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SALVATORE DE CANDIA AND MARIA FALCITELLI

ABsTrACT. The Chinea-Gonzalez class Cs ®C12 consists of the almost contact metric manifolds
that are locally described as double-twisted product manifolds I x(x, x,) M, I C R being an

open interval, M a Kihler manifold and A1, A2 smooth positive functions. In this article we
investigate the behavior of the curvature of Cs & Ci2-manifolds. Particular attention to the
N (k)-nullity condition is given and some local classification theorems in dimension 2n+1 > 5
are stated. This allows us to classify Cs @ C12-manifolds that are generalized Sasakian space-
forms. In addition, we provide explicit examples of these spaces.

1. INTRODUCTION

Double-twisted products play an interesting role in clarifying the interrelation between almost
Hermitian (a.H.) and almost contact metric (a.c.m.) manifolds. In fact, the Chinea-Gonzalez
class C1_5®C1a = @ C;® Ci2 consists of the a.c.m. manifolds that are, locally, double-twisted
1<i<5

products | —€, €[X(x, a)M = (] =€, [x M, 0, £,1, 900, 1)), € > 0, (M, f,?j) being an a.H. manifold,
A, A2t ] — e,e[x]\//j — R smooth positive functions and (¢,&, 7, g(x,x,)) the structure defined in
(2.1). The class Cs @ C12 is the subclass of C_5 @ C12 consisting of the a.c.m. manifolds that are
locally realized as double-twisted products | — e, €[x (, r,)M, where (M, J,g) is a Kihler manifold
[9]. This points out the interrelation between Kahler and C5 @ Cjo-manifolds.

Relevant results involving the behavior of the curvature of K&hler manifolds are well-known [13, 17].

In this article we develop a systematic study of the curvature of C5 @ C2-manifolds and obtain
some classification theorems for those manifolds that satisfy suitable curvature conditions. We
also recall that, considering an a.c.m. manifold (M, p,&,n,g) with fundamental 2-form ® and
Levi-Civita connection V, the C5, Ci2 components of V& are determined by the codifferential
on and the 1-form V,n, respectively [6]. This allows to specify the defining conditions for the
manifolds which fall in the class C5 @ C15 and in its proper subclasses Cs, C1s.

Let (M, ,&,m,g) be a Cs @ Cyo-manifold, with dim M = 2n + 1, and put a = —‘25—2, V = V&
For any vector fields X, Y, the "cosymplectic defect" R(X,Y)o¢ — ¢ o R(X,Y), R denoting the
curvature of V, depends on «, da, V and VV. In Section 3 we evaluate the cosymplectic defect
and derive several consequences, involving the Ricci and the *-Ricci tensors, also.

We put our attention to the (k, u)-condition proving that, in the context of C5 @ Cyo-manifolds, it
is equivalent to the N(k)-condition. Considering an N (k)-manifold of dimension 2n + 1 > 5, the
function k is expressed as a combination of «, £(«) and div V. Several properties of N (k)-manifolds
are derived. In particular, we prove that a manifold with constant sectional curvature k either is
a Cs-manifold and k < 0 or it is flat and falls in the class C12. Moreover, suitable N (k)-spaces are
locally isometric to a warped product N x, N’, N being a 2-dimensional Riemannian manifold of
Gaussian curvature k& and N’ is endowed with an @-Sasakian structure.

Section 6 deals with C5 @ Cio-manifolds that are generalized Sasakian (g.S.) space-forms. These
spaces are characterized as the N (k)-manifolds with pointwise constant ¢-sectional curvature, say
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c. Denoting by M2"*1(c, k), n > 2, a g.S. space-form, we prove that the function c + o2 satisfies
a suitable differential equation. This allows us to state a classification theorem. More precisely, if
M**1(c k) is a g.S. space-form in the class C5®C1 and o = 0, then either M is cosymplectic or it
falls in the class C12 and ¢ = 0. If « # 0, then either M is locally conformal to Ch2-manifolds that
are g.5. space-forms with zero ¢-sectional curvature or M is a-Kenmotsu and globally conformal
to a cosymplectic manifold with constant ¢-sectional curvature.

Finally, in Section 7, for any n > 2, we construct a family of Cjo-manifolds M2"+1(0, k).

Throughout this article, all manifolds are assumed smooth and connected.

2. PRELIMINARIES

Given an almost Hermitian (a.H.) manifold (]/\4\, j, g), an open interval I C R and two smooth
positive functions Aj, Ao: I x M — R, one considers the almost contact metric (a.c.m.) structure
(©,€,1, 9(x\ ,20)) On the product manifold I x M, acting as

ga(a%,X): (0, jX), n(a%,X): aM,

e 2 L (2.1)
£= )\71 (7’())’ I(A1,02) = Alﬂik(dt ® dt) + )\27-(;(9)7

ot

for any a € F(I x Z/W\),X € I‘(T]/W\), m:Ix M — I, m: I x M — M denoting the canonical
projections. Note that g(x, x,) is the double-twisted product of the Euclidean metric go and g
[16]. The a.c.m. manifold I X(Ahe) M= (IxMuepén, 90\, 2s)) is named the double-twisted
product manifold of (I, gg) and (M J,3) by (A1, Xe). A =1, I X (1,29) M is denoted by I X Ay M
and is called the twisted product manifold of (I,g0) and (M J,G) by Xo. If Ay = 1, the manifold
I'xx,n M is denoted by x, I x M. In the case that A1 is independent of the Euclidean coordinate
t and Az only depends on ¢, I Xy, x,) M is called a double-warped product manifold, the metric
9I(he) being just the double-warped product metric of go and g by (A1, A2). If A2 only depends
ont, I Xy, M is said to be a warped product manifold.

Applying the theory developed in [6], [9], we are able to specify the Chinea-Gonzalez class of the
mentioned manifolds. In particular, if dim M = 2, then I x(y, x,) M belongs to the class Cs @ Cys.
In the case that dim M = 2n >4, (J, g) is a Kéahler structure and the function A, is constant on
M, then I % (5, r,) M is a C5 ® Ciz-manifold. Furthermore, if Ay = 1, 5, I x M falls in the class
Ci2. It is also known that any warped product manifold I X, ]\//.77 where (]\//.7, :f, g) is a Kéhler
manifold, belongs to the class C5 and is called an a-Kenmotsu manifold, where o = £(log \2).
More generally, any double-warped product manifold I x(y, x,) M , such that (]\//.7 , J. ,9) is Kahler
and both the functions A1, Ay are non constant, is in the class C5 ® C1a ~ (C5 U C12). This
shows that C5, C1o are proper subclasses of C5 @ C12. Cosymplectic manifolds set up the class
C=0C5nNChs.

