda_2)} \widehat{M}$ ,  $I \subset \mathbb{R}$  being an open interval,  $\widehat{M}$  a Kähler manifold and  $\lambda_1,\lambda_2$  smooth positive functions. In this article we investigate the behavior of the curvature of  $C_5 \oplus C_{12}$ -manifolds. Particular attention to the N(k)-nullity condition is given and some local classification theorems in dimension  $2n+1 \geq 5$  are stated. This allows us to classify  $C_5 \oplus C_{12}$ -manifolds that are generalized Sasakian spaceforms. In addition, we provide explicit examples of these spaces.

### 1. Introduction

Double-twisted products play an interesting role in clarifying the interrelation between almost Hermitian (a.H.) and almost contact metric (a.c.m.) manifolds. In fact, the Chinea-Gonzalez class  $C_{1-5} \oplus C_{12} = \bigoplus_{1 \le i \le 5} C_i \oplus C_{12}$  consists of the a.c.m. manifolds that are, locally, double-twisted

products  $]-\epsilon,\epsilon[\times_{(\lambda_1,\lambda_2)}\widehat{M}=(]-\epsilon,\epsilon[\times\widehat{M},\varphi,\xi,\eta,g_{(\lambda_1,\lambda_2)}),\epsilon>0,$   $(\widehat{M},\widehat{J},\widehat{g})$  being an a.H. manifold,  $\lambda_1,\lambda_2\colon ]-\epsilon,\epsilon[\times\widehat{M}\to\mathbb{R}$  smooth positive functions and  $(\varphi,\xi,\eta,g_{(\lambda_1,\lambda_2)})$  the structure defined in (2.1). The class  $C_5\oplus C_{12}$  is the subclass of  $C_{1-5}\oplus C_{12}$  consisting of the a.c.m. manifolds that are locally realized as double-twisted products  $]-\epsilon,\epsilon[\times_{(\lambda_1,\lambda_2)}\widehat{M},$  where  $(\widehat{M},\widehat{J},\widehat{g})$  is a Kähler manifold [9]. This points out the interrelation between Kähler and  $C_5\oplus C_{12}$ -manifolds.

Relevant results involving the behavior of the curvature of Kähler manifolds are well-known [13, 17].

In this article we develop a systematic study of the curvature of  $C_5 \oplus C_{12}$ -manifolds and obtain some classification theorems for those manifolds that satisfy suitable curvature conditions. We also recall that, considering an a.c.m. manifold  $(M, \varphi, \xi, \eta, g)$  with fundamental 2-form  $\Phi$  and Levi-Civita connection  $\nabla$ , the  $C_5$ ,  $C_{12}$  components of  $\nabla \Phi$  are determined by the codifferential  $\delta \eta$  and the 1-form  $\nabla_{\xi} \eta$ , respectively [6]. This allows to specify the defining conditions for the manifolds which fall in the class  $C_5 \oplus C_{12}$  and in its proper subclasses  $C_5$ ,  $C_{12}$ .

Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold, with dim M = 2n + 1, and put  $\alpha = -\frac{\delta \eta}{2n}$ ,  $V = \nabla_{\xi} \xi$ . For any vector fields X, Y, the "cosymplectic defect"  $R(X, Y) \circ \varphi - \varphi \circ R(X, Y)$ , R denoting the curvature of  $\nabla$ , depends on  $\alpha$ ,  $d\alpha$ , V and  $\nabla V$ . In Section 3 we evaluate the cosymplectic defect and derive several consequences, involving the Ricci and the \*-Ricci tensors, also.

We put our attention to the  $(k,\mu)$ -condition proving that, in the context of  $C_5 \oplus C_{12}$ -manifolds, it is equivalent to the N(k)-condition. Considering an N(k)-manifold of dimension  $2n+1\geq 5$ , the function k is expressed as a combination of  $\alpha$ ,  $\xi(\alpha)$  and div V. Several properties of N(k)-manifolds are derived. In particular, we prove that a manifold with constant sectional curvature k either is a  $C_5$ -manifold and k<0 or it is flat and falls in the class  $C_{12}$ . Moreover, suitable N(k)-spaces are locally isometric to a warped product  $N\times_{\lambda}N'$ , N being a 2-dimensional Riemannian manifold of Gaussian curvature k and N' is endowed with an  $\overline{\alpha}$ -Sasakian structure.

Section 6 deals with  $C_5 \oplus C_{12}$ -manifolds that are generalized Sasakian (g.S.) space-forms. These spaces are characterized as the N(k)-manifolds with pointwise constant  $\varphi$ -sectional curvature, say

<sup>2010</sup> Mathematics Subject Classification. primary 53C25, 53C15, secondary 53B20, 53C21.

Key words and phrases. Double-twisted product manifold, Curvature, Cosymplectic defect, N(k)-manifold, Generalized Sasakian space-form.

c. Denoting by  $M^{2n+1}(c,k)$ ,  $n \geq 2$ , a g.S. space-form, we prove that the function  $c + \alpha^2$  satisfies a suitable differential equation. This allows us to state a classification theorem. More precisely, if  $M^{2n+1}(c,k)$  is a g.S. space-form in the class  $C_5 \oplus C_{12}$  and  $\alpha = 0$ , then either M is cosymplectic or it falls in the class  $C_{12}$  and c = 0. If  $\alpha \neq 0$ , then either M is locally conformal to  $C_{12}$ -manifolds that are g.S. space-forms with zero  $\varphi$ -sectional curvature or M is  $\alpha$ -Kenmotsu and globally conformal to a cosymplectic manifold with constant  $\varphi$ -sectional curvature.

Finally, in Section 7, for any  $n \ge 2$ , we construct a family of  $C_{12}$ -manifolds  $M^{2n+1}(0,k)$ .

Throughout this article, all manifolds are assumed smooth and connected.

#### 2. Preliminaries

Given an almost Hermitian (a.H.) manifold  $(\widehat{M}, \widehat{J}, \widehat{g})$ , an open interval  $I \subset \mathbb{R}$  and two smooth positive functions  $\lambda_1, \lambda_2 \colon I \times \widehat{M} \to \mathbb{R}$ , one considers the almost contact metric (a.c.m.) structure  $(\varphi, \xi, \eta, g_{(\lambda_1, \lambda_2)})$  on the product manifold  $I \times \widehat{M}$ , acting as

$$\varphi\left(a\frac{\partial}{\partial t}, X\right) = (0, \widehat{J}X), \quad \eta\left(a\frac{\partial}{\partial t}, X\right) = a\lambda_1,$$

$$\xi = \frac{1}{\lambda_1} \left(\frac{\partial}{\partial t}, 0\right), \quad g_{(\lambda_1, \lambda_2)} = \lambda_1^2 \pi_1^* (dt \otimes dt) + \lambda_2^2 \pi_2^* (\widehat{g}),$$
(2.1)

for any  $a \in \mathfrak{F}(I \times \widehat{M}), X \in \Gamma(T\widehat{M}), \ \pi_1 \colon I \times \widehat{M} \to I, \ \pi_2 \colon I \times \widehat{M} \to \widehat{M}$  denoting the canonical projections. Note that  $g_{(\lambda_1,\lambda_2)}$  is the double-twisted product of the Euclidean metric  $g_0$  and  $\widehat{g}$  [16]. The a.c.m. manifold  $I \times_{(\lambda_1,\lambda_2)} \widehat{M} = (I \times \widehat{M}, \varphi, \xi, \eta, g_{(\lambda_1,\lambda_2)})$  is named the double-twisted product manifold of  $(I,g_0)$  and  $(\widehat{M},\widehat{J},\widehat{g})$  by  $(\lambda_1,\lambda_2)$ . If  $\lambda_1=1, I \times_{(1,\lambda_2)} \widehat{M}$  is denoted by  $I \times_{\lambda_2} \widehat{M}$  and is called the twisted product manifold of  $(I,g_0)$  and  $(\widehat{M},\widehat{J},\widehat{g})$  by  $\lambda_2$ . If  $\lambda_2=1$ , the manifold  $I \times_{(\lambda_1,1)} \widehat{M}$  is denoted by  $\lambda_1 I \times \widehat{M}$ . In the case that  $\lambda_1$  is independent of the Euclidean coordinate t and  $\lambda_2$  only depends on  $t, I \times_{(\lambda_1,\lambda_2)} \widehat{M}$  is called a double-warped product manifold, the metric  $g_{(\lambda_1,\lambda_2)}$  being just the double-warped product metric of  $g_0$  and  $\widehat{g}$  by  $(\lambda_1,\lambda_2)$ . If  $\lambda_2$  only depends on  $t, I \times_{\lambda_2} \widehat{M}$  is said to be a warped product manifold.

Applying the theory developed in [6], [9], we are able to specify the Chinea-Gonzalez class of the mentioned manifolds. In particular, if dim  $\widehat{M}=2$ , then  $I\times_{(\lambda_1,\lambda_2)}\widehat{M}$  belongs to the class  $C_5\oplus C_{12}$ . In the case that dim  $\widehat{M}=2n\geq 4$ ,  $(\widehat{J},\widehat{g})$  is a Kähler structure and the function  $\lambda_2$  is constant on  $\widehat{M}$ , then  $I\times_{(\lambda_1,\lambda_2)}\widehat{M}$  is a  $C_5\oplus C_{12}$ -manifold. Furthermore, if  $\lambda_2=1$ ,  $\lambda_1I\times\widehat{M}$  falls in the class  $C_{12}$ . It is also known that any warped product manifold  $I\times_{\lambda_2}\widehat{M}$ , where  $(\widehat{M},\widehat{J},\widehat{g})$  is a Kähler manifold, belongs to the class  $C_5$  and is called an  $\alpha$ -Kenmotsu manifold, where  $\alpha=\xi(\log\lambda_2)$ . More generally, any double-warped product manifold  $I\times_{(\lambda_1,\lambda_2)}\widehat{M}$ , such that  $(\widehat{M},\widehat{J},\widehat{g})$  is Kähler and both the functions  $\lambda_1$ ,  $\lambda_2$  are non constant, is in the class  $C_5\oplus C_{12}\times (C_5\cup C_{12})$ . This shows that  $C_5$ ,  $C_{12}$  are proper subclasses of  $C_5\oplus C_{12}$ . Cosymplectic manifolds set up the class  $C=C_5\cap C_{12}$ .

