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Abstract

Background: Microcalcification clusters in mammograms can be considered as

early signs of breast cancer. However, their detection is a very challenging task

because of different factors: large variety of breast composition, highly textured

breast anatomy, impalpable size of microcalcifications in some cases, as well as

inherent low contrast of mammograms. Thus, the need to support the clinicians’

work with an automatic tool.

Methods: In this work a three-phases approach for clustered microcalcifica-

tion detection is presented. Specifically, it is made up of a pre-processing step,

aimed at highlighting potentially interesting breast structures, followed by a

single microcalcification detection step, based on Hough transform, that is able

to grasp the innate characteristic shape of the structures of interest. Finally, a

cluster identification step to group microcalcifications is carried out by means

of a clustering algorithm able to codify expert domain rules.

Results: The detection performance of the proposed method has been eval-
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uated on 364 mammograms of 182 patients obtaining a true positive ratio of

91.78% with 2.87 false positives per image.

Conclusions: Experimental results demonstrated that the proposed method

is able to detect microcalcification clusters in digital mammograms showing

performance comparable to different methodologies exploited in the state-of-

art approaches, with the advantage that it does not require any training phase

and a large set of data. The performance of the proposed approach remains

high even for more difficult clinical cases of mammograms of young women

having high-density breast tissue thus resulting in a reduced contrast between

microcalcifications and surrounding dense tissues.

Keywords: Breast Cancer, Clustered Microcalcification Detection, Image

Processing, Computer-Aided System, Hough Transform

1. Introduction

Worldwide breast cancer is the leading type of cancer in women [1]. How-

ever, 99 percent of women whose breast cancer was detected early (stage 1

or 0) survive beyond five years after diagnosis [2]. Indeed, when detected in

good time, its treatment allows women to have a good prognosis reducing the

rate of mortality and the incidence of surgery, radiation therapy and oncologic

treatments [3]. Mammography is the most widely used technique in screening

programs to detect breast cancer at a very early stage [4, 5], but it is not a

perfect procedure. It is estimated that 11 percent of women undergoing annual

mammogram testing to screen for breast cancer are unnecessarily called back for

further testing; this high rate of false-positive exams may lead to added anxiety,

unnecessary biopsies for the patient, and consequent excessive treatments such

as surgical excision. Moreover, there is also an estimated rate of false negatives

of about 13 percent, i.e. cases of breast cancer that radiologists fail to detect [6].

Among the main early indirect signs of breast cancer visible on mammograms

are the microcalcifications, tiny spots of calcium deposits, whose diameter range

from 0.1 to 1 mm. They can be localized or broadly diffused along the breast

2



ducts, scattered or clustered throughout the breast tissue [7]. Specifically, a

microcalcification cluster reveals the presence of a breast cancer, so its detection

is of higher clinical importance than the detection of isolated microcalcifications.

Nevertheless, the identification of microcalcifications is a challenging task, not

only because of the large variety of breast composition and highly textured

breast anatomy, but also because of the inherent low contrast of mammograms

and, in some cases, the impalpable size of microcalcifications. Also different

types of breast structures (such as curvilinear structures) may appear along with

the microcalcifications making their identification more difficult. In addition,

the diagnostic capabilities of mammography decrease in breasts characterized

by a high percentage of radiographically dense fibroglandular tissue, leading to

increased follow-up studies, including biopsies [8, 9].

In addition to errors attributable to the perceptual difficulty of the task, a

significant proportion of missed detection can be attributed to errors in per-

ception (search failures), or alternatively to errors in interpretation. The low

prevalence in mammography becomes an even more common source of error

for inexperienced radiologists when they must face enormous numbers of mam-

mograms generated in widespread screening. Indeed, in many cases, a disease

detected in a current exam can also be seen in retrospect on the previous exam.

These retrospectively visible or actionable cancers could have been detected in

that previous exam with an expert reading [10, 11].

The early signs of breast cancer are often ambiguous or difficult to see,

especially with regard to particular lesions such as microcalcifications.

For these reasons, it could be helpful to have an automatic tool able to

support the clinicians in making more accurate detection, and consequently, di-

agnosis of breast pathologies. This is a field of research that has been active for

several decades and various studies confirmed the benefits that the use of Com-

puter Aided Detection (CAD) systems can bring to clinician work [12]. Indeed,

in 2017, IBM Research co-organized a coalition of oncology and technology part-

ners to pose this challenge to the science community and to find out if machine

learning technologies could be used to increase the accuracy of mammography
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screening [13].

Due to their particular nature and structure, the detection of microcalcifica-

tions requires a dedicated automatic tool and not one of generalized detection

on the various possible lesions of the breast. Different techniques were used to

solve this task by means of image analysis algorithms [14] stochastic modelling

methods [15], methods for multiscale decomposition [16, 17] or more advanced

techniques of machine learning [18, 19, 20, 21].