In Table 1 we list the defining conditions of any a.c.m. manifold (M, p,£,n,g) which falls in
C5 @ C1» or in its subclasses. These conditions are formulated in terms of the covariant derivatives
Ve, Vn, V denoting the Levi-Civita connection of M. Note that, since V£ is the vector field
g-associated to the 1-form Vg7, the vanishing of V£ is equivalent to the condition that the
considered manifold is in the class Cs, namely it is an a-Kenmotsu manifold. Moreover, it is
known that any Cs @ C2-manifold satisfies

Vxé=a(X —n(X)§) +n(X)Vel, X eT(TM) (2.2)
dn=nAVen, d(Ven)=—(aVen+ Ve(Ven)) An, (2.3)
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where dim M =2n+1 and o = —g—z. Furthermore, if dim M > 5, the Lee form of M is w = —an

and it is closed. Applying (2.3), one has

da = &(a)n + aVen. (2.4)

Table 1

Classes Defining conditions

Cs o C (Vxp)Y = a(g(pX,Y)E —n(Y)pX)
S —n(X)(Ven)eY & +n(Y)p(Ve))

Cs (Vxp)Y = a(g(pX,Y)E —n(Y)pX)
Cia (Vxp)Y = —n(X)((Ven)pY§ +n(Y)p(Ves))
C V=0

In the sequel, given a C5 @ Cip-manifold (M, ¢,&,1m,9) we will denote by D, D+ the mutually
orthogonal distributions associated to the subbundles Kern and span{{} of the tangent bundle T'M,
respectively. These distributions are both totally umbilical foliations. More precisely, H = —a{|
is the mean curvature vector field of any leaf (N,¢’) of D, ¢’ being the metric induced by g.
Furthermore, (J = ¢, ,¢’) is a Kéhler structure on N. For the sake of simplicity, we will denote
by V the vector field V¢&, which represents the mean curvature vector field of any integral curve
of D*+.

Applying the main results in [9], [16], one obtains a local description of a Cs @& C3-manifold
(M, p,&,n,9). More precisely, for any point € M, there exist an open neighborhood U of z,
e > 0, a Riemannian manifold (F,g), two smooth positive functions A1, Aa: ] — €, ¢[xF — R and
an isometry f: (] —€,€[xXF, g, x,)) = (U, g),) such that the canonical foliations of the product
manifold correspond to the distributions D, D+. It follows that f*(/\il%) = ¢, and, for any
t €] — e, ft(F) is a leaf of D, where f; = f(t,-). Note that there exists tg €] — €, €[ such
that g = f7 (g, ). Furthermore, considering the Kahler structure (f = (fitowo fi)rps9) Oon
F and the corresponding a.c.m. manifold | — €, €[x(x, r,)F defined as in (2.1), then the map
[l =6 e} F = (U, 014,¢:My,9),) is an almost contact isometry.

Finally, if (M, ,&,7, g) is a Ci2-manifold, then D is a totally geodesic foliation. By [16], it follows
that A2 = 1 so that M is, locally, realized as the a.c.m. manifold x| — €, e[x F, F being a Kéahler
manifold.

3. SOME CURVATURE RELATIONS

In this section we focus on the main properties of the curvature R of the Levi-Civita connection
V of a C5 @ Cip-manifold (M, ¢,§,n,9), R(X,Y) = [Vx,Vy] = Vixy]. For the Riemannian
curvature we adopt the convention R(X,Y, Z, W) = g(R(Z,W,Y),X) = —¢g(R(X,Y, Z),W). This
allows us to obtain an explicit expression of the cosymplectic defect, namely the (0,4)-tensor field
A acting as

A(XaKZa W) = R(X,KZ, W) - R(X7 Ya §0Z7 QDW)

We also state some properties of the Ricci tensor p and the #-Ricci tensor p* and evaluate the
mixed sectional curvature, denoted by K (X, ¢), for any unit vector X orthogonal to &.
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Proposition 3.1. Let (M, ¢,£,n,9) be a Cs & Cia-manifold. For any vector fields X,Y,Z on M
one has

R(X,Y)pZ =p(R(X,Y)Z) + alag(eY, Z) + n(Y)g(¥V, 2)) X
—alag(pX, Z) +n(X)g(eV, 2))Y
+ (Y(@)n(2) + ?g(Y, Z) + an(Y)g(V, Z))p X
— (X()n(Z) + ?9(X, Z) + an(X)g(V, Z)) Y
+an(X)g(pY, Z) —n(Y)g(pX, Z))V
+ (X)(ag(Y,Z2) =n(Z)g(V.Y)) —n(Y)(ag(X, Z) —n(Z)g(V, X)))pV
+0(Z)((X)VyeV —n(Y)VxeV)
+ (X()g(¢Y, Z) = Y(a)g(pX, Z) + g(V, Z)(n(X)g(V;Y) — n(Y)g(V, X))
=n(X)g(Vy eV, 2) +n(Y)g(Vx eV, Z))E.

Proof. Since M is a C5 & Cio-manifold, for any X, Y € T'(TM) one has
(Vx@)Y = a(g(pX, Y)E —n(Y)pX) —n(X)(g(V,¢Y)E +n(Y)eV). (3.1)
Let X,Y, Z be vector fields on M. By direct calculus, applying (2.2), (3.1), we have
R(X,Y)pZ =p(R(X,Y)Z) + Vx((Vy¥)Z) = Vy((Vxp)Z) — (Vixyp)Z
+(Vxe)(VyZ) = (Vye)(VxZ)
=p(R(X,Y)Z) = 2dn(X,Y)(n(Z2)¢V = g(¢V, Z)§)
—an(Z)(VxeY — VypX — [X,Y])
X(@)(g(eY, 2)§ = n(Z)Y) = Y () (9(pX, Z2)§ = n(Z) X)
+a?(g(0Y, Z)(X = n(X)€) — 9(0X, Z)(Y —n(Y)§))

+aln(X)gl¢Y. 2) - n(Y)g(oX. 2))V 32

+n(Z)((X)Vy eV —n(Y)VxeV)

+ag(eV, Z)(n(Y)X —n(X)Y)

— (Vxn)Z(apY +n(Y)eV) + (Vyn)Z(apX +n(X)eV)

+ (a(g(Vx Y, Z) — 9(Vy X, Z) — g(¢[X, Y], Z))

+n(Y)g(VxeV, Z) —n(X)g(VyeV, Z))E.
By (3.1) we also have
Vx@Y = VypX =p[X, Y]+ (Vxp)Y = (Vyp)X
=p[X, Y]+ a(n(X)eY —n(Y)eX)
+ (2ag(pX,Y) + n(X)g(eV.Y) = n(Y)g(eV, X))S.

Then, substituting into (3.2) and applying (2.2), (2.3), one obtains the statement. O

Corollary 3.1. Let (M, ¢,&,m, g) be a Cs®Cho-manifold such that dim M = 2n+1. The following
properties hold
i) For any X,Y € I'(T'M) we have
R(X,Y)E =X(a)(Y = n(Y)€) = Y (a)(X = n(X)§) + a*(n(X)Y —n(Y)X)
+ (X)g(V,Y) =n(Y)g(V, X))(V — &) = n(X)Vy V +0(Y)VxV
=X(a)(Y =n(Y)§) = Y (a)(X — n(X)¢E)
+n(X)(R(E,Y)E = &(a)Y) —n(Y)(R(E, X)§ = £(a) X).
ii) For any unit vector X orthogonal to &, one has

K(X,€) = —(&(a) +a?) = g(V, X)* + g(Vx V. X).
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iii) The Ricci tensor satisfies
p(&,€) = —2n((a) + a®) —divV,
p(X,€) = =(2n = (X = n(X)&)(a) +n(X)p(&; §)-

Proof. Let X,Y be vector fields on M. By Proposition 3.1, we get
R(X,Y)é = —¢*(R(X,Y)E) =(Y (o) + a®n(Y))p* X — (X (a) + o®n(X))¢’Y
—n(X)(an(Y) = g(V,Y)V +n(Y)(en(X) — g(V, X))V
+n(X)e(Vy V) = n(Y)p(VxeV).
Moreover, using (3.1), we have
n(X)e(VyeV) =n(Y)e(VxeV) = = n(X)(Vye)eV +n(Y)(Vxe)eV
—n(X)VyV +n(Y)VxV
=—anX)g(V,Y) —n(Y)g(V, X))¢
—n(X)VyV +n(Y)VxV.