In Table 1 we list the defining conditions of any a.c.m. manifold  $(M, \varphi, \xi, \eta, g)$  which falls in  $C_5 \oplus C_{12}$  or in its subclasses. These conditions are formulated in terms of the covariant derivatives  $\nabla \varphi$ ,  $\nabla \eta$ ,  $\nabla$  denoting the Levi-Civita connection of M. Note that, since  $\nabla_{\xi} \xi$  is the vector field g-associated to the 1-form  $\nabla_{\xi} \eta$ , the vanishing of  $\nabla_{\xi} \xi$  is equivalent to the condition that the considered manifold is in the class  $C_5$ , namely it is an  $\alpha$ -Kenmotsu manifold. Moreover, it is known that any  $C_5 \oplus C_{12}$ -manifold satisfies

$$\nabla_X \xi = \alpha(X - \eta(X)\xi) + \eta(X)\nabla_{\xi}\xi, \quad X \in \Gamma(TM)$$
(2.2)

$$d\eta = \eta \wedge \nabla_{\xi} \eta, \quad d(\nabla_{\xi} \eta) = -(\alpha \nabla_{\xi} \eta + \nabla_{\xi} (\nabla_{\xi} \eta)) \wedge \eta, \tag{2.3}$$

where dim M=2n+1 and  $\alpha=-\frac{\delta\eta}{2n}$ . Furthermore, if dim  $M\geq 5$ , the Lee form of M is  $\omega=-\alpha\eta$  and it is closed. Applying (2.3), one has

$$d\alpha = \xi(\alpha)\eta + \alpha\nabla_{\xi}\eta. \tag{2.4}$$

Table 1

| Classes             | Defining conditions                                                                                                                             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_5 \oplus C_{12}$ | $(\nabla_X \varphi)Y = \alpha(g(\varphi X, Y)\xi - \eta(Y)\varphi X)  -\eta(X)((\nabla_\xi \eta)\varphi Y\xi + \eta(Y)\varphi(\nabla_\xi \xi))$ |
| $C_5$               | $(\nabla_X \varphi)Y = \alpha(g(\varphi X, Y)\xi - \eta(Y)\varphi X)$                                                                           |
| $C_{12}$            | $(\nabla_X \varphi)Y = -\eta(X)((\nabla_\xi \eta)\varphi Y\xi + \eta(Y)\varphi(\nabla_\xi \xi))$                                                |
| C                   | $\nabla \varphi = 0$                                                                                                                            |

In the sequel, given a  $C_5 \oplus C_{12}$ -manifold  $(M, \varphi, \xi, \eta, g)$  we will denote by D,  $D^{\perp}$  the mutually orthogonal distributions associated to the subbundles  $\operatorname{Ker} \eta$  and  $\operatorname{span} \{\xi\}$  of the tangent bundle TM, respectively. These distributions are both totally umbilical foliations. More precisely,  $H = -\alpha \xi_{|N|}$  is the mean curvature vector field of any leaf (N, g') of D, g' being the metric induced by g. Furthermore,  $(J = \varphi_{|TN|}, g')$  is a Kähler structure on N. For the sake of simplicity, we will denote by V the vector field  $\nabla_{\xi} \xi$ , which represents the mean curvature vector field of any integral curve of  $D^{\perp}$ .

Applying the main results in [9], [16], one obtains a local description of a  $C_5 \oplus C_{12}$ -manifold  $(M,\varphi,\xi,\eta,g)$ . More precisely, for any point  $x \in M$ , there exist an open neighborhood U of x,  $\epsilon > 0$ , a Riemannian manifold  $(F,\widehat{g})$ , two smooth positive functions  $\lambda_1,\lambda_2\colon ]-\epsilon,\epsilon[\times F\to \mathbb{R}$  and an isometry  $f\colon (]-\epsilon,\epsilon[\times F,g_{(\lambda_1,\lambda_2)})\to (U,g_{|_U})$  such that the canonical foliations of the product manifold correspond to the distributions  $D,\,D^\perp$ . It follows that  $f_*(\frac{1}{\lambda_1}\frac{\partial}{\partial t})=\xi_{|_U}$  and, for any  $t\in ]-\epsilon,\epsilon[$ ,  $f_t(F)$  is a leaf of D, where  $f_t=f(t,\cdot)$ . Note that there exists  $t_0\in ]-\epsilon,\epsilon[$  such that  $\widehat{g}=f_{t_0}^*(g_{|_U})$ . Furthermore, considering the Kähler structure  $(\widehat{J}=(f_*^{-1}\circ\varphi\circ f_*)_{|_{TF}},\widehat{g})$  on F and the corresponding a.c.m. manifold  $]-\epsilon,\epsilon[\times_{(\lambda_1,\lambda_2)}F$  defined as in (2.1), then the map  $f\colon ]-\epsilon,\epsilon[\times_{(\lambda_1,\lambda_2)}F\to (U,\varphi_{|_U},\xi_{|_U},\eta_{|_U},g_{|_U})$  is an almost contact isometry.

Finally, if  $(M, \varphi, \xi, \eta, g)$  is a  $C_{12}$ -manifold, then D is a totally geodesic foliation. By [16], it follows that  $\lambda_2 = 1$  so that M is, locally, realized as the a.c.m. manifold  $\lambda = -\epsilon$ ,  $\epsilon \times F$ , E being a Kähler manifold.

#### 3. Some curvature relations

In this section we focus on the main properties of the curvature R of the Levi-Civita connection  $\nabla$  of a  $C_5 \oplus C_{12}$ -manifold  $(M, \varphi, \xi, \eta, g)$ ,  $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$ . For the Riemannian curvature we adopt the convention R(X,Y,Z,W) = g(R(Z,W,Y),X) = -g(R(X,Y,Z),W). This allows us to obtain an explicit expression of the cosymplectic defect, namely the (0,4)-tensor field  $\Lambda$  acting as

$$\Lambda(X, Y, Z, W) = R(X, Y, Z, W) - R(X, Y, \varphi Z, \varphi W).$$

We also state some properties of the Ricci tensor  $\rho$  and the \*-Ricci tensor  $\rho^*$  and evaluate the mixed sectional curvature, denoted by  $K(X,\xi)$ , for any unit vector X orthogonal to  $\xi$ .

**Proposition 3.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold. For any vector fields X, Y, Z on M one has

$$\begin{split} R(X,Y)\varphi Z = & \varphi(R(X,Y)Z) + \alpha(\alpha g(\varphi Y,Z) + \eta(Y)g(\varphi V,Z))X \\ & - \alpha(\alpha g(\varphi X,Z) + \eta(X)g(\varphi V,Z))Y \\ & + (Y(\alpha)\eta(Z) + \alpha^2 g(Y,Z) + \alpha \eta(Y)g(V,Z))\varphi X \\ & - (X(\alpha)\eta(Z) + \alpha^2 g(X,Z) + \alpha \eta(X)g(V,Z))\varphi Y \\ & + \alpha(\eta(X)g(\varphi Y,Z) - \eta(Y)g(\varphi X,Z))V \\ & + (\eta(X)(\alpha g(Y,Z) - \eta(Z)g(V,Y)) - \eta(Y)(\alpha g(X,Z) - \eta(Z)g(V,X)))\varphi V \\ & + \eta(Z)(\eta(X)\nabla_Y\varphi V - \eta(Y)\nabla_X\varphi V) \\ & + (X(\alpha)g(\varphi Y,Z) - Y(\alpha)g(\varphi X,Z) + g(\varphi V,Z)(\eta(X)g(V,Y) - \eta(Y)g(V,X)) \\ & - \eta(X)g(\nabla_Y\varphi V,Z) + \eta(Y)g(\nabla_X\varphi V,Z))\xi. \end{split}$$

*Proof.* Since M is a  $C_5 \oplus C_{12}$ -manifold, for any  $X,Y \in \Gamma(TM)$  one has

$$(\nabla_X \varphi)Y = \alpha(g(\varphi X, Y)\xi - \eta(Y)\varphi X) - \eta(X)(g(V, \varphi Y)\xi + \eta(Y)\varphi V). \tag{3.1}$$

Let X, Y, Z be vector fields on M. By direct calculus, applying (2.2), (3.1), we have

$$R(X,Y)\varphi Z = \varphi(R(X,Y)Z) + \nabla_X((\nabla_Y\varphi)Z) - \nabla_Y((\nabla_X\varphi)Z) - (\nabla_{[X,Y]}\varphi)Z$$

$$+ (\nabla_X\varphi)(\nabla_YZ) - (\nabla_Y\varphi)(\nabla_XZ)$$

$$= \varphi(R(X,Y)Z) - 2d\eta(X,Y)(\eta(Z)\varphi V - g(\varphi V,Z)\xi)$$

$$- \alpha\eta(Z)(\nabla_X\varphi Y - \nabla_Y\varphi X - \varphi[X,Y])$$

$$+ X(\alpha)(g(\varphi Y,Z)\xi - \eta(Z)\varphi Y) - Y(\alpha)(g(\varphi X,Z)\xi - \eta(Z)\varphi X)$$

$$+ \alpha^2(g(\varphi Y,Z)(X - \eta(X)\xi) - g(\varphi X,Z)(Y - \eta(Y)\xi))$$

$$+ \alpha(\eta(X)g(\varphi Y,Z) - \eta(Y)g(\varphi X,Z))V$$

$$+ \eta(Z)(\eta(X)\nabla_Y\varphi V - \eta(Y)\nabla_X\varphi V)$$

$$+ \alpha g(\varphi V,Z)(\eta(Y)X - \eta(X)Y)$$

$$- (\nabla_X\eta)Z(\alpha\varphi Y + \eta(Y)\varphi V) + (\nabla_Y\eta)Z(\alpha\varphi X + \eta(X)\varphi V)$$

$$+ (\alpha(g(\nabla_X\varphi Y,Z) - g(\nabla_Y\varphi X,Z) - g(\varphi[X,Y],Z))$$

$$+ \eta(Y)g(\nabla_X\varphi V,Z) - \eta(X)g(\nabla_Y\varphi V,Z))\xi.$$

$$(3.2)$$

By (3.1) we also have

$$\begin{split} \nabla_X \varphi Y - \nabla_Y \varphi X = & \varphi[X,Y] + (\nabla_X \varphi) Y - (\nabla_Y \varphi) X \\ = & \varphi[X,Y] + \alpha(\eta(X) \varphi Y - \eta(Y) \varphi X) \\ & + (2\alpha g(\varphi X,Y) + \eta(X) g(\varphi V,Y) - \eta(Y) g(\varphi V,X)) \xi. \end{split}$$

Then, substituting into (3.2) and applying (2.2), (2.3), one obtains the statement.