Nevertheless, most of the works presented in the literature lack an automatic

localization of the suspicious regions, indeed they make use of manually selected

regions. Other systems, whose scheme includes an automatic extraction of re-

gions of interest, require a sizeable set of training data to learn a model able to

efficiently detect clusters of microcalcifications. Here, we proposed a fully au-

tomated CAD system able to detect clusters of microcalcifications in full-field

digital mammograms. Indeed, with respect to most of the state-of-art systems,

the novelty of the present work is that it can detect regions containing clusters

of microcalcifications, without any human intervention and without the need to

carry out a laborious training phase that could require many labeled data.

The proposed method includes three main phases: an image pre-processing

step followed by microcalcifications detection and cluster identification. As a

first step, a set of image analysis algorithms are used in order to make poten-

tially interesting breast structures more evident. Successively, a combination

of a threshold-based method and Hough transform is used to detect the sin-

gle microcalcifications. Finally, the single microcalcifications are automatically

grouped into clusters in order to obtain the regions containing the lesions of

interest. The proposed approach was tested on 364 full-field digital mammo-

grams selected from the public database BCDR [22, 23] (Breast Cancer Digital

Repository) obtaining results comparable with the state-of-art systems.

As development of a previously published work [24], an extensive experi-

mental cross-validation evaluation was performed with the aim of assessing the

optimal combination of the thresholds employed in the step of single microcal-

cification detection. Moreover, a more sophisticated automated procedure for
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the identification of microcalcification clusters was developed: it is based on

classification algorithms aimed at reducing the false positive rate.

2. Materials and Methods

2.1. Materials

In this study, images extracted by the Breast Cancer Digital Repository

were used [22, 23]. The BCDR, a public database, is made up of two differ-

ent repositories: (1) a Film Mammography-based Repository (BCDR-FM) and

(2) a Full-Field Digital Mammography-based Repository (BCDR-DM). In the

database all available medio-lateral oblique (MLO) and cranial caudal (CC)

views of the left and right breast are included.

Only BCDR-DM images were used in this study due to their immediate ad-

vantage with respect to the analogical films and digitized mammograms: the

lack of information loss and the reduced background noise. Finally, the use of

full field digital images is mandatory for the exploitation of the implemented

CAD on images obtained with the digital equipment owned by oncology insti-

tutes worldwide, in order to maintain functional compatibility for future clinical

research activities.

The MLO and CC images are in TIF format with a resolution of 3328 (width)

by 4084 (height) or 2560 by 3328 pixels, depending on the compression plate used

in the acquisition (according to the patients breast size). All the images were

of 0.35mm/pixel in spatial resolution. Furthermore, the BCDR-DM dataset

provides, for each mammogram, clinical and demographic meta-data including

patient age, breast density (there are four breast density categories reported, i.e.

< 25%, [25−50]%, [50−75]%, > 75%) and BIRADS category (Table 1 summarizes

the categories that are included in the international Breast Imaging Reporting

And Data System (BIRADS) scoring system for the diagnosis of breast lesions

[25]).
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Category 0 incomplete (additional work-up is needed)

Category 1 negative (no findings found)

Category 2 benign finding(s)

Category 3 probably benign finding(s)

Category 4 suspicious abnormality

Category 5 highly suggestive of malignancy

Category 6 known biopsy with proven malignancy

Table 1: Breast Imaging Reporting And Data System (BIRADS) scoring.

2.1.1. Experimental Settings

The dataset used to asses the validity of the approach was made up of 364

mammograms randomly selected among those containing microcalcifications.

Since the BIRADS label provided by the public database refers to the most im-

portant lesion found in the breast, it happens that none or only a single cluster

were tagged even if more than one cluster of microcalcifications was present

in the mammogram. Thus, as first step, we asked our expert radiologists to

analyse the mammograms and tag each microcalcifications cluster, as we are

interested in detecting all of this kind of lesion. In particular, a double blind

reading was manually performed by two radiologists, dedicated to senologic di-

agnostics, from our Institute. They were asked to identify regions containing

microcalcification clusters using a circular bounding box (as shown in Figure 2).

Then, as a result of the comparison between the readings of the two radiologists,

the clusters for which both radiologists agreed were considered.

In the dataset of 364 mammograms (236 containing clusters of microcalcifi-

cations), 353 clustered microcalcifications were identified with an average of 1.5

clusters for mammogram. To be precise, 172 clusters were classified as BIRADS

category 2, 122 as BIRADS 3 and 59 as BIRADS 4-5.

As regards the age distribution of the patients, the mammograms analyzed

were from patients aged between 32 and 89, with an overall average age of 56.5.

The age distribution of the patients in the dataset used in the analysis for each

BIRADS category identified by radiologists is summarized in Table 2.