Thus, substituting into the previous formula, we obtain the first equality in i). The second relation
follows by a direct calculus.

To prove property ii) it is enough to apply i) observing that, for any X € TM, X L &, || X]|| =1,
one has K(€7 X) = 79(R(€7 X)£7 X)

Let {e1,...,e2n,e2n4+1 = &} be a local orthonormal frame on M. Since V is orthogonal to &,
applying ii) we have

2n

2n
p(6,€) =D K(&e) =—2n(8(a) + o) = [[VIP + > g(VeiVier)
i=1 i=1

2n+1
=—2n(f(@)+a®)+ > g(VeiViey).

i=1

Thus, the first formula in iii) is proved. Finally, by i) we obtain

2n
p(Xa E) = ZR(Xa ei7£>ei)
=1

2n

= —2nX () + Y ei(@)g(X — n(X)E e5) +1(X)p(€,€) + 2nm(X)é(w)

— — (@0~ 1)(X — n(X)E)() + n(X)p(.€).
O

We recall that, given two (symmetric) (0,2)-tensor fields P, @, the Kulkarni-Nomizu product
P® Q acts as

(PO Q)X,Y, Z,W) =P(X, Z)Q(Y,W) + P(Y, W)Q(X, Z)

3.3
— P(X,W)Q(Y. Z) - P(Y, 2)Q(X. W). 33
In particular, for the sake of simplicity, one puts m = % g®BDg.

Proposition 3.2. Let (M, p,&,1,9) be a Cs & Cia-manifold such that dim M = 2n + 1. For any
X, Y, Z, W e I'(TM) one has

AMX,Y,Z,W) =—a*(m(X,Y, Z,W) — m (X, Y, 0Z, oW))
—a((g® M@ Ven))(X,Y, Z,W) = (g ® (n @ Ven) ) (X, Y, pZ, pW))
(@O (da@n)(X,Y,Z,W)+((n@n) ® (V(Ven) = Ven@ Ven) ) (X, Y, Z,W).
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Proof. We only outline the proof, which requires a quite long calculation.
Let X,Y, Z, W be vector fields on M. Starting by the equality

AXY, Z, W) = g(R(X,Y)pZ — p(R(X,Y)Z), oW) + g(R(X, Y )&, Z)n(W),
one applies Proposition 3.1, Corollary 3.1 and adopts the notation
V(Ven)(X,Y) = (Vx(Ven)Y = g(VxV,Y).
Then the statement follows by direct calculation, also applying (3.3). O

Remark 3.1. In [9] the cosymplectic defect of a manifold that belongs to a class containing Cs ®C1o
as a proper subclass was evaluated with respect to the minimal U(n)-connection. Considering a
manifold in the class C5 @ Ci2, it is easy to verify that the formulas in Proposition 3.2 and in [9]
are equivalent.

Corollary 3.2. Let (M, p,£,n,9) be a Cs & Cra-manifold with dim M = 2n + 1. The following
properties hold

i) For any X,Y € T'(D), we get
AMXY, XY) = ([ XIP|Y|* - g(X,Y)? = g(X, Y)?).
ii) For any X,Y e I'(TM), we have
(p = P)XY) =~ (2n —1)a® +€(a)g(X,Y) — a®*n(X)n(Y)

— ((2n = 1) X (@) +divV(X) — ag(V, X))n(Y)

= 2(n=Dan(X) +g(V, X))g(V.Y) + g(VxV = n(X) VeV, Y).
iii) Denoting by 7, T the scalar and x-scalar curvatures, we get

T — 7" = -2(2n%a* + 2né(a) + div V).
iv) The skew-symmetric component of p* is given by
PH(XY) = p* (Y, X) =(2n = )(X(a)n(Y) = Y(a)n(X))
+2(n — Da(g(V.Y)n(X) — g(V, X)n(Y)).

Proof. Property i) is a direct consequence of Proposition 3.2.

Let X,Y be vector fields on M. With respect to alocal orthonormal frame {eq, ..., e2,, £}, we write
(p—p")(X,Y) = Efﬁl A(X,e;,Y,e;) — R(X,£,€,Y) and apply Proposition 3.2 and Corollary 3.1.
So, we obtain ii) and then iii). Furthermore, since p is symmetric, by ii) we have

P(XY) = p* (Y, X) =(2n — (X (a)n(Y) = Y(e)n(X) — ag(V, X)n(Y) + ag(V,Y)n(X))
—g(VxV =n(X)VeV)Y) +g(VyV —n(Y) VeV, X).
On the other hand, applying (2.3) we get
0=9(VxV,Y) = g(VyV, X) + (ag(V, X) + g(VeV, X))n(Y)
— (ag(V,Y) +9(VeV, Y))n(X).

Hence, substituting into the previous formula, we obtain iv). O

Proposition 3.3. Let (M, ¢,£,n,g) be an a.c.m. manifold with dim M > 5. If M is a-Kenmotsu

or a Cio-manifold, then p* is symmetric.

Proof. Since dim M > 5, by (2.4) and Corollary 3.2, for any X,Y € T'(TM) we have

PH(XY) = p* (Y, X) = a(g(V, X)n(Y) — g(V, Y)n(X)).

(Il

Proposition 3.4. Let (M, ¢,&,m,9) be a C5 @ Cra-manifold with dim M > 5. The following
properties are satisfied
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i) For any X,Y,Z,W € I'(TM), one has
R(X,Y, Z,W) =R(pX,9Y,0Z,oW) = o*(g ® (n @ n))(X,Y, Z,W)
+ (gD N (da—aVen)))(X,Y,Z,W)
—(g® (& (da—aVen))(X,Y, pZ, W)
+((m@n) @ (V(Ven) = Ven @ Ven))(X,Y, Z,W).
i) For any X,Y € I'(TM), one has
p(X,Y) =p(¢X, pY) = (2na® + div V)n(X)n(Y)
— (2(n = Da(Ven)Y + (Ve(Ven))Y + Y (a))n(X)
+ ((Ven) X — (2n — 1) X (a))n(Y)
+ (Vx(Vem)Y = (Ven) X (Ven)Y
= (Vex(Ven)eY + (Ven)eX (Ven)pY.

Proof. We observe that, for any X,Y, Z, W € TI'(T M), one has
R(X,Y,Z,W) — R(eX,0Y,0Z, W) = A(X,Y, Z, W) + AMpZ, oW, X,Y).
Thus property i) follows by Proposition 3.2.