Corollary 3.1. Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold such that dim M = 2n+1. The following properties hold

i) For any  $X, Y \in \Gamma(TM)$  we have

$$R(X,Y)\xi = X(\alpha)(Y - \eta(Y)\xi) - Y(\alpha)(X - \eta(X)\xi) + \alpha^{2}(\eta(X)Y - \eta(Y)X)$$

$$+ (\eta(X)g(V,Y) - \eta(Y)g(V,X))(V - \alpha\xi) - \eta(X)\nabla_{Y}V + \eta(Y)\nabla_{X}V$$

$$= X(\alpha)(Y - \eta(Y)\xi) - Y(\alpha)(X - \eta(X)\xi)$$

$$+ \eta(X)(R(\xi,Y)\xi - \xi(\alpha)Y) - \eta(Y)(R(\xi,X)\xi - \xi(\alpha)X).$$

ii) For any unit vector X orthogonal to  $\xi$ , one has

$$K(X,\xi) = -(\xi(\alpha) + \alpha^2) - g(V,X)^2 + g(\nabla_X V, X).$$

iii) The Ricci tensor satisfies

$$\rho(\xi,\xi) = -2n(\xi(\alpha) + \alpha^2) - \operatorname{div} V,$$
  
$$\rho(X,\xi) = -(2n-1)(X - \eta(X)\xi)(\alpha) + \eta(X)\rho(\xi,\xi).$$

*Proof.* Let X, Y be vector fields on M. By Proposition 3.1, we get

$$R(X,Y)\xi = -\varphi^{2}(R(X,Y)\xi) = (Y(\alpha) + \alpha^{2}\eta(Y))\varphi^{2}X - (X(\alpha) + \alpha^{2}\eta(X))\varphi^{2}Y$$
$$-\eta(X)(\alpha\eta(Y) - g(V,Y))V + \eta(Y)(\alpha\eta(X) - g(V,X))V$$
$$+\eta(X)\varphi(\nabla_{Y}\varphi V) - \eta(Y)\varphi(\nabla_{X}\varphi V).$$

Moreover, using (3.1), we have

$$\begin{split} \eta(X)\varphi(\nabla_Y\varphi V) - \eta(Y)\varphi(\nabla_X\varphi V) &= -\eta(X)(\nabla_Y\varphi)\varphi V + \eta(Y)(\nabla_X\varphi)\varphi V \\ &- \eta(X)\nabla_Y V + \eta(Y)\nabla_X V \\ &= -\alpha(\eta(X)g(V,Y) - \eta(Y)g(V,X))\xi \\ &- \eta(X)\nabla_Y V + \eta(Y)\nabla_X V. \end{split}$$

Thus, substituting into the previous formula, we obtain the first equality in i). The second relation follows by a direct calculus.

To prove property ii) it is enough to apply i) observing that, for any  $X \in TM$ ,  $X \perp \xi$ , ||X|| = 1, one has  $K(\xi, X) = -g(R(\xi, X)\xi, X)$ .

Let  $\{e_1, \ldots, e_{2n}, e_{2n+1} = \xi\}$  be a local orthonormal frame on M. Since V is orthogonal to  $\xi$ , applying ii) we have

$$\rho(\xi,\xi) = \sum_{i=1}^{2n} K(\xi,e_i) = -2n(\xi(\alpha) + \alpha^2) - ||V||^2 + \sum_{i=1}^{2n} g(\nabla_{ei}V,e_i)$$
$$= -2n(\xi(\alpha) + \alpha^2) + \sum_{i=1}^{2n+1} g(\nabla_{ei}V,e_i).$$

Thus, the first formula in iii) is proved. Finally, by i) we obtain

$$\rho(X,\xi) = \sum_{i=1}^{2n} R(X, e_i, \xi, e_i)$$

$$= -2nX(\alpha) + \sum_{i=1}^{2n} e_i(\alpha)g(X - \eta(X)\xi, e_i) + \eta(X)\rho(\xi, \xi) + 2n\eta(X)\xi(\alpha)$$

$$= -(2n-1)(X - \eta(X)\xi)(\alpha) + \eta(X)\rho(\xi, \xi).$$

We recall that, given two (symmetric) (0,2)-tensor fields P, Q, the Kulkarni-Nomizu product  $P \otimes Q$  acts as

$$(P Q)(X, Y, Z, W) = P(X, Z)Q(Y, W) + P(Y, W)Q(X, Z) - P(X, W)Q(Y, Z) - P(Y, Z)Q(X, W).$$
(3.3)

In particular, for the sake of simplicity, one puts  $\pi_1 = \frac{1}{2}g \otimes g$ .

**Proposition 3.2.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold such that dim M = 2n + 1. For any  $X, Y, Z, W \in \Gamma(TM)$  one has

$$\Lambda(X, Y, Z, W) = -\alpha^{2}(\pi_{1}(X, Y, Z, W) - \pi_{1}(X, Y, \varphi Z, \varphi W)) 
-\alpha((g \bigotimes (\eta \otimes \nabla_{\xi} \eta))(X, Y, Z, W) - (g \bigotimes (\eta \otimes \nabla_{\xi} \eta))(X, Y, \varphi Z, \varphi W)) 
-(g \bigotimes (d\alpha \otimes \eta))(X, Y, Z, W) + ((\eta \otimes \eta) \bigotimes (\nabla(\nabla_{\xi} \eta) - \nabla_{\xi} \eta \otimes \nabla_{\xi} \eta))(X, Y, Z, W).$$

*Proof.* We only outline the proof, which requires a quite long calculation. Let X, Y, Z, W be vector fields on M. Starting by the equality

$$\Lambda(X, Y, Z, W) = q(R(X, Y)\varphi Z - \varphi(R(X, Y)Z), \varphi W) + q(R(X, Y)\xi, Z)\eta(W),$$

one applies Proposition 3.1, Corollary 3.1 and adopts the notation

$$\nabla(\nabla_{\xi}\eta)(X,Y) = (\nabla_X(\nabla_{\xi}\eta))Y = g(\nabla_X V, Y).$$

Then the statement follows by direct calculation, also applying (3.3).

Remark 3.1. In [9] the cosymplectic defect of a manifold that belongs to a class containing  $C_5 \oplus C_{12}$  as a proper subclass was evaluated with respect to the minimal U(n)-connection. Considering a manifold in the class  $C_5 \oplus C_{12}$ , it is easy to verify that the formulas in Proposition 3.2 and in [9] are equivalent.

Corollary 3.2. Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold with dim M = 2n + 1. The following properties hold

i) For any  $X, Y \in \Gamma(D)$ , we get

$$\Lambda(X, Y, X, Y) = -\alpha^2(||X||^2||Y||^2 - g(X, Y)^2 - g(X, \varphi Y)^2).$$

ii) For any  $X, Y \in \Gamma(TM)$ , we have

$$(\rho - \rho^*)(X, Y) = -((2n - 1)\alpha^2 + \xi(\alpha))g(X, Y) - \alpha^2 \eta(X)\eta(Y) - ((2n - 1)X(\alpha) + \operatorname{div} V \eta(X) - \alpha g(V, X))\eta(Y) - (2(n - 1)\alpha\eta(X) + g(V, X))g(V, Y) + g(\nabla_X V - \eta(X)\nabla_{\xi} V, Y).$$

iii) Denoting by  $\tau$ ,  $\tau^*$  the scalar and \*-scalar curvatures, we get

$$\tau - \tau^* = -2(2n^2\alpha^2 + 2n\xi(\alpha) + \text{div } V).$$

iv) The skew-symmetric component of  $\rho^*$  is given by

$$\rho^*(X,Y) - \rho^*(Y,X) = (2n-1)(X(\alpha)\eta(Y) - Y(\alpha)\eta(X)) + 2(n-1)\alpha(g(V,Y)\eta(X) - g(V,X)\eta(Y)).$$

*Proof.* Property i) is a direct consequence of Proposition 3.2.

Let X, Y be vector fields on M. With respect to a local orthonormal frame  $\{e_1, \ldots, e_{2n}, \xi\}$ , we write  $(\rho - \rho^*)(X, Y) = \sum_{i=1}^{2n} \Lambda(X, e_i, Y, e_i) - R(X, \xi, \xi, Y)$  and apply Proposition 3.2 and Corollary 3.1. So, we obtain ii) and then iii). Furthermore, since  $\rho$  is symmetric, by ii) we have

$$\rho^*(X,Y) - \rho^*(Y,X) = (2n-1)(X(\alpha)\eta(Y) - Y(\alpha)\eta(X) - \alpha g(V,X)\eta(Y) + \alpha g(V,Y)\eta(X))$$
$$-g(\nabla_X V - \eta(X)\nabla_\xi V, Y) + g(\nabla_Y V - \eta(Y)\nabla_\xi V, X).$$

On the other hand, applying (2.3) we get

$$\begin{split} 0 = & g(\nabla_X V, Y) - g(\nabla_Y V, X) + (\alpha g(V, X) + g(\nabla_\xi V, X)) \eta(Y) \\ & - (\alpha g(V, Y) + g(\nabla_\xi V, Y)) \eta(X). \end{split}$$

Hence, substituting into the previous formula, we obtain iv).

**Proposition 3.3.** Let  $(M, \varphi, \xi, \eta, g)$  be an a.c.m. manifold with dim  $M \ge 5$ . If M is  $\alpha$ -Kenmotsu or a  $C_{12}$ -manifold, then  $\rho^*$  is symmetric.

*Proof.* Since dim M > 5, by (2.4) and Corollary 3.2, for any  $X, Y \in \Gamma(TM)$  we have

$$\rho^*(X, Y) - \rho^*(Y, X) = \alpha(g(V, X)\eta(Y) - g(V, Y)\eta(X)).$$

**Proposition 3.4.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold with dim  $M \geq 5$ . The following properties are satisfied

i) For any  $X, Y, Z, W \in \Gamma(TM)$ , one has

$$R(X,Y,Z,W) = R(\varphi X, \varphi Y, \varphi Z, \varphi W) - \alpha^{2}(g \otimes (\eta \otimes \eta))(X,Y,Z,W)$$

$$+ (g \otimes (\eta \otimes (d\alpha - \alpha \nabla_{\xi} \eta)))(X,Y,Z,W)$$

$$- (g \otimes (\eta \otimes (d\alpha - \alpha \nabla_{\xi} \eta)))(X,Y,\varphi Z,\varphi W)$$

$$+ ((\eta \otimes \eta) \otimes (\nabla (\nabla_{\xi} \eta) - \nabla_{\xi} \eta \otimes \nabla_{\xi} \eta))(X,Y,Z,W).$$

ii) For any  $X, Y \in \Gamma(TM)$ , one has

$$\rho(X,Y) = \rho(\varphi X, \varphi Y) - (2n\alpha^2 + \operatorname{div} V)\eta(X)\eta(Y)$$

$$- (2(n-1)\alpha(\nabla_{\xi}\eta)Y + (\nabla_{\xi}(\nabla_{\xi}\eta))Y + Y(\alpha))\eta(X)$$

$$+ (\alpha(\nabla_{\xi}\eta)X - (2n-1)X(\alpha))\eta(Y)$$

$$+ (\nabla_X(\nabla_{\xi}\eta))Y - (\nabla_{\xi}\eta)X(\nabla_{\xi}\eta)Y$$

$$- (\nabla_{\varphi X}(\nabla_{\xi}\eta))\varphi Y + (\nabla_{\xi}\eta)\varphi X(\nabla_{\xi}\eta)\varphi Y.$$

*Proof.* We observe that, for any  $X, Y, Z, W \in \Gamma(TM)$ , one has

$$R(X, Y, Z, W) - R(\varphi X, \varphi Y, \varphi Z, \varphi W) = \Lambda(X, Y, Z, W) + \Lambda(\varphi Z, \varphi W, X, Y).$$

Thus property i) follows by Proposition 3.2.

Considering an adapted local orthonormal frame  $\{e_1, \ldots, e_n, e_{n+1} = \varphi e_1, \ldots, e_{2n} = \varphi e_n, \xi\}$  on M, for any  $X, Y \in \Gamma(TM)$ , we write

$$\rho(X,Y) - \rho(\varphi X, \varphi Y) = \sum_{i=1}^{2n} (R(X, e_i, Y, e_i) - R(\varphi X, \varphi e_i, \varphi Y, \varphi e_i)) + g(R(X, \xi)\xi, Y) - g(R(\varphi X, \xi)\xi, \varphi Y).$$

Then, applying i) and Corollary 3.1, one proves ii).