A further characterization of the patients considered for the study includes

considerations about breast typology, and in particular breast density, with the
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Age Range BIRADS 2 BIRADS 3 BIRADS 4-5 Overall dataset

30-39 1.16% (2) 16.39% (20) 23.73% (14) 10.20% (36)

40-49 21.51% (37) 23.77% (29) 3.39% (2) 19.26% (68)

50-59 38.95% (67) 22.95% (28) 44.07% (26) 34.28% (121)

60-69 19.19% (33) 19.67% (24) 16.95% (10) 18.98% (67)

≥ 70 19.19% (33) 17.21% (21) 11.86% (7) 17.28% (61)

Total 100% (172) 100% (122) 100% (59) 100% (353)

Table 2: Age distribution wrt BIRADS categories (% and # number of microcalcification

clusters).

aim of assessing the validity of the proposed method even in the case of high-

density breast tissues which is a more difficult case to analyze for both human

experts and automatic tools.

A small percentage of dataset used, that is 6.04%, concerned a particular

type of breast for which it was not possible to define its density because of its

unusual characteristics (Fig. 1).

Figure 1: Breast density category distribution in the dataset.

2.2. Methods

As indicated in Section 1, the challenges in microcalcification detection are

related to their dimension and morphology, but also to the hosting breast tissue

both because of its density, that can vary among subjects, and because of the

different surrounding/underlying structures that may appear along with the

microcalcifications. Some significant examples are provided in Figure 2.

It is therefore essential to operate a segmentation of the image capable of

isolating the microcalcifications from the rest of the breast tissue. With this
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Figure 2: Some examples of diffused clusters of microcalcifications.

aim, the image is first processed to highlight the breast regions that potentially

contain the interesting structures. Then, starting from the resulting elabora-

tion, a two-stage segmentation step is performed in order to isolate the single

microcalcifications. Once the candidate microcalcifications are obtained, a de-

tection step devoted to group them in significant clusters is performed. Figure 3

outlines the general scheme of the proposed approach.

Regarding the first step, it is based on a set of well-defined image processing

techniques appropriately selected for the task of obscuring irrelevant regions

from the image thus resulting in a potentially interesting region finding process.

The following phase is a two-stage step that interleaves saturation steps on the

image, with the aim of removing noise from the images elaborated during the

first step, with structures finding steps, the aim of which is to exactly delineate

the single microcalcification contours. This is performed by means of the Hough

transform. Finally, the microcalcifications are grouped in significant clusters by

exploiting a set of codified domain expert rules automatically applied in the

final step of the procedure. Each phase will be described in detail as follows.
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Figure 3: General scheme of the proposed approach.

2.2.1. Image Pre-processing

The goal of the pre-processing phase is to highlight the breast regions that

potentially contain the interesting structures, i.e. the microcalcifications. This

region highlighting process is performed using a set of purposely selected image

analysis algorithms as reported below and sketched in Algorithm 1.

First, a contrast enhancement method is used to enhance image details. Due

to the tight distribution of the grayscale in mammography images, the details

are blurred. Transformation to the histogram of the original image turns them

into uniform distribution thus allowing the enlargement of the grayscale interval.

Consequently, the contrast is increased to distinguish the details. Basically, the

image enhancement procedure first makes a transformation of the original image

by dividing the interval of grayscales into two parts, and then reduces the range

of intervals to enhance the contrast interval of the original image.
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Algorithm 1 Pre-processing

Require: original image;

Ensure: pre-processed image (grayscale);

1: Enhance Contrast and Invert LUT (look up table);

2: Apply Background Subtraction Filter and Invert LUT (look up table);

3: Apply Sobel gradient;

4: Smooth with Gaussian filtering (σ = 2);

5: Apply Sobel gradient;

Successively, a background subtraction filter is run to make the breast tissue

structures more evident. This procedure is based on the rolling ball algorithm

[26] that is able to remove smooth continuous backgrounds from images. The

underlying idea of such a method is that, imaging a 3D surface with the pixel

values of the image being the height, a ball rolling over the back side of the

surface creates the background. A local background value is determined for

every pixel by averaging over a very large ball around the pixel. This value is

then subtracted from the original image, removing large spatial variations of

the background intensities.

The gradient image is then calculated to detect changes in contrast. Starting

from the gray-level image, a Sobel gradient [27] is applied to detect edges. A

Gaussian filtering is now necessary to smooth the image in order to obtain

an image able to preserve the structure boundaries. At this point, the Sobel

gradient of the image is again computed resulting in an image containing more

evident boundaries of the structures of interest.

Figure 4 shows the application of the pre-processing phase on a sample

image. As one can note, in the final step of the procedure (Fig. 4(f)) the region

containing the microcalcifications is more evident with respect to the rest of

breast structures.
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Figure 4: Pre-processing: (a) Original image. (b) Enhance Contrast (c) Subtract Background

(d) Sobel edge detection (e) Gaussian Filter (f) Sobel edge detection.

2.2.2. Image Segmentation: microcalcification detection

The goal of this step is to provide a segmentation of the single microcalcifi-

cations contained in the image. It is a two-stage step that interleaves saturation

phases on the image with structures (microcalcifications) discovering steps.

Specifically, we segment the image by considering that the shape of the

microcalcifications can