Considering an adapted local orthonormal frame {e1, ..., en, €nt1 = we1,..., €2, = wen, &} on M,
for any X,Y € I'(T'M), we write

2n

p(X7 Y) - p(QOXv (pY) :Z(R(Xa €is K ei) - R(@Xv PEi, QDK Qpez))

i=1
Then, applying i) and Corollary 3.1, one proves ii). O
Remark 3.2. We point out that, being p symmetric, the tensor field considered at the right side
of formula ii) in Proposition 3.4 has to be symmetric. This is equivalent to the condition
0 =2(n — ((X(e) = a(Ven) X)n(Y) = (Y(a) — a(Ven)Y)n(X))
+QRX,Y) = Q(Y, X) — Q(¢X, ¢Y) + Q(¢Y, 0X),

for any X,Y € T'(TM), where Q = V(V¢n) + (Ve(Ven) + aVen) ® 1. In fact, by (2.3) we know
that @ is symmetric. Thus, if dim M = 3, the above equality reduces to an identity. If dim M > 5,
by (2.4) we obtain that (da — aVen) ® n is symmetric, also.

4. THE k-NULLITY CONDITION

In Contact Geometry the behavior of the tensor field h = %Lgp, L¢ denoting the Lie derivative
with respect to &, plays an important role for the classification of manifolds satisfying suitable
curvature conditions [2, 3].

The following result shows that the vector field V' of any Cs & C12-manifold specifies h.
Lemma 4.1. Let (M,¢,&,1n,9) be a Cs ® Cra-manifold. For any X € T'(TM) one has h(X) =
f%g(V, wX)E. Therefore, h vanishes if and only if M falls in the class Cs.
Proof. By direct calculation, for any X € I'(T'M) one has
2h(X) = (Vep)X = Vox &+ @(Vx§) = —(Ven)eX & = —g(V, o X)¢.
Since V is orthogonal to £, we obtain h = 0 if and only if V' = 0. (]
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Lemma 4.2. Let (M,¢,£,n,9) be a Cs @ Cra-manifold. Assume the existence of smooth functions
k,p on M such that

R(X,Y)§ = k(n(Y)X —n(X)Y) 4+ u(n(Y)h(X) — n(X)h(Y)), (4.1)
for any X, Y € T(TM). Then, one has uh =0 and do = &(a)n.

Proof. By Corollary 3.1 and the hypothesis, for any X,Y € I'(D), we have
X(@)Y -Y(a)X =R(X,Y)¢ =0.

It follows that X (a) = 0 so that da = £(a)n.

Given X orthogonal to &, by Corollary 3.1 and Lemma 4.1, we obtain

KX+ Lg(VipX)E = ~R(X, )¢
= (£(a) + )X +g(V,X)(V — af) — VxV.

Taking the inner product by &, we get —ag(V, X) —g(VxV,&) = %ug(v, ©X). Moreover, applying
(2.2) one has g(VxV,&) = —g(Vx¢&, V) = —ag(V, X). It follows that pug(V,pX) = 0, for any
X € T(TM). O

Condition (4.1) was firstly considered in [4] in the context of contact manifolds, k, i being suit-
able real numbers. Contact manifolds satisfying (4.1), also named (k, x)-manifolds, have been
deeply studied ([3] and References therein). We call N(k)-space an a.c.m. manifold (M, ,&,n,g)
admitting a smooth function k such that

R(X,Y)E = k(n(Y)X —n(X)Y), XY € (TM). (4.2)

Lemma 4.2 clarifies that conditions (4.1), (4.2) are equivalent in the case of a C5 & C12-manifold.
In [15] the authors proved that the curvature of an o-Kenmotsu manifold always satisfies (4.2),
where k = —(£(a) + a?). The next results show that this property does not extend to Cs & Cia-
manifolds.

Proposition 4.1. Let (M, p,&,1n,9) be a Cs & Ci2-manifold such that dim M =2n+1>5. If M
is an N(k)-manifold, the following properties hold

i) da =&(a)n, aV =0.

i) k=—(&(a)+a?) — s divV.
iii) adivV =0.
iv) For any X € I'(T M), one has

VxV = f% div V(X = n(X)€) + g(V, X)V + n(X) Ve V.

Proof. By Lemma 4.2, we have da = £(a)n and comparing with (2.4) we obtain oV = 0. Then,
also applying Corollary 3.1, for any X € I'(D) one gets

kX = R(X,0)¢ = —(£(a) + )X — g(V, X))V + VxV. (4.3)
Let {e1,...,ean, 2,41 = £} be a local orthonormal frame on M. By (4.3) we have

2n

2nk =Y g(R(en O)E e) = ~2n(¢(0) +a®) — [VI? + 3 g(Ve,Vier)

i=1 =1

= —2n(&(a) + o?) — divV.

Then, ii) follows. Moreover, since aV = 0, we get 0 = 21221 9(Ve, (aV),e;) =da(V) —adivV =
—adiv V. This proves iii). Finally, using (4.3), for any X orthogonal to £ we have

1
ViV = (—% div V)X +g(V, X)V.

This relation entails iv). O
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We point out that the distribution D on any manifold as in Proposition 4.1 is spherical. In fact,
the equation da = £(a)n means that the leaves of D are extrinsic spheres.

Proposition 4.2. Let (M, p,&,n,9) be a Cs @ Cra-manifold such that dimM = 2n +1 > 5.
Assume that M is an N(k)-manifold. Then, for any U, X € T'(D), one has

i) R(U,X)V = (U(k) — kg(V,U))X — (X (k) — kg(V, X))U.
i) Ulk+ 5 divV) = (k+ 5 div V) (Ven)U.
Proof. Let U, X, Y be vector fields on M. By direct calculation, applying (2.2) and (4.2), one has
(VuR)(X,Y)E =U(k)(n(Y)X —n(X)Y) + kn(U)(g(V,Y)X — g(V, X)Y)
+ak(g(U, V)X —g(U,X)Y) — aR(X,Y)U —n(U)R(X,Y)V.
Now we consider U, X orthogonal to £ and apply the second Bianchi identity, namely
(VuR)(X, €&+ (VxR)(EU)E + (VeR)(U, X)§ = 0.

(4.4)

By(4.4) we get
Uk)X — X(k)U +k(g(V,X)U — g(V,U)X)— R(U, X))V =0.
Hence, i) follows. Furthermore, applying Proposition 4.1, we have
R(U,X)V =Vy(VxV)=Vx(VyV) =V x1V

= o div V(g(V, X)U — g(V,U)X) — 5 (U(div V)X — X (div V)0

Thus, comparing with i), one has
1 1 1
U(k + = divV)X - X(k + = div V)U = (k + = divV) (g(V,U)X — g(V, X)U).
2n 2n 2n
It follows that ii) holds. O

Remark 4.1. By Proposition 4.1, it is easy to verify that property ii) of Proposition 4.2 is equivalent
to the condition
U(&(e)) = &(a)g(V,U), U el(D).

Proposition 4.3. Let (M, p,£,n,9) be a Cs & Ciz-manifold such that dimM = 2n +1 > 5.
Assume that M is an N(k)-manifold. For any X,Y,Z, W € I'(TM) one has
D) R(X,Y)pZ =p(R(X,Y)Z) + (k + a®)n(X)(n(Z)Y — 9(¢Y, Z)§)
— (k+a?)n(Y)(n(Z)pX — g(pX, Z)¢)
+a*(9(pY, 2)X — g(pX, 2)Y + (Y, Z)pX — g(X, Z)¢Y).
11) A(Xa Y, Z, W) = 042(7'(1(X, Y, Z, W) - 7T1(X7 Y, (IOZ7 (/DW))
+(k+a®) (g ® (n©@0)(X,Y,Z,W).