Remark 3.2. We point out that, being  $\rho$  symmetric, the tensor field considered at the right side of formula ii) in Proposition 3.4 has to be symmetric. This is equivalent to the condition

$$0 = 2(n-1)((X(\alpha) - \alpha(\nabla_{\xi}\eta)X)\eta(Y) - (Y(\alpha) - \alpha(\nabla_{\xi}\eta)Y)\eta(X)) + Q(X,Y) - Q(Y,X) - Q(\varphi X, \varphi Y) + Q(\varphi Y, \varphi X),$$

for any  $X, Y \in \Gamma(TM)$ , where  $Q = \nabla(\nabla_{\xi}\eta) + (\nabla_{\xi}(\nabla_{\xi}\eta) + \alpha\nabla_{\xi}\eta) \otimes \eta$ . In fact, by (2.3) we know that Q is symmetric. Thus, if dim M = 3, the above equality reduces to an identity. If dim  $M \geq 5$ , by (2.4) we obtain that  $(d\alpha - \alpha\nabla_{\xi}\eta) \otimes \eta$  is symmetric, also.

# 4. The k-nullity condition

In Contact Geometry the behavior of the tensor field  $h = \frac{1}{2}L_{\xi}\varphi$ ,  $L_{\xi}$  denoting the Lie derivative with respect to  $\xi$ , plays an important role for the classification of manifolds satisfying suitable curvature conditions [2, 3].

The following result shows that the vector field V of any  $C_5 \oplus C_{12}$ -manifold specifies h.

**Lemma 4.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold. For any  $X \in \Gamma(TM)$  one has  $h(X) = -\frac{1}{2}g(V, \varphi X)\xi$ . Therefore, h vanishes if and only if M falls in the class  $C_5$ .

*Proof.* By direct calculation, for any  $X \in \Gamma(TM)$  one has

$$2h(X) = (\nabla_\xi \varphi) X - \nabla_{\varphi X} \xi + \varphi(\nabla_X \xi) = -(\nabla_\xi \eta) \varphi X \xi = -g(V, \varphi X) \xi.$$

Since V is orthogonal to  $\xi$ , we obtain h=0 if and only if V=0.

**Lemma 4.2.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold. Assume the existence of smooth functions  $k, \mu$  on M such that

$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)h(X) - \eta(X)h(Y)), \tag{4.1}$$

for any  $X, Y \in \Gamma(TM)$ . Then, one has  $\mu h = 0$  and  $d\alpha = \xi(\alpha)\eta$ .

*Proof.* By Corollary 3.1 and the hypothesis, for any  $X, Y \in \Gamma(D)$ , we have

$$X(\alpha)Y - Y(\alpha)X = R(X,Y)\xi = 0.$$

It follows that  $X(\alpha) = 0$  so that  $d\alpha = \xi(\alpha)\eta$ .

Given X orthogonal to  $\xi$ , by Corollary 3.1 and Lemma 4.1, we obtain

$$-kX + \frac{1}{2}\mu g(V, \varphi X)\xi = -R(X, \xi)\xi$$
$$= (\xi(\alpha) + \alpha^2)X + g(V, X)(V - \alpha\xi) - \nabla_X V.$$

Taking the inner product by  $\xi$ , we get  $-\alpha g(V,X) - g(\nabla_X V, \xi) = \frac{1}{2}\mu g(V,\varphi X)$ . Moreover, applying (2.2) one has  $g(\nabla_X V, \xi) = -g(\nabla_X \xi, V) = -\alpha g(V, X)$ . It follows that  $\mu g(V,\varphi X) = 0$ , for any  $X \in \Gamma(TM)$ .

Condition (4.1) was firstly considered in [4] in the context of contact manifolds,  $k, \mu$  being suitable real numbers. Contact manifolds satisfying (4.1), also named  $(k, \mu)$ -manifolds, have been deeply studied ([3] and References therein). We call N(k)-space an a.c.m. manifold  $(M, \varphi, \xi, \eta, g)$  admitting a smooth function k such that

$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y), \quad X,Y \in \Gamma(TM). \tag{4.2}$$

Lemma 4.2 clarifies that conditions (4.1), (4.2) are equivalent in the case of a  $C_5 \oplus C_{12}$ -manifold. In [15] the authors proved that the curvature of an  $\alpha$ -Kenmotsu manifold always satisfies (4.2), where  $k = -(\xi(\alpha) + \alpha^2)$ . The next results show that this property does not extend to  $C_5 \oplus C_{12}$ -manifolds.

**Proposition 4.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold such that dim  $M = 2n + 1 \ge 5$ . If M is an N(k)-manifold, the following properties hold

- i)  $d\alpha = \xi(\alpha)\eta$ ,  $\alpha V = 0$ .
- ii)  $k = -(\xi(\alpha) + \alpha^2) \frac{1}{2n} \operatorname{div} V$ .
- iii)  $\alpha \operatorname{div} V = 0$ .
- iv) For any  $X \in \Gamma(TM)$ , one has

$$\nabla_X V = -\frac{1}{2n} \operatorname{div} V(X - \eta(X)\xi) + g(V, X)V + \eta(X)\nabla_\xi V.$$

*Proof.* By Lemma 4.2, we have  $d\alpha = \xi(\alpha)\eta$  and comparing with (2.4) we obtain  $\alpha V = 0$ . Then, also applying Corollary 3.1, for any  $X \in \Gamma(D)$  one gets

$$kX = R(X,\xi)\xi = -(\xi(\alpha) + \alpha^2)X - g(V,X)V + \nabla_X V. \tag{4.3}$$

Let  $\{e_1, \ldots, e_{2n}, e_{2n+1} = \xi\}$  be a local orthonormal frame on M. By (4.3) we have

$$2nk = \sum_{i=1}^{2n} g(R(e_i, \xi)\xi, e_i) = -2n(\xi(\alpha) + \alpha^2) - ||V||^2 + \sum_{i=1}^{2n} g(\nabla_{e_i}V, e_i)$$
$$= -2n(\xi(\alpha) + \alpha^2) - \text{div } V.$$

Then, ii) follows. Moreover, since  $\alpha V=0$ , we get  $0=\sum_{i=1}^{2n}g(\nabla_{e_i}(\alpha V),e_i)=d\alpha(V)-\alpha\operatorname{div} V=-\alpha\operatorname{div} V$ . This proves iii). Finally, using (4.3), for any X orthogonal to  $\xi$  we have

$$\nabla_X V = \left(-\frac{1}{2n}\operatorname{div} V\right)X + g(V, X)V.$$

This relation entails iv).

We point out that the distribution D on any manifold as in Proposition 4.1 is spherical. In fact, the equation  $d\alpha = \xi(\alpha)\eta$  means that the leaves of D are extrinsic spheres.

**Proposition 4.2.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold such that dim  $M = 2n + 1 \geq 5$ . Assume that M is an N(k)-manifold. Then, for any  $U, X \in \Gamma(D)$ , one has

i) 
$$R(U,X)V = (U(k) - kg(V,U))X - (X(k) - kg(V,X))U$$
.  
ii)  $U(k + \frac{1}{2n}\operatorname{div} V) = (k + \frac{1}{2n}\operatorname{div} V)(\nabla_{\xi}\eta)U$ .

ii) 
$$U(k + \frac{1}{2n} \operatorname{div} V) = (k + \frac{1}{2n} \operatorname{div} V)(\nabla_{\xi} \eta)U$$

*Proof.* Let U, X, Y be vector fields on M. By direct calculation, applying (2.2) and (4.2), one has

$$(\nabla_{U}R)(X,Y)\xi = U(k)(\eta(Y)X - \eta(X)Y) + k\eta(U)(g(V,Y)X - g(V,X)Y) + \alpha k(g(U,Y)X - g(U,X)Y) - \alpha R(X,Y)U - \eta(U)R(X,Y)V.$$
(4.4)

Now we consider U, X orthogonal to  $\xi$  and apply the second Bianchi identity, namely

$$(\nabla_U R)(X,\xi)\xi + (\nabla_X R)(\xi,U)\xi + (\nabla_\xi R)(U,X)\xi = 0.$$

By(4.4) we get

$$U(k)X - X(k)U + k(g(V, X)U - g(V, U)X) - R(U, X)V = 0.$$

Hence, i) follows. Furthermore, applying Proposition 4.1, we have

$$R(U,X)V = \nabla_U(\nabla_X V) - \nabla_X(\nabla_U V) - \nabla_{[U,X]} V$$
  
=  $-\frac{1}{2n} \operatorname{div} V(g(V,X)U - g(V,U)X) - \frac{1}{2n} (U(\operatorname{div} V)X - X(\operatorname{div} V)U).$ 

Thus, comparing with i), one has

$$U\Big(k+\frac{1}{2n}\operatorname{div} V\Big)X-X\Big(k+\frac{1}{2n}\operatorname{div} V\Big)U=\Big(k+\frac{1}{2n}\operatorname{div} V\Big)(g(V,U)X-g(V,X)U).$$

It follows that ii) holds.

Remark 4.1. By Proposition 4.1, it is easy to verify that property ii) of Proposition 4.2 is equivalent to the condition

$$U(\xi(\alpha)) = \xi(\alpha)q(V, U), \quad U \in \Gamma(D).$$

**Proposition 4.3.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold such that dim  $M = 2n + 1 \geq 5$ . Assume that M is an N(k)-manifold. For any  $X, Y, Z, W \in \Gamma(TM)$  one has

i) 
$$\begin{split} R(X,Y)\varphi Z = & \varphi(R(X,Y)Z) + (k+\alpha^2)\eta(X)(\eta(Z)\varphi Y - g(\varphi Y,Z)\xi) \\ & - (k+\alpha^2)\eta(Y)(\eta(Z)\varphi X - g(\varphi X,Z)\xi) \\ & + \alpha^2(g(\varphi Y,Z)X - g(\varphi X,Z)Y + g(Y,Z)\varphi X - g(X,Z)\varphi Y). \end{split}$$
ii) 
$$\Lambda(X,Y,Z,W) = -\alpha^2(\pi_1(X,Y,Z,W) - \pi_1(X,Y,\varphi Z,\varphi W)) \\ & + (k+\alpha^2)(g \oslash (\eta \otimes \eta))(X,Y,Z,W). \end{split}$$

*Proof.* Let X, Y, Z, W be vector fields on M. By Propositions 3.1, 4.1 we have

$$\begin{split} R(X,Y)\varphi Z = & \varphi(R(X,Y)Z) + \xi(\alpha)\eta(Z)(\eta(Y)\varphi X - \eta(X)\varphi Y) \\ & + \alpha^2(g(\varphi Y,Z)X - g(\varphi X,Z)Y + g(Y,Z)\varphi X - g(X,Z)\varphi Y) \\ & + \eta(Z)(g(V,X)\eta(Y) - g(V,Y)\eta(X))\varphi V \\ & + \eta(Z)(\eta(X)\nabla_Y\varphi V - \eta(Y)\nabla_X\varphi V) \\ & + (\xi(\alpha)(\eta(X)g(\varphi Y,Z) - \eta(Y)g(\varphi X,Z)) \\ & + g(\varphi V,Z)(\eta(X)g(V,Y) - \eta(Y)g(V,X)) \\ & - \eta(X)g(\nabla_Y\varphi V,Z) + \eta(Y)g(\nabla_X\varphi V,Z))\xi. \end{split}$$

Moreover, applying (3.1) and Proposition 4.1, we get

$$\nabla_X \varphi V = (\nabla_X \varphi) V + \varphi(\nabla_X V) = g(V, X) \varphi V - \left(\frac{1}{2n} \operatorname{div} V\right) \varphi X + \eta(X) \varphi(\nabla_\xi V).$$

Substituting into the previous formula and using property ii) of Proposition 4.1, i) follows. Finally, property ii) is obtained by i) and the relation

$$\Lambda(X,Y,Z,W) = g(R(X,Y)\varphi Z - \varphi(R(X,Y)Z),\varphi W) + k\eta(W)(\eta(Y)g(X,Z) - \eta(X)g(Y,Z)).$$

**Theorem 4.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold such that dim  $M \geq 5$ . Assume that M has constant sectional curvature k. Then, either M is an  $\alpha$ -Kenmotsu manifold and  $k = -\alpha^2$ , or M is flat and falls in the class  $C_{12}$ .