Proof. Let X,Y, Z, W be vector fields on M. By Propositions 3.1, 4.1 we have
R(X,Y)eZ =p(R(X,Y)Z) 4 £()n(Z)(n(Y)eX —n(X)eY)
+a*(9(pY, Z)X — g(pX, 2)Y + g(Y, Z)pX — g(X, Z)¢Y)
+n(Z2)(g(V, X)n(Y) = g(V.Y)n(X))eV
+0(Z)((X)Vy eV —n(Y)VxeV)
+ (£(a)(n(X)g(pY, Z) = n(Y)g(pX, Z))
+9(eV, Z)(n(X)g(V,Y) = n(Y)g(V, X))
—n(X)g(VyeV, Z) +n(Y)g(Vx eV, Z))E.
Moreover, applying (3.1) and Proposition 4.1, we get

VgV = (Vxp)V +¢(VxV) = gV, X)oV — (5 div V) oX +n(X)p(VeV).



10 SALVATORE DE CANDIA AND MARIA FALCITELLI

Substituting into the previous formula and using property ii) of Proposition 4.1, i) follows.
Finally, property ii) is obtained by i) and the relation
AMX,Y, ZW) = g(R(X,Y)pZ — ¢(R(X,Y)Z), oW) + kn(W)(n(Y)g(X, Z) — n(X)g(Y, Z)).
(I

Theorem 4.1. Let (M, ,&,1,9) be a Cs & Cra-manifold such that dim M > 5. Assume that M

has constant sectional curvature k. Then, either M is an a-Kenmotsu manifold and k = —a?, or

M is flat and falls in the class Cyo.

Proof. Let x be a point of M and consider unit vectors X,Y € T,M such that ¢, (X,Y) =
92 (X, YY) =0y (X) = n,(Y) = 0. Since M has constant sectional curvature, we have R = kmy, so
that

R.(X, Y)Y — (R (X, Y)Y) = —kp. X.
On the other hand, by Proposition 4.3, one obtains
R (X, Y)Y — ¢ (R(X,Y)Y) = a(z)*p. X.

It follows k + a(z)? = 0. Thus, « is a constant function . Since oV = 0, one of the following two
cases occurs

i) a#0,V=0k=—a?

i) a=0,k=0.
In case i), M falls in the class C5, namely it is a-Kenmotsu, a = constant and k = —a? < 0. In
case ii), M is flat and falls in C1,. O

We remark that, for any a € R, a # 0, an a-Kenmotsu manifold with constant sectional curvature
k = —a? is locally a warped product | — €, e[x,F, where F is a flat Kdhler manifold and \(¢) =
aexp(—|alt), a = const > 0. On the other hand, a flat C}2-manifold is locally realized as a product
Al — €,€[xXF, F being a flat Kéhler manifold and A: ] — €, ¢[x F' — R a smooth positive function.
The action of A will be specified in Section 7.

Proposition 4.4. Let (M,¢,£,1n,9) be a Cs @ Cra-manifold such that dim M > 5. If M is an
N (k)-manifold, the curvature satisfies the following identities

R(X,Y,Z,W) =R(X,Y,pZ,oW) + R(0X,Y, Z,oW) + R(X, Y, Z, W)
+En(W)(n(Y)g(X, Z) —n(X)g(Y, Z)),
R(X,Y,Z,W) = R(pX,0Y,0Z, W)+ k(g ® (n@n)(X,Y, Z,W), (4.6)
for any X, Y, Z W € I'(TM).

(4.5)

Proof. The statement follows by Proposition 4.3 observing that, for any vector fields X,Y, Z, W
on M, one has
R(X,Y, Z,W) =R(X,Y,pZ, W) + R(pX,Y, Z,oW) + R(X, Y, Z, oW)
+AXLY, Z,W) = MZ, oW, X, oY) +n(Y)R(Z, oW, §, ¢ X)
and
R(X,Y,Z,W) = R(eX,0Y,0Z, W) + A(X,Y, ZW) + MpZ, oW, X, Y).
O

Remark 4.2. If k = const = 1, properties (4.5) and (4.6) correspond to the identities, called G5, G3
identities, introduced and studied in [14]. Obviously, the curvature of any a-Kenmotsu manifold
satisfies (4.5), (4.6), being k = —(£(a) + o?).
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5. LOCAL DESCRIPTION OF N (k)-MANIFOLDS

We are going to provide some local descriptions of a C5 & Ciz-manifold (M, ¢, &, n, g) satistying
the N(k)-condition, examining suitable distributions on M. Assuming that V' is nowhere zero,
we can consider the rank 2 distribution D; = span{¢, V} and its orthogonal complement Di- =
kernNkerVen. By (2.3), one gets that Di- is integrable. Moreover, Proposition 4.1 entails that M
falls in the class Cy2. It follows that, if D+ = span{¢} is spherical, equivalently V¢V = —||V||2¢,
M is, locally, the a.c.m. manifold )] — €, e[xF, F being a Kéhler manifold and A: F' = R% a
smooth function [9].

We recall that a Riemannian submanifold N of an a.c.m. manifold (M, ¢, &, n,g) is said to be
a semi-invariant ¢*--submanifold if the vector field ¢ € T'(T+N) and there exist two orthogonal

distributions, D and D", on N such that TN =D& D, ©(D) = D and D" CTN [5].
In the sequel, for the sake of simplicity, by V # 0 we mean that V is nowhere zero on M.

Proposition 5.1. Let (M, p,&,1,9) be a Cia-manifold such that dimM =2n+1>5,V £ 0
and V¢V o= —||V|[2¢. If M is an N(k)-manifold, then the distribution Dy is totally geodesic
and Di is spherical. Furthermore, each leaf of Dy is an anti-invariant submanifold of M with
Gaussian curvature k and each leaf of Di- is a semi-invariant £--submanifold of M admitting a
Ce-structure.

Proof. By hypotheses and Proposition 4.1, we have that k& = —ﬁ divV and
VxV = kX +g(V. X)V = n(X)(|VI" + k)¢, X € T(TM). (5.1)

It follows that

d([|VI[*) = 2(IIVII* + k) Ven. (5.2)
By (2.3) and (5.2), we get 0 = d(||V|[2+k)AVen—(||V|[?+k)Ve(Ven) An. Since VeV = —||V][2€,
it follows that V¢(Ven) An =0 and thus

dk V(k)Ven. (5.3)

1
V]2

Applying (2.2) and (5.1), it is easy to verify that the distribution D, is totally geodesic. Moreover,

considering a leaf N of Dy, we have o(TN) C T+ N, namely N is anti-invariant, and the Gauss

R (€, V.6,V
o, v € N

Let N’ be a leaf of Di-. For any X,Y € T'(TN'), by (2.2), (5.1), we obtain g(VxY,¢) = 0 and
9(VxY, V) = —kg(X,Y). By the Gauss formula, it follows that N’ is totally umbilical with mean
curvature vector field H = fWV. Moreover, denoting by V+ the normal connection of N’, we
have

curvature of N is given by k(z) =

k k
TH=—|X[|-—s — V% X e I(TN").
Vx ((HVH?)”HVH?VXV)’ €TTN)

On the other hand, by (5.2), (5.3), we get X(W) = 0. Moreover, using (5.1), we have V%V = 0.
Substituting into the above equation, it follows that N’ is an extrinsic sphere.

Now, we consider the distribution span{¢V} on N’ and denote by D its orthogonal complement on
N'. Since *V = -V € I'(T*+N’), we have p(span{oV}) C T+ N'. Moreover, for any X € I'(D)
one has g(¢pX, pV) = 0, namely ¢(D) = D. This means that N is a semi-invariant £ -submanifold
of M.

Finally, putting ¢' = ),/ ;nr0 & = HTlH‘pV’ n = f’b, we consider the (1,1)-tensor field ¢’on N’
such that ¢'(¢') = 0 and ¢'(X) = ¢X, for any X 1 ¢. In particular, for any X € I'(T'N’) one has

(X)) =X + PV, X)V. (5.4)

1
vieEd
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It is easy to check that (¢’,&’,7,¢’) is an a.c.m. structure on N'. Furthermore, we denote by V’
the Levi-Civita connection of (N’,g’), apply the Gauss formula and obtain

VxV = V4iY — ﬁg(x, YV, X,Y e(TN).
Then, by direct calculation, also applying (5.1), (5.4), one has
(Vi)Y = = in(d/ (X V)€ =/ (V)X). XY eT(TN),
It follows that (N’, ¢, &', 7', ¢’) is an @-Sasakian manifold, with @ = —ﬁ, and it falls in the class
Cs [3, 6]. O

Applying Proposition 5.1 and the decomposition theorem of Hiepko, we are able to state the
following classification theorem.

Theorem 5.1. Let (M, p,&,1,9) be a Cia-manifold such that dimM =2n+1>5, V # 0 and
VeV = —||V|[?¢. If M is an N(k)-manifold, then (M, g) is locally isometric to a warped product
N x) N’, where dim N = 2, N has Gaussian curvature k and N’ is an @-Sasakian manifold,

a=—k.

V1l
Corollary 5.1. Let (M, p,&,n,9) be a Ci2-manifold such that dim M =2n+1>5, V # 0 and
VeV = —||VI|[?¢. If M is flat, then (M, g) is locally isometric to a Riemannian product N x N,

dim N =2 and N, N’ are flat manifolds. Furthermore, N' admits a cosymplectic structure.

Proof. Since M is flat, M is an N (0)-manifold. Hence, using Proposition 5.1, both the distributions
Dy and Di are totally geodesic. In fact, for any X € I'(Di) one has VxV = 0 = Vx&. By
Theorem 5.1, (M, g) is locally isometric to a Riemannian product N x N’, where N is a flat
2-dimensional manifold and N’ admits an a-Sasakian structure, with @ = 0. O

We end this section considering the distribution D’ = span{&, V, oV} on M. As in the previous
case, we assume V = 0 and D spherical.

Proposition 5.2. Let (M, p,&,1,9) be a Cia-manifold such that dim M =2n+1>5,V #0 and
VeV = —||V|[2%€. If M is an N(k)-manifold, the distribution D' is totally geodesic and each leaf
of D' is an N(k)-manifold belonging to the class Cia.

Proof. By Proposition 4.1, we get k = —% div V. Moreover, applying (2.2), (5.1) and the defining
condition of the class C15 (see Table 1), an easy calculus entails

VVf =0= V<pv€ = V§<,0V,
VoV = (IVIE+BV, VygV = (IVIE+ KoV, VoV =kgV, Vavpl = —kV.

The above formulas, together with the hypothesis V¢V = —||V||?¢, imply that the distribution
D’ is totally geodesic.

Let N’ be a leaf of D'. It is easy to verify that (¢ = ¢, ,,& = &0 = Mpns 9 = Ilpnrwrns)
is an a.c.m. structure on N’. Since N’ is totally geodesic, (N',¢’, &', 7', ¢’') is an N(k)-manifold

and falls in the class Cis. O
Theorem 5.2. Let (M, ¢,£,n,9) be a Cia-manifold such that dim M =2n+1>5, V # 0 and
VeV = —||VI||?¢. If M is flat, then (M, g) is locally isometric to a Riemannian product N' x N”,

where N' is a 3-dimensional C12-manifold, N is a Kihler manifold and N', N" are both flat.

Proof. Since M is flat, M is an N(0)-manifold. Let D'* be the orthogonal complement of D’.
By (2.2), (5.1), for any X,Y € I'(D't) we get g(VxY,&) = 0 = g(VxY,V) = g(VxY,pV).
Hence, the distribution D't is totally geodesic and each leaf N” of D't is totally geodesic and
flat. Moreover, (J" = ¢\, .,,9" = 9| . rn) i @ Kihler structure on N”. Then, also applying
Proposition 5.2, we get the statement. O
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6. THE CASE OF GENERALIZED SASAKIAN SPACE-FORMS

In this section we consider a C5 ¢ Cio-manifold (M, p,&,n,g) which is a generalized Sasakian
space-form (g.S. space-form), namely M admits three smooth functions f1, f2, f3 such that the
curvature tensor satisfies
R = fim + fa5 + f5T, (6.1)

where w1, S, T are the tensor fields acting as

m(X,Y,Z)=g(Y,Z2)X — g(X, 2)Y,

S(X,Y,Z) = g(X,02)pY — g(Y,0Z)pX +29(X, oY )¢ Z,

T(X,Y,2) = n(X)n(2)Y =n(Y)n(Z2)X + (X, Z)n(Y ) = (Y, Z)n(X)E.
This class of a.c.m. manifolds was introduced in [1] and subsequently studied by a number of
mathematicians from several points of view. In particular, in [8] it was proved that M is a g.S.
space-form if and only if M is an N(k)-manifold with pointwise constant ¢-sectional curvature
c and, for any X,Y € I'(D), the cosymplectic defect satisfies A(X,Y, X,Y) = I(]|X]|]?||Y]]* —
9(X,Y)? — g(X,¢Y)?), | being a smooth function on M.

Now, also applying Corollary 3.2 and Proposition 4.1, it is easy to obtain the following result.

Proposition 6.1. Let (M, p,&,1,9) be a Cs ® Cia-manifold with dimM = 2n+1 > 5. The
following conditions are equivalent

i) M is a g.S. space-form.
ii) M is an N(k)-manifold with pointwise constant p-sectional curvature c.

Moreover, if one of the previous conditions holds, one has k = —(£(a)+a?)— % divV, f1 = #,

fo= Sl o= fi— k=2 4 g(a) + L divy.

Taking into account Proposition 6.1, we denote by M2"*+1(c k) a g.S. space-form with pointwise
constant ¢-sectional curvature ¢ and satisfying the k-nullity condition.

Proposition 6.2. Let (M,¢,£,1m,9) be a Cs ® Cia-manifold. If M?"*1(c,k), n > 2, is a g.S.
space-form, the following properties hold

i) For any point oy € M, the leaf (N,J,g') of D through xo is a Kdihler manifold with
constant holomorphic sectional curvature (c + o?)(zo).

ii) de=¢&(e)n.

iii) For any X € T'(D), one has X(&(c)) = &(c)g(V, X).
iv) ¢V =0.

v) dk =&(k)n+ kVen.

Proof. Let 29 € M and (N,J = @|;x+9" = Glrnyrn) be the leaf of the distribution D through
xo. Since M is a C5 @ Cyo-manifold, we know that (J,¢’) is a Kéhler structure on N and N is
totally umbilical with mean curvature vector field H = —a¢|, . Denoting by R’ the Riemannian
curvature of N and applying the Gauss equation, for any = € N and any unit vector X € T, N,
we get
RUX, J.X, X, J.X) = Ro(X, 0. X, X, 0. X) + a(z)? = (c + a?)(2).