*Proof.* Let x be a point of M and consider unit vectors  $X,Y \in T_xM$  such that  $g_x(X,Y) =$  $g_x(X,\varphi Y)=\eta_x(X)=\eta_x(Y)=0$ . Since M has constant sectional curvature, we have  $R=k\pi_1$ , so that

$$R_x(X,Y)\varphi_xY - \varphi_x(R_x(X,Y)Y) = -k\varphi_xX.$$

On the other hand, by Proposition 4.3, one obtains

$$R_x(X,Y)\varphi_xY - \varphi_x(R_x(X,Y)Y) = \alpha(x)^2\varphi_xX.$$

It follows  $k + \alpha(x)^2 = 0$ . Thus,  $\alpha$  is a constant function. Since  $\alpha V = 0$ , one of the following two cases occurs

- i)  $\alpha \neq 0, V = 0, k = -\alpha^2,$ ii)  $\alpha = 0, k = 0.$

In case i), M falls in the class  $C_5$ , namely it is  $\alpha$ -Kenmotsu,  $\alpha$  = constant and  $k = -\alpha^2 < 0$ . In case ii), M is flat and falls in  $C_{12}$ .

We remark that, for any  $\alpha \in \mathbb{R}$ ,  $\alpha \neq 0$ , an  $\alpha$ -Kenmotsu manifold with constant sectional curvature  $k = -\alpha^2$  is locally a warped product  $] - \epsilon, \epsilon [\times_{\lambda} F]$ , where F is a flat Kähler manifold and  $\lambda(t) = -\alpha^2$  $a \exp(-|\alpha|t)$ , a = const > 0. On the other hand, a flat  $C_{12}$ -manifold is locally realized as a product  $\lambda = \epsilon, \epsilon \times F$ , F being a flat Kähler manifold and  $\lambda : \epsilon \times F \to \mathbb{R}$  a smooth positive function. The action of  $\lambda$  will be specified in Section 7.

**Proposition 4.4.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold such that dim  $M \geq 5$ . If M is an N(k)-manifold, the curvature satisfies the following identities

$$R(X,Y,Z,W) = R(X,Y,\varphi Z,\varphi W) + R(\varphi X,Y,Z,\varphi W) + R(X,\varphi Y,Z,\varphi W) + k\eta(W)(\eta(Y)g(X,Z) - \eta(X)g(Y,Z)),$$

$$(4.5)$$

$$R(X,Y,Z,W) = R(\varphi X, \varphi Y, \varphi Z, \varphi W) + k(g \otimes (\eta \otimes \eta))(X,Y,Z,W), \tag{4.6}$$

for any  $X, Y, Z, W \in \Gamma(TM)$ .

*Proof.* The statement follows by Proposition 4.3 observing that, for any vector fields X, Y, Z, Won M, one has

$$R(X,Y,Z,W) = R(X,Y,\varphi Z,\varphi W) + R(\varphi X,Y,Z,\varphi W) + R(X,\varphi Y,Z,\varphi W) + \Lambda(X,Y,Z,W) - \Lambda(Z,\varphi W,X,\varphi Y) + \eta(Y)R(Z,\varphi W,\xi,\varphi X)$$

and

$$R(X, Y, Z, W) = R(\varphi X, \varphi Y, \varphi Z, \varphi W) + \Lambda(X, Y, Z, W) + \Lambda(\varphi Z, \varphi W, X, Y).$$

Remark 4.2. If k = const = 1, properties (4.5) and (4.6) correspond to the identities, called  $G_2$ ,  $G_3$ identities, introduced and studied in [14]. Obviously, the curvature of any  $\alpha$ -Kenmotsu manifold satisfies (4.5), (4.6), being  $k = -(\xi(\alpha) + \alpha^2)$ .

# 5. Local description of N(k)-manifolds

We are going to provide some local descriptions of a  $C_5 \oplus C_{12}$ -manifold  $(M, \varphi, \xi, \eta, g)$  satisfying the N(k)-condition, examining suitable distributions on M. Assuming that V is nowhere zero, we can consider the rank 2 distribution  $D_1 = \operatorname{span}\{\xi, V\}$  and its orthogonal complement  $D_1^{\perp} = \ker \eta \cap \ker \nabla_{\xi} \eta$ . By (2.3), one gets that  $D_1^{\perp}$  is integrable. Moreover, Proposition 4.1 entails that M falls in the class  $C_{12}$ . It follows that, if  $D^{\perp} = \operatorname{span}\{\xi\}$  is spherical, equivalently  $\nabla_{\xi} V = -||V||^2 \xi$ , M is, locally, the a.c.m. manifold  $\lambda = \epsilon, \epsilon[\times F, F]$  being a Kähler manifold and  $\lambda : F \to \mathbb{R}_+^*$  a smooth function [9].

We recall that a Riemannian submanifold N of an a.c.m. manifold  $(M, \varphi, \xi, \eta, g)$  is said to be a semi-invariant  $\xi^{\perp}$ -submanifold if the vector field  $\xi \in \Gamma(T^{\perp}N)$  and there exist two orthogonal distributions,  $\overline{D}$  and  $\overline{D}^{\perp}$ , on N such that  $TN = \overline{D} \oplus \overline{D}^{\perp}$ ,  $\varphi(\overline{D}) = \overline{D}$  and  $\varphi\overline{D}^{\perp} \subseteq T^{\perp}N$  [5].

In the sequel, for the sake of simplicity, by  $V \neq 0$  we mean that V is nowhere zero on M.

**Proposition 5.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_{12}$ -manifold such that  $\dim M = 2n + 1 \geq 5$ ,  $V \neq 0$  and  $\nabla_{\xi}V = -||V||^2\xi$ . If M is an N(k)-manifold, then the distribution  $D_1$  is totally geodesic and  $D_1^{\perp}$  is spherical. Furthermore, each leaf of  $D_1$  is an anti-invariant submanifold of M with Gaussian curvature k and each leaf of  $D_1^{\perp}$  is a semi-invariant  $\xi^{\perp}$ -submanifold of M admitting a  $C_6$ -structure.

*Proof.* By hypotheses and Proposition 4.1, we have that  $k = -\frac{1}{2n} \operatorname{div} V$  and

$$\nabla_X V = kX + g(V, X)V - \eta(X)(||V||^2 + k)\xi, \quad X \in \Gamma(TM).$$
 (5.1)

It follows that

$$d(||V||^2) = 2(||V||^2 + k)\nabla_{\varepsilon}\eta.$$
(5.2)

By (2.3) and (5.2), we get  $0 = d(||V||^2 + k) \wedge \nabla_{\xi} \eta - (||V||^2 + k) \nabla_{\xi} (\nabla_{\xi} \eta) \wedge \eta$ . Since  $\nabla_{\xi} V = -||V||^2 \xi$ , it follows that  $\nabla_{\xi} (\nabla_{\xi} \eta) \wedge \eta = 0$  and thus

$$dk = \frac{1}{||V||^2} V(k) \nabla_{\xi} \eta. \tag{5.3}$$

Applying (2.2) and (5.1), it is easy to verify that the distribution  $D_1$  is totally geodesic. Moreover, considering a leaf N of  $D_1$ , we have  $\varphi(TN) \subseteq T^{\perp}N$ , namely N is anti-invariant, and the Gauss curvature of N is given by  $k(x) = \frac{R_x(\xi, V, \xi, V)}{||V||^2}$ ,  $x \in N$ .

Let N' be a leaf of  $D_1^{\perp}$ . For any  $X,Y \in \Gamma(TN')$ , by (2.2), (5.1), we obtain  $g(\nabla_X Y,\xi) = 0$  and  $g(\nabla_X Y,V) = -kg(X,Y)$ . By the Gauss formula, it follows that N' is totally umbilical with mean curvature vector field  $H = -\frac{k}{||V||^2}V$ . Moreover, denoting by  $\nabla^{\perp}$  the normal connection of N', we have

$$\nabla_X^\perp H = -\bigg(X\bigg(\frac{k}{||V||^2}\bigg)V + \frac{k}{||V||^2}\nabla_X^\perp V\bigg), \quad X \in \Gamma(TN').$$

On the other hand, by (5.2), (5.3), we get  $X(\frac{k}{||V||^2}) = 0$ . Moreover, using (5.1), we have  $\nabla_X^{\perp} V = 0$ . Substituting into the above equation, it follows that N' is an extrinsic sphere.

Now, we consider the distribution  $\operatorname{span}\{\varphi V\}$  on N' and denote by  $\overline{D}$  its orthogonal complement on N'. Since  $\varphi^2 V = -V \in \Gamma(T^\perp N')$ , we have  $\varphi(\operatorname{span}\{\varphi V\}) \subseteq T^\perp N'$ . Moreover, for any  $X \in \Gamma(\overline{D})$  one has  $g(\varphi X, \varphi V) = 0$ , namely  $\varphi(\overline{D}) = \overline{D}$ . This means that N' is a semi-invariant  $\xi^\perp$ -submanifold of M.

Finally, putting  $g' = g_{|TN' \times TN'}$ ,  $\xi' = \frac{1}{||V||} \varphi V$ ,  $\eta' = {\xi'}^b$ , we consider the (1,1)-tensor field  $\varphi'$  on N' such that  $\varphi'(\xi') = 0$  and  $\varphi'(X) = \varphi X$ , for any  $X \perp \xi'$ . In particular, for any  $X \in \Gamma(TN')$  one has

$$\varphi'(X) = \varphi X + \frac{1}{||V||^2} g(\varphi V, X) V. \tag{5.4}$$

It is easy to check that  $(\varphi', \xi', \eta', g')$  is an a.c.m. structure on N'. Furthermore, we denote by  $\nabla'$  the Levi-Civita connection of (N', g'), apply the Gauss formula and obtain

$$\nabla_X Y = \nabla_X' Y - \frac{k}{||V||^2} g(X,Y) V, \quad X,Y \in \Gamma(TN').$$

Then, by direct calculation, also applying (5.1), (5.4), one has

$$(\nabla_X' \varphi') Y = -\frac{k}{||V||} (g'(X, Y)\xi' - \eta'(Y)X), \quad X, Y \in \Gamma(TN').$$

It follows that  $(N', \varphi', \xi', \eta', g')$  is an  $\overline{\alpha}$ -Sasakian manifold, with  $\overline{\alpha} = -\frac{k}{||V||}$ , and it falls in the class  $C_6$  [3, 6].