Since dim N > 4, it follows that N has constant holomorphic sectional curvature (¢ + az)‘ ~- S0,
we obtain i). On the other hand, by Proposition 6.1, M is an N(k)-manifold. Hence, applying
Proposition 4.1, « is constant on N. This implies that ¢ is constant on N. It follows that the
function c is constant on any leaf of D, that is ii) holds.

By ii), we obtain d({(c)n) = 0. So, applying (2.3), one has (d§(c) — £(c)Ven) An = 0 and iii)
follows.

Finally, using the second Bianchi identity, one has foV = 0 and dk = &(k)n — fsVen (cf. [7],
Section 4). Applying Propositions 4.1, 6.1, we easily obtain iv) and v). O
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Remark 6.1. In the same hypotheses of Proposition 6.2, applying the main results in [9], we have
that M is locally almost contact isometric to a double-twisted product manifold | — €, €[x (x, x,) F,

where € > 0, (F, f, §) is a Kéhler manifold with constant holomorphic sectional curvature (c+a?)|,.
and A, A2: | — €, ¢[xF — R are smooth positive functions.

Proposition 6.3. Let (M, ¢,£,1,9) be a Cs & Cia-manifold. If M?"*1(c,k), n > 2, is a g.S.
space-form, then the following differential equation holds

d(c+a?) = =2(c+ a?)a. (6.2)

Proof. Let U, X,Y be vector fields on M and Z € T'(D). By (6.1), we have
+ L(VuS)(X,Y, Z) + fs(VuT)(X,Y, Z),

where fi, fa, f3 are related to ¢, k as in Proposition 6.1. Furthermore, it is easy to verify the
following relations

(VuS)(X,Y, Z) =g(¢Y, Z)(Vup)X — g(Vup)Z,Y )X
—9(eX, 2)(Vup)Y + 9(Vup)Z, X)pY
+29(0Y, X)(Vup)Z +29((Vup)Y, X)pZ,

(VuT)(X, Y, Z) =(n(X)Y —n(Y)X)(Vun)Z
+ (9(X, Z2)(Vun)Y — g(Y, Z)(Vun) X)§
+ (9(X, 2)n(Y) — g(Y, Z)n(X))Vué.

In order to apply the second Bianchi identity, using the above formulas, Propositions 4.1, 6.1, 6.2
and (2.2), (3.1), a direct calculus entails

U(f) = {8~ 302n(), Ulh) = 1l +a?)n(U), (6.4)

For @ (VUS)XY.Z) =200 o (90X, Zn(Y) = g(Y. Z)n(X))eU

2 Y, X VA
+ (U)ggy)g(so , Xn(U)e )

(VoT)(X.Y,2) = f3(20 ¢ (9(X. Z)n(¥) = g(¥ Zpn(X))U

n(U)(n(X)Y —n(Y)X)g(V, 2) (6.6)

(6.3)

(6.5)

f3

o
(U,X,Y)

o
(U,X,Y)

¥ Ly 0K 2)g(VY) =g, 2)g(V, X)In(U)e),

where o represents the cyclic sum over U, X, Y.

Now, choosing U =&, Y =Z, X L U,Y, Y, and substituting into (6.3)-(6.6), the second Bianchi
identity gives
1
(F6(c —30%) + 20 ) |1 ZIPX + (X(f3) — fag(V. X)) | Z][%€ = 0.
This implies £(c — 3a?) + 8afz = 0. Using iii) in Proposition 4.1 and Proposition 6.1, it follows
that 0 = &(c — 3a2) + 2a(c + a?) + 8aé(a) = &(c+ a?) + 2a(c + a?). On the other hand, by
Propositions 4.1, 6.2, we know that d(c + a?) = £(c + a?)n. Hence, the statement holds. O

Now, we are able to classify g.S. space-forms belonging to the class C5 & C».

Theorem 6.1. Let (M, p,&,1m,9) be a Cs & Cra-manifold. If M*"*F1(c, k), n > 2, is a g.S. space-
form, then exactly one of the following cases occurs

i) M is cosymplectic and c is constant.
ii) M falls in the class Ci1o ~ C and ¢ = 0.
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iii) a # 0 and c + a® = 0. Moreover, there exist an open covering {U;}icr of M and, for
any i € I, a smooth function o;: U; — R such that (Ui, i = ¢y, ,& = exp(—0i)§), . ni =
exp(0i)n|,, » 9i = exp(203)g),, ) s a g.5. space-form with zero ¢-sectional curvature, which
falls in the class C1s.

iv) M is a-Kenmotsu and the function c + o2, which is nowhere zero, has constant sign.
Moreover, M is globally conformal to a cosymplectic manifold with constant p-sectional
curvature sign(c + a?).

Proof. If « = 0, by Proposition 6.3, we get that ¢ is a constant function. If ¢ # 0, applying
Proposition 6.2, it follows that the vector field V' vanishes, so that M is a cosymplectic manifold.
If ¢ = 0, by Proposition 6.1 and (6.1), the curvature tensor of M is given by R = (% div V) T.
In this case, if divV # 0, then M is a C12-manifold but it is not cosymplectic. If divV =0, M is
flat and either M is cosymplectic or M falls in the class C12 . C. We conclude that, if « = 0, one
of the cases i), ii) occurs.

Now, we suppose that o # 0. Since the Lee form w = —an is closed, by Proposition 4.4 in [9],
M is a locally conformal Cio-manifold, namely there exist an open covering {U;}icr of M and,
for any i € I, a smooth function ¢;: U; — R such that U; is endowed with the Cs-structure

(Ui7 Pi = SD|U1 ) EZ = exp(_gi)€|ui ) Tli = exp(gi)mui?gi = eXp(QUi)g|Ui) and dgi = w\ui '
The Levi-Civita connections of the local metrics g; fit up to the Weyl connection V acting as
VxY =VxY —an(X)Y —an(Y)X + ag(X,Y)¢, X,Y € I(TM).

Furthermore, fixed i € T and denoting by R the (0,4)-curvature tensor of V, it is well-known that
in U; one has

exp(—20,)R=R—-PQ® g, (6.7)
where P = Vw —w @ w + %HwHQg. Applying Proposition 4.1 and (2.2), it is easy to verify the
following relations

1
P=—¢a)nen— 50429,

(P @ g)(X7 Y7 Za W) :a29(7T1(X7 K Z)7 W) - g(a)g(T(Xa K Z)a W)
Substituting into (6.7) and applying (6.1), Proposition 6.1, it follows that

2 2
ch—koz c+ «
4 4

Since w is closed, by (6.2) and the connectedness of M, one of the following two cases occurs

(m+8)+ ( + % divV)T. (6.8)

a) c+a?=0,
b) ¢+ a? # 0 everywhere.
In case a), the equation (6.8) reduces to R = (ﬁ div V) T. In order to rewrite this equation with

respect to the metrics g;, i € I, we put V; = v&gi and denote by T; the tensor field on U; defined
as T. An easy calculation entails

Vi = exp(—20;)V|
It follows that

divV; = exp(—20;)divVy, , T, = exp(—20;)T;.