Applying Proposition 5.1 and the decomposition theorem of Hiepko, we are able to state the following classification theorem.

**Theorem 5.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_{12}$ -manifold such that  $\dim M = 2n + 1 \geq 5$ ,  $V \neq 0$  and  $\nabla_{\xi}V = -||V||^2\xi$ . If M is an N(k)-manifold, then (M, g) is locally isometric to a warped product  $N \times_{\lambda} N'$ , where  $\dim N = 2$ , N has Gaussian curvature k and N' is an  $\overline{\alpha}$ -Sasakian manifold,  $\overline{\alpha} = -\frac{k}{||V||}$ .

Corollary 5.1. Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_{12}$ -manifold such that  $\dim M = 2n + 1 \ge 5$ ,  $V \ne 0$  and  $\nabla_{\xi}V = -||V||^2\xi$ . If M is flat, then (M, g) is locally isometric to a Riemannian product  $N \times N'$ ,  $\dim N = 2$  and N, N' are flat manifolds. Furthermore, N' admits a cosymplectic structure.

*Proof.* Since M is flat, M is an N(0)-manifold. Hence, using Proposition 5.1, both the distributions  $D_1$  and  $D_1^{\perp}$  are totally geodesic. In fact, for any  $X \in \Gamma(D_1^{\perp})$  one has  $\nabla_X V = 0 = \nabla_X \xi$ . By Theorem 5.1, (M,g) is locally isometric to a Riemannian product  $N \times N'$ , where N is a flat 2-dimensional manifold and N' admits an  $\overline{\alpha}$ -Sasakian structure, with  $\overline{\alpha} = 0$ .

We end this section considering the distribution  $D' = \text{span}\{\xi, V, \varphi V\}$  on M. As in the previous case, we assume  $V \neq 0$  and  $D^{\perp}$  spherical.

**Proposition 5.2.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_{12}$ -manifold such that  $\dim M = 2n + 1 \ge 5$ ,  $V \ne 0$  and  $\nabla_{\xi}V = -||V||^2\xi$ . If M is an N(k)-manifold, the distribution D' is totally geodesic and each leaf of D' is an N(k)-manifold belonging to the class  $C_{12}$ .

*Proof.* By Proposition 4.1, we get  $k = -\frac{1}{2n} \operatorname{div} V$ . Moreover, applying (2.2), (5.1) and the defining condition of the class  $C_{12}$  (see Table 1), an easy calculus entails

$$\nabla_V \xi = 0 = \nabla_{\varphi V} \xi = \nabla_{\xi} \varphi V,$$

$$\nabla_V V = (||V||^2 + k)V, \quad \nabla_V \varphi V = (||V||^2 + k)\varphi V, \quad \nabla_{\varphi V} V = k\varphi V, \quad \nabla_{\varphi V} \varphi V = -kV.$$

The above formulas, together with the hypothesis  $\nabla_{\xi}V = -||V||^2\xi$ , imply that the distribution D' is totally geodesic.

Let N' be a leaf of D'. It is easy to verify that  $(\varphi' = \varphi_{|_{TN'}}, \xi' = \xi_{|_{TN'}}, \eta' = \eta_{|_{TN'}}, g' = g_{|_{TN'} \times TN'})$  is an a.c.m. structure on N'. Since N' is totally geodesic,  $(N', \varphi', \xi', \eta', g')$  is an N(k)-manifold and falls in the class  $C_{12}$ .

**Theorem 5.2.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_{12}$ -manifold such that  $\dim M = 2n + 1 \geq 5$ ,  $V \neq 0$  and  $\nabla_{\xi}V = -||V||^2\xi$ . If M is flat, then (M, g) is locally isometric to a Riemannian product  $N' \times N''$ , where N' is a 3-dimensional  $C_{12}$ -manifold, N'' is a Kähler manifold and N', N'' are both flat.

*Proof.* Since M is flat, M is an N(0)-manifold. Let  $D'^{\perp}$  be the orthogonal complement of D'. By (2.2), (5.1), for any  $X,Y\in\Gamma(D'^{\perp})$  we get  $g(\nabla_XY,\xi)=0=g(\nabla_XY,V)=g(\nabla_XY,\varphi V)$ . Hence, the distribution  $D'^{\perp}$  is totally geodesic and each leaf N'' of  $D'^{\perp}$  is totally geodesic and flat. Moreover,  $(J''=\varphi_{|_{TN''}},g''=g_{|_{TN''}\times TN''})$  is a Kähler structure on N''. Then, also applying Proposition 5.2, we get the statement.

#### 6. The case of generalized Sasakian space-forms

In this section we consider a  $C_5 \oplus C_{12}$ -manifold  $(M, \varphi, \xi, \eta, g)$  which is a generalized Sasakian space-form (g.S. space-form), namely M admits three smooth functions  $f_1$ ,  $f_2$ ,  $f_3$  such that the curvature tensor satisfies

$$R = f_1 \pi_1 + f_2 S + f_3 T, \tag{6.1}$$

where  $\pi_1$ , S, T are the tensor fields acting as

$$\pi_1(X,Y,Z) = g(Y,Z)X - g(X,Z)Y,$$

$$S(X,Y,Z) = g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z,$$

$$T(X,Y,Z) = \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi.$$

This class of a.c.m. manifolds was introduced in [1] and subsequently studied by a number of mathematicians from several points of view. In particular, in [8] it was proved that M is a g.S. space-form if and only if M is an N(k)-manifold with pointwise constant  $\varphi$ -sectional curvature c and, for any  $X,Y\in\Gamma(D)$ , the cosymplectic defect satisfies  $\Lambda(X,Y,X,Y)=l(||X||^2||Y||^2-g(X,Y)^2-g(X,\varphi Y)^2)$ , l being a smooth function on M.

Now, also applying Corollary 3.2 and Proposition 4.1, it is easy to obtain the following result.

**Proposition 6.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold with dim  $M = 2n + 1 \geq 5$ . The following conditions are equivalent

- i) M is a g.S. space-form.
- ii) M is an N(k)-manifold with pointwise constant  $\varphi$ -sectional curvature c.

Moreover, if one of the previous conditions holds, one has  $k=-(\xi(\alpha)+\alpha^2)-\frac{1}{2n}\operatorname{div} V$ ,  $f_1=\frac{c-3\alpha^2}{4}$ ,  $f_2=\frac{c+\alpha^2}{4}$ ,  $f_3=f_1-k=\frac{c+\alpha^2}{4}+\xi(\alpha)+\frac{1}{2n}\operatorname{div} V$ .

Taking into account Proposition 6.1, we denote by  $M^{2n+1}(c,k)$  a g.S. space-form with pointwise constant  $\varphi$ -sectional curvature c and satisfying the k-nullity condition.

**Proposition 6.2.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold. If  $M^{2n+1}(c, k)$ ,  $n \geq 2$ , is a g.S. space-form, the following properties hold

- i) For any point  $x_0 \in M$ , the leaf (N, J, g') of D through  $x_0$  is a Kähler manifold with constant holomorphic sectional curvature  $(c + \alpha^2)(x_0)$ .
- ii)  $dc = \xi(c)\eta$ .
- iii) For any  $X \in \Gamma(D)$ , one has  $X(\xi(c)) = \xi(c)g(V, X)$ .
- iv) cV = 0.
- v)  $dk = \xi(k)\eta + k\nabla_{\xi}\eta$ .

*Proof.* Let  $x_0 \in M$  and  $(N, J = \varphi_{|TN}, g' = g_{|TN \times TN})$  be the leaf of the distribution D through  $x_0$ . Since M is a  $C_5 \oplus C_{12}$ -manifold, we know that (J, g') is a Kähler structure on N and N is totally umbilical with mean curvature vector field  $H = -\alpha \xi_{|N}$ . Denoting by R' the Riemannian curvature of N and applying the Gauss equation, for any  $x \in N$  and any unit vector  $X \in T_xN$ , we get

$$R'_x(X, J_xX, X, J_xX) = R_x(X, \varphi_xX, X, \varphi_xX) + \alpha(x)^2 = (c + \alpha^2)(x).$$

Since dim  $N \ge 4$ , it follows that N has constant holomorphic sectional curvature  $(c + \alpha^2)_{|_N}$ . So, we obtain i). On the other hand, by Proposition 6.1, M is an N(k)-manifold. Hence, applying Proposition 4.1,  $\alpha$  is constant on N. This implies that c is constant on N. It follows that the function c is constant on any leaf of D, that is ii) holds.

By ii), we obtain  $d(\xi(c)\eta) = 0$ . So, applying (2.3), one has  $(d\xi(c) - \xi(c)\nabla_{\xi}\eta) \wedge \eta = 0$  and iii) follows.

Finally, using the second Bianchi identity, one has  $f_2V=0$  and  $dk=\xi(k)\eta-f_3\nabla_{\xi}\eta$  (cf. [7], Section 4). Applying Propositions 4.1, 6.1, we easily obtain iv) and v).

Remark 6.1. In the same hypotheses of Proposition 6.2, applying the main results in [9], we have that M is locally almost contact isometric to a double-twisted product manifold  $]-\epsilon,\epsilon[\times_{(\lambda_1,\lambda_2)}F]$ , where  $\epsilon>0$ ,  $(F,\widehat{J},\widehat{g})$  is a Kähler manifold with constant holomorphic sectional curvature  $(c+\alpha^2)_{|F|}$  and  $\lambda_1,\lambda_2\colon ]-\epsilon,\epsilon[\times F]\to \mathbb{R}$  are smooth positive functions.

**Proposition 6.3.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold. If  $M^{2n+1}(c, k)$ ,  $n \geq 2$ , is a g.S. space-form, then the following differential equation holds

$$d(c+\alpha^2) = -2(c+\alpha^2)\alpha\eta. \tag{6.2}$$

*Proof.* Let U, X, Y be vector fields on M and  $Z \in \Gamma(D)$ . By (6.1), we have

$$(\nabla_{U}R)(X,Y,Z) = U(f_{1})\pi_{1}(X,Y,Z) + U(f_{2})S(X,Y,Z) + U(f_{3})T(X,Y,Z) + f_{2}(\nabla_{U}S)(X,Y,Z) + f_{3}(\nabla_{U}T)(X,Y,Z),$$
(6.3)

where  $f_1$ ,  $f_2$ ,  $f_3$  are related to c, k as in Proposition 6.1. Furthermore, it is easy to verify the following relations

$$(\nabla_{U}S)(X,Y,Z) = g(\varphi Y,Z)(\nabla_{U}\varphi)X - g((\nabla_{U}\varphi)Z,Y)\varphi X$$

$$-g(\varphi X,Z)(\nabla_{U}\varphi)Y + g((\nabla_{U}\varphi)Z,X)\varphi Y$$

$$+2g(\varphi Y,X)(\nabla_{U}\varphi)Z + 2g((\nabla_{U}\varphi)Y,X)\varphi Z,$$

$$(\nabla_{U}T)(X,Y,Z) = (\eta(X)Y - \eta(Y)X)(\nabla_{U}\eta)Z$$

$$+(g(X,Z)(\nabla_{U}\eta)Y - g(Y,Z)(\nabla_{U}\eta)X)\xi$$

$$+(g(X,Z)\eta(Y) - g(Y,Z)\eta(X))\nabla_{U}\xi.$$

In order to apply the second Bianchi identity, using the above formulas, Propositions 4.1, 6.1, 6.2 and (2.2), (3.1), a direct calculus entails

$$U(f_1) = \frac{1}{4}\xi(c - 3\alpha^2)\eta(U), \quad U(f_2) = \frac{1}{4}\xi(c + \alpha^2)\eta(U), \tag{6.4}$$

$$f_{2} \underset{(U,X,Y)}{\sigma} (\nabla_{U}S)(X,Y,Z) = 2\alpha f_{2} \Big( \underset{(U,X,Y)}{\sigma} (g(\varphi X,Z)\eta(Y) - g(\varphi Y,Z)\eta(X))\varphi U + 2 \underset{(U,X,Y)}{\sigma} g(\varphi Y,X)\eta(U)\varphi Z \Big),$$

$$(6.5)$$

$$\begin{split} f_{3} & \underset{(U,X,Y)}{\sigma} (\nabla_{U}T)(X,Y,Z) = f_{3} \Big( 2\alpha \underset{(U,X,Y)}{\sigma} (g(X,Z)\eta(Y) - g(Y,Z)\eta(X)) U \\ & + \underset{(U,X,Y)}{\sigma} \eta(U)(\eta(X)Y - \eta(Y)X)g(V,Z) \\ & + \underset{(U,X,Y)}{\sigma} (g(X,Z)g(V,Y) - g(Y,Z)g(V,X))\eta(U)\xi \Big), \end{split} \tag{6.6}$$

where  $\sigma$  represents the cyclic sum over U, X, Y.

Now, choosing  $U = \xi$ , Y = Z,  $X \perp U$ , Y,  $\varphi Y$ , and substituting into (6.3)-(6.6), the second Bianchi identity gives

$$\left(\frac{1}{4}\xi(c-3\alpha^2) + 2\alpha f_3\right)||Z||^2X + (X(f_3) - f_3g(V,X))||Z||^2\xi = 0.$$

This implies  $\xi(c-3\alpha^2) + 8\alpha f_3 = 0$ . Using iii) in Proposition 4.1 and Proposition 6.1, it follows that  $0 = \xi(c-3\alpha^2) + 2\alpha(c+\alpha^2) + 8\alpha\xi(\alpha) = \xi(c+\alpha^2) + 2\alpha(c+\alpha^2)$ . On the other hand, by Propositions 4.1, 6.2, we know that  $d(c+\alpha^2) = \xi(c+\alpha^2)\eta$ . Hence, the statement holds.

Now, we are able to classify g.S. space-forms belonging to the class  $C_5 \oplus C_{12}$ .

**Theorem 6.1.** Let  $(M, \varphi, \xi, \eta, g)$  be a  $C_5 \oplus C_{12}$ -manifold. If  $M^{2n+1}(c, k)$ ,  $n \ge 2$ , is a g.S. space-form, then exactly one of the following cases occurs

- i) M is cosymplectic and c is constant.
- ii) M falls in the class  $C_{12} \setminus C$  and c = 0.

- iii)  $\alpha \neq 0$  and  $c + \alpha^2 = 0$ . Moreover, there exist an open covering  $\{U_i\}_{i \in I}$  of M and, for any  $i \in I$ , a smooth function  $\sigma_i \colon U_i \to \mathbb{R}$  such that  $(U_i, \varphi_i = \varphi_{|U_i}, \xi_i = \exp(-\sigma_i)\xi_{|U_i}, \eta_i = \exp$  $\exp(\sigma_i)\eta_{|_{U_i}}, g_i = \exp(2\sigma_i)g_{|_{U_i}})$  is a g.S. space-form with zero  $\varphi$ -sectional curvature, which falls in the class  $C_{12}$ .
- iv) M is  $\alpha$ -Kenmotsu and the function  $c + \alpha^2$ , which is nowhere zero, has constant sign. Moreover, M is globally conformal to a cosymplectic manifold with constant  $\varphi$ -sectional curvature sign $(c + \alpha^2)$ .

*Proof.* If  $\alpha = 0$ , by Proposition 6.3, we get that c is a constant function. If  $c \neq 0$ , applying Proposition 6.2, it follows that the vector field V vanishes, so that M is a cosymplectic manifold. If c=0, by Proposition 6.1 and (6.1), the curvature tensor of M is given by  $R=\left(\frac{1}{2n}\operatorname{div} V\right)T$ . In this case, if div  $V \neq 0$ , then M is a  $C_{12}$ -manifold but it is not cosymplectic. If div V = 0, M is flat and either M is cosymplectic or M falls in the class  $C_{12} \setminus C$ . We conclude that, if  $\alpha = 0$ , one of the cases i), ii) occurs.

Now, we suppose that  $\alpha \neq 0$ . Since the Lee form  $\omega = -\alpha \eta$  is closed, by Proposition 4.4 in [9], M is a locally conformal  $C_{12}$ -manifold, namely there exist an open covering  $\{U_i\}_{i\in I}$  of M and, for any  $i \in I$ , a smooth function  $\sigma_i : U_i \to \mathbb{R}$  such that  $U_i$  is endowed with the  $C_{12}$ -structure  $(U_i, \varphi_i = \varphi_{|_{U_i}}, \xi_i = \exp(-\sigma_i)\xi_{|_{U_i}}, \eta_i = \exp(\sigma_i)\eta_{|_{U_i}}, g_i = \exp(2\sigma_i)g_{|_{U_i}})$  and  $d\sigma_i = \omega_{|_{U_i}}$ .

The Levi-Civita connections of the local metrics  $q_i$  fit up to the Weyl connection  $\overline{\nabla}$  acting as

$$\overline{\nabla}_X Y = \nabla_X Y - \alpha \eta(X) Y - \alpha \eta(Y) X + \alpha g(X, Y) \xi, \quad X, Y \in \Gamma(TM).$$

Furthermore, fixed  $i \in I$  and denoting by  $\overline{R}$  the (0,4)-curvature tensor of  $\overline{\nabla}$ , it is well-known that in  $U_i$  one has

$$\exp(-2\sigma_i)\overline{R} = R - P \otimes g, \tag{6.7}$$

where  $P = \nabla \omega - \omega \otimes \omega + \frac{1}{2}||\omega||^2g$ . Applying Proposition 4.1 and (2.2), it is easy to verify the following relations

$$P = -\xi(\alpha)\eta \otimes \eta - \frac{1}{2}\alpha^2 g,$$
  
$$(P \otimes g)(X, Y, Z, W) = \alpha^2 g(\pi_1(X, Y, Z), W) - \xi(\alpha)g(T(X, Y, Z), W).$$

Substituting into (6.7) and applying (6.1), Proposition 6.1, it follows that

$$\overline{R} = \frac{c+\alpha^2}{4}(\pi_1 + S) + \left(\frac{c+\alpha^2}{4} + \frac{1}{2n}\operatorname{div}V\right)T. \tag{6.8}$$

Since  $\omega$  is closed, by (6.2) and the connectedness of M, one of the following two cases occurs

- a)  $c + \alpha^2 = 0$ , b)  $c + \alpha^2 \neq 0$  everywhere.

In case a), the equation (6.8) reduces to  $\overline{R} = \left(\frac{1}{2n}\operatorname{div} V\right)T$ . In order to rewrite this equation with respect to the metrics  $g_i$ ,  $i \in I$ , we put  $V_i = \overline{\nabla}_{\xi_i} \xi_i$  and denote by  $T_i$  the tensor field on  $U_i$  defined as T. An easy calculation entails

$$V_i = \exp(-2\sigma_i)V_{|_{U_i}}, \quad \text{div } V_i = \exp(-2\sigma_i)\text{div } V_{|_{U_i}}, \quad T_{|_{U_i}} = \exp(-2\sigma_i)T_i.$$

It follows that

$$\overline{R}_{|_{U_i}} = \Big(\frac{1}{2n}\operatorname{div} V_i\Big)T_i, \quad i \in I.$$

Combining the above formula with Proposition 6.1, we get that the  $C_{12}$ -manifolds  $(U_i, \varphi_i, \xi_i, \eta_i, g_i)$ are g.S. space-forms with zero  $\varphi$ -sectional curvature. Hence, iii) holds.

Finally, we examine case b). Since M is connected, the function  $c+\alpha^2$  has constant sign. Moreover, by Propositions 4.1, 6.2, we have  $(c + \alpha^2)V = 0$ . This implies that V = 0, namely M is an  $\alpha$ -Kenmotsu manifold. On the other hand, solving (6.2), we get  $\omega = d \log \sqrt{|c + \alpha^2|}$ . Since  $\omega$  is exact, M is globally conformal to the a.c.m. manifold  $(M, \varphi, \frac{1}{\sqrt{|c+\alpha^2|}}\xi, \sqrt{|c+\alpha^2|}\eta, |c+\alpha^2|g)$ , which is cosymplectic [15]. Furthermore, with respect to the metric  $\overline{g} = |c+\alpha^2|g$ , (6.8) becomes

$$\overline{R} = \frac{1}{4} \frac{c + \alpha^2}{|c + \alpha^2|} (\overline{\pi_1} + \overline{S} + \overline{T}) = \frac{1}{4} \operatorname{sign}(c + \alpha^2) (\overline{\pi_1} + \overline{S} + \overline{T}).$$

The above equation means that  $(M, \varphi, \frac{1}{\sqrt{|c+\alpha^2|}}\xi, \sqrt{|c+\alpha^2|}\eta, |c+\alpha^2|g)$  has constant  $\varphi$ -sectional curvature sign $(c+\alpha^2)$ . Hence iv) occurs.

Remark 6.2. In [7] the authors gave a local classification of g.S. space-forms  $M^{2n+1}(f_1, f_2, f_3)$ ,  $n \ge 2$ , assuming that for any i = 1, 2, 3, if the function  $f_i$  does not vanish, then  $f_i \ne 0$  everywhere. The authors proved that nine cases can occur and these cases are not mutually exclusive. Obviously, a restriction on the Chinea-Gonzalez class of the g.S. space-form entails that some of the mentioned cases have to be excluded. Comparing the result stated in Theorem 6.1 with the main Theorem 1.3 in [7], we get that a  $C_5 \oplus C_{12}$ -manifold  $M^{2n+1}(c,k)$  has to satisfy one of four cases listed in [7], namely the ones denoted by (a), (e), (f), (g). We also remark that in our context the hypothesis  $f_i = 0$  or  $f_i \ne 0$  everywhere is needless.