U,

R, = (% divVi)Ti, i€l

Combining the above formula with Proposition 6.1, we get that the Cyo-manifolds (U;, ¢;, &, 7, g5)
are g.S. space-forms with zero ¢-sectional curvature. Hence, iii) holds.

Finally, we examine case b). Since M is connected, the function c+a? has constant sign. Moreover,
by Propositions 4.1, 6.2, we have (¢ + a2)V = 0. This implies that V' = 0, namely M is an a-
Kenmotsu manifold. On the other hand, solving (6.2), we get w = dlog+/|c+ «?|. Since w is
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exact, M is globally conformal to the a.c.m. manifold (M, ¢, \/ﬁﬁ, Vie+a2[n, e + a?|g),
which is cosymplectic [15]. Furthermore, with respect to the metric g = |c + o?|g, (6.8) becomes

_ 1 _
F+S+T)= Zsign(c+oﬂ)(7r7+S+T).

The above equation means that (M, ¢, \/ﬁé lc + a2|n,|c + a?|g) has constant ¢-sectional

curvature sign(c + «?). Hence iv) occurs. O

Remark 6.2. In [7] the authors gave a local classification of g.S. space-forms M2"TL(f1, fa, f3), n >
2, assuming that for any ¢ = 1,2, 3, if the function f; does not vanish, then f; # 0 everywhere. The
authors proved that nine cases can occur and these cases are not mutually exclusive. Obviously, a
restriction on the Chinea-Gonzalez class of the g.S. space-form entails that some of the mentioned
cases have to be excluded. Comparing the result stated in Theorem 6.1 with the main Theorem
1.3 in [7], we get that a C5 & Cro-manifold M2+ (c, k) has to satisfy one of four cases listed in [7],
namely the ones denoted by (a), (e), (f), (g). We also remark that in our context the hypothesis
fi =0or f; # 0 everywhere is needless.

7. EXAMPLES

In Theorem 4.1 we have shown that a C5 @ Cyo-manifold (M, ¢,&,n,g) with dimM =2n+1>5
and constant sectional curvature is either an a-Kenmotsu manifold or a flat Cjo-manifold. Note
that, as remarked in Section 4, in the first case it is known that M is locally described as a
warped product. Furthermore, the hyperbolic space H2"!(—a?) is the local model of space-forms
carrying a non-cosymplectic a-Kenmotsu structure.

More generally, in Theorem 6.1 we have classified g.S. space-forms M?"*1(c, k). Taking into
account case ii), we are going to provide a method for constructing a whole family of g.S. space-
forms M?"t1(0, k) falling in the class C12 \ C.

Let (Jo,g0) be the canonical Kéhler structure on R?", n > 2, I C R an open interval and
A: I x R?™ — R a smooth positive function. We know that the a.c.m. manifold M = y\I x R?",
defined as in (2.1), falls in the class Ci2 ~ C. According to Proposition 6.1, Theorem 6.1 and
formula (6.1), the condition that M is a g.S. space-form M?"+1(0, k) is equivalent to require that
its curvature tensor satisfies

1 .
R= (% dwv)T_ —kT. (7.1)
Using the curvature formulas in [16], we have
R(X,8)Z = (9(Vx(gradlogA), Z) + X(log A) Z(log M))¢, X, Z € T(D),

where V is the Levi-Civita connection on (M, g = g(\ 1)) and grad is evaluated with respect to
g. By an easy calculation, also considering Corollary 3.1 and Proposition 4.1, one can check that
(7.1) is equivalent to the condition

g(Vx(gradlogA), Z) + X(log \) Z(log\) = —kg(X,Z), X,Z €T (D).

Considering the orthonormal frame {8%1, RN 890%7 &} on M, the above equation corresponds to
the following PDE’s system
0%\ .
O LI + kA(S” = 0, 1,] = 1, “e 7277,. (72)
Hence, for any i # j, one has % = 0. It follows that A(¢,z",...,2%") = 32", ax(t, z*), where

ay is a function only depending on ¢ and z*. Substituting into (7.2) and assuming i = j, we get
% = —kA. This implies that the function kA only depends on t. Putting —kA = 2C(t), it
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follows that a;(t,2') = C(t)(z%)? + B;(t)z’ + E;(t), for any i = 1,...,2n. We can conclude that
(7.1) is satisfied if and only if
2n
At,at,. . a) =) (C(t)(a')? + Bi(t)a') + E(t), (7.3)

=1
where E(t) = Y7, Ei(t) and O(t) = —1kA.

We observe that for A to be a positive function we have to narrow its domain. Supposing 0 € I, we
can assume C(0) > 0, £(0) > 0 and B;(0) > 0, i = 1,...,2n. Thus, there exists an open interval
J,0¢€ J C I, such that C(t) > 0, E(t) > 0 and B;(t) > 0, for any i = 1,...,2n, t € J. Putting
U=R% x--- xR, the function A: J x U — R, defined as in (7.3), is smooth and positive.

We conclude that the a.c.m. manifolds M = ,J x U are g.S. space-forms M?"*+1(0, k) belonging
to the class Cio \ C.

Remark 7.1. The condition k = 0 is equivalent to require that the a.c.m. manifolds M = ,J x U
are flat and A(t,z',...,22") = 2" Bi(t)z* + E(t). Note that the method above described is
similar to the procedure used in Theorem 5.2 in [7]. In our case the hypothesis that f3 = —Fk is
nowhere zero is needless.

Finally, we provide an explicit example of a Cjs-manifold satisfying the hypotheses of Theorem
5.2.

Example 7.1. Given three non negative real numbers By, By+1, E such that (By, Bp+1) # (0,0),
one considers the open set W = {(x!,... 2%") € R?"|z! > 0,2""! > 0} and the smooth positive
function A: R x W — R acting as

Aty zt x2”) =Bzt + B, 12" + E.

By Remark 7.1, we know that the a.c.m. manifold M = \Rx W = (R x W, ¢, £ = %%,n =
Adt,g = \2dt ® dt + go) is flat and falls in the class Cj2 ~ C. Note that, for any i = 1,...,n,
go(%) = JO(%) = %. Using the formulas in [16], it is easy to verify that the tensor field V' =
Veé = —1(Big% + Bny15.2) satisfies the condition V¢V = —||[V[|?£. Moreover, considering
the distribution D’ = span{{,V, ¢V} on M and putting U; = % + TQH, Us = Uy, we have
D’ = span{\¢, Uy, Us}.

Given the open set N = {(t,y,2) € R3|y > 0,—y < 2z < y}, (to, 7o) = (to,xd,...,28") € M, we
define the map f: N’ — R x W acting as

1 1
t,y,z) = <t7— —2), 22, 1l —=(y + = ,...,:c2">.
Putting ' = Ao f and ¢’ = N2dt @ dt + dy @ dy + dz ® dz, it is easy to check that f is an isometric
immersion with respect to the metrics ¢’ and g. Note that (N’,¢’) is the leaf of D’ through
(to, o) and, applying Proposition 5.2, (N', ¢’ = —8% ®dz + % ®dy, & = %%77]’ = Ndt,g') is a
flat Cjo-manifold. Moreover, up to an isometry, the leaf of D'+ through (to, 7o) is R?"~2 endowed
with its canonical K&hler structure. Thus, applying Theorem 5.2, M is locally isometric to the
Riemannian product N/ x R?"~2,
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