#### 7. Examples

In Theorem 4.1 we have shown that a  $C_5 \oplus C_{12}$ -manifold  $(M, \varphi, \xi, \eta, g)$  with dim  $M = 2n + 1 \ge 5$  and constant sectional curvature is either an  $\alpha$ -Kenmotsu manifold or a flat  $C_{12}$ -manifold. Note that, as remarked in Section 4, in the first case it is known that M is locally described as a warped product. Furthermore, the hyperbolic space  $\mathbb{H}^{2n+1}(-\alpha^2)$  is the local model of space-forms carrying a non-cosymplectic  $\alpha$ -Kenmotsu structure.

More generally, in Theorem 6.1 we have classified g.S. space-forms  $M^{2n+1}(c,k)$ . Taking into account case ii), we are going to provide a method for constructing a whole family of g.S. space-forms  $M^{2n+1}(0,k)$  falling in the class  $C_{12} \setminus C$ .

Let  $(J_0, g_0)$  be the canonical Kähler structure on  $\mathbb{R}^{2n}$ ,  $n \geq 2$ ,  $I \subset \mathbb{R}$  an open interval and  $\lambda \colon I \times \mathbb{R}^{2n} \to \mathbb{R}$  a smooth positive function. We know that the a.c.m. manifold  $M = {}_{\lambda}I \times \mathbb{R}^{2n}$ , defined as in (2.1), falls in the class  $C_{12} \smallsetminus C$ . According to Proposition 6.1, Theorem 6.1 and formula (6.1), the condition that M is a g.S. space-form  $M^{2n+1}(0,k)$  is equivalent to require that its curvature tensor satisfies

$$R = \left(\frac{1}{2n}\operatorname{div}V\right)T = -kT. \tag{7.1}$$

Using the curvature formulas in [16], we have

$$R(X,\xi)Z = (g(\nabla_X(\operatorname{grad}\log\lambda), Z) + X(\log\lambda)Z(\log\lambda))\xi, \quad X,Z \in \Gamma(D),$$

where  $\nabla$  is the Levi-Civita connection on  $(M, g = g_{(\lambda,1)})$  and grad is evaluated with respect to g. By an easy calculation, also considering Corollary 3.1 and Proposition 4.1, one can check that (7.1) is equivalent to the condition

$$g(\nabla_X(\operatorname{grad}\log\lambda), Z) + X(\log\lambda)Z(\log\lambda) = -kg(X, Z), \quad X, Z \in \Gamma(D).$$

Considering the orthonormal frame  $\{\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^{2n}}, \xi\}$  on M, the above equation corresponds to the following PDE's system

$$\frac{\partial^2 \lambda}{\partial x^i \partial x^j} + k \lambda \delta_{ij} = 0, \quad i, j = 1, \dots, 2n.$$
(7.2)

Hence, for any  $i \neq j$ , one has  $\frac{\partial^2 \lambda}{\partial x^i \partial x^j} = 0$ . It follows that  $\lambda(t, x^1, \dots, x^{2n}) = \sum_{k=1}^{2n} a_k(t, x^k)$ , where  $a_k$  is a function only depending on t and  $x^k$ . Substituting into (7.2) and assuming i = j, we get  $\frac{\partial^2 a_i}{\partial (x^i)^2} = -k\lambda$ . This implies that the function  $k\lambda$  only depends on t. Putting  $-k\lambda = 2C(t)$ , it

follows that  $a_i(t, x^i) = C(t)(x^i)^2 + B_i(t)x^i + E_i(t)$ , for any i = 1, ..., 2n. We can conclude that (7.1) is satisfied if and only if

$$\lambda(t, x^1, \dots, x^{2n}) = \sum_{i=1}^{2n} (C(t)(x^i)^2 + B_i(t)x^i) + E(t), \tag{7.3}$$

where  $E(t) = \sum_{i=1}^{2n} E_i(t)$  and  $C(t) = -\frac{1}{2}k\lambda$ .

We observe that for  $\lambda$  to be a positive function we have to narrow its domain. Supposing  $0 \in I$ , we can assume  $C(0) \geq 0$ , E(0) > 0 and  $B_i(0) > 0$ ,  $i = 1, \ldots, 2n$ . Thus, there exists an open interval  $J, 0 \in J \subset I$ , such that  $C(t) \geq 0$ , E(t) > 0 and  $B_i(t) > 0$ , for any  $i = 1, \ldots, 2n$ ,  $t \in J$ . Putting  $U = \mathbb{R}_+^* \times \cdots \times \mathbb{R}_+^*$ , the function  $\lambda \colon J \times U \to \mathbb{R}$ , defined as in (7.3), is smooth and positive. We conclude that the a.c.m. manifolds  $M = {}_{\lambda}J \times U$  are g.S. space-forms  $M^{2n+1}(0,k)$  belonging to the class  $C_{12} \setminus C$ .

Remark 7.1. The condition k=0 is equivalent to require that the a.c.m. manifolds  $M=_{\lambda}J\times U$  are flat and  $\lambda(t,x^1,\ldots,x^{2n})=\sum_{i=1}^{2n}B_i(t)x^i+E(t)$ . Note that the method above described is similar to the procedure used in Theorem 5.2 in [7]. In our case the hypothesis that  $f_3=-k$  is nowhere zero is needless.

Finally, we provide an explicit example of a  $C_{12}$ -manifold satisfying the hypotheses of Theorem 5.2.

**Example 7.1.** Given three non negative real numbers  $B_1, B_{n+1}, E$  such that  $(B_1, B_{n+1}) \neq (0, 0)$ , one considers the open set  $W = \{(x^1, \dots, x^{2n}) \in \mathbb{R}^{2n} | x^1 > 0, x^{n+1} > 0\}$  and the smooth positive function  $\lambda \colon \mathbb{R} \times W \to \mathbb{R}$  acting as

$$\lambda(t, x^1, \dots, x^{2n}) = B_1 x^1 + B_{n+1} x^{n+1} + E.$$

By Remark 7.1, we know that the a.c.m. manifold  $M = {}_{\lambda}\mathbb{R} \times W = (\mathbb{R} \times W, \varphi, \xi = \frac{1}{\lambda} \frac{\partial}{\partial t}, \eta = \lambda dt, g = \lambda^2 dt \otimes dt + g_0)$  is flat and falls in the class  $C_{12} \setminus C$ . Note that, for any  $i = 1, \ldots, n$ ,  $\varphi(\frac{\partial}{\partial x^i}) = J_0(\frac{\partial}{\partial x^i}) = \frac{\partial}{\partial x^{n+i}}$ . Using the formulas in [16], it is easy to verify that the tensor field  $V = \nabla_{\xi} \xi = -\frac{1}{\lambda} (B_1 \frac{\partial}{\partial x^1} + B_{n+1} \frac{\partial}{\partial x^{n+1}})$  satisfies the condition  $\nabla_{\xi} V = -||V||^2 \xi$ . Moreover, considering the distribution  $D' = \operatorname{span}\{\xi, V, \varphi V\}$  on M and putting  $U_1 = \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^{n+1}}, U_2 = \varphi U_1$ , we have  $D' = \operatorname{span}\{\lambda \xi, U_1, U_2\}$ .

Given the open set  $N' = \{(t, y, z) \in \mathbb{R}^3 | y > 0, -y < z < y\}, (t_0, x_0) = (t_0, x_0^1, \dots, x_0^{2n}) \in M$ , we define the map  $f: N' \to \mathbb{R} \times W$  acting as

$$f(t,y,z) = \left(t, \frac{1}{\sqrt{2}}(y-z), x_0^2, \dots, x_0^n, \frac{1}{\sqrt{2}}(y+z), \dots, x_0^{2n}\right).$$

Putting  $\lambda' = \lambda \circ f$  and  $g' = \lambda'^2 dt \otimes dt + dy \otimes dy + dz \otimes dz$ , it is easy to check that f is an isometric immersion with respect to the metrics g' and g. Note that (N',g') is the leaf of D' through  $(t_0,x_0)$  and, applying Proposition 5.2,  $(N',\varphi'=-\frac{\partial}{\partial y}\otimes dz+\frac{\partial}{\partial z}\otimes dy,\xi=\frac{1}{\lambda'}\frac{\partial}{\partial t},\eta'=\lambda'dt,g')$  is a flat  $C_{12}$ -manifold. Moreover, up to an isometry, the leaf of  $D'^{\perp}$  through  $(t_0,x_0)$  is  $\mathbb{R}^{2n-2}$  endowed with its canonical Kähler structure. Thus, applying Theorem 5.2, M is locally isometric to the Riemannian product  $N'\times\mathbb{R}^{2n-2}$ .

## Work partially supported by INDAM.

## REFERENCES

- [1] P. Alegre, D. E. Blair, A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157-183.
- [2] D. E. Blair, Curvature of Contact Metric Manifold, Progress in Mathematics 234, Birkhäuser, Boston 2005, 1-13.
- [3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, *Progress in Mathematics* **203**, Birkhäuser, Boston 2010.

- [4] D. E. Blair, TH. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.
- [5] C. Călin, M. Crasmareanu, M. I. Munteanu, V. Saltarelli, Semi-invariant  $\xi^{\perp}$ -submanifolds of generalized quasi-Sasakian manifolds, *Taiwanese J. Math.* **16** (2012), 2053-2062.
- [6] D. Chinea, C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
- [7] A. De, T. H. Loo, Generalized Sasakian space forms and Riemannian manifolds of quasi constant sectional curvature, *Mediterr. J. Math.* **13** (2016), 3797-3815.
- [8] M. Falcitelli, Locally conformal C<sub>6</sub>-manifolds and generalized Sasakian-space-forms, *Mediterr. J. Math* 7 (2010), 19-36.
- [9] M. Falcitelli, A class of almost contact metric manifolds and double twisted products, *Mathematical Sciences* and Applications E-Notes (MSAEN) 1 (2013), 36-57.
- [10] G. Ganchev, V. Mihova, A classification of Riemannian manifolds of quasi-constant sectional curvature, arXiv:1105.3081v1 (2011).
- [11] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J. (2) 24 (1972), 93-103.
- [12] U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat. 26 (2006), 55-67.
- [13] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol II., Interscience Publishers, New York-London, 1969.
- [14] R. Mocanu, M. I. Munteanu, Gray curvature identities for almost contact metric manifolds, J. Korean Math. Soc. 47 (2010), 505-521.
- [15] Z. Olszak, R. Rosca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), 315-323
- [16] R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata 48 (1993), 15-25.
- [17] K. Yano, M. Kon, Structures on manifolds, Series in Pure Mathematics 3, World Scientific Publishing Co., Singapore, 1984.

### Authors' addresses:

S. de Candia and M. Falcitelli Universitá degli Studi di Bari Aldo Moro Dipartimento di Matematica Via E. Orabona, no 4, 70125 Bari, Italy

Via E. Orabona, no.4, 70125 Bari, Italy

e-mail: salvatore.decandia@uniba.it, maria.falcitelli@uniba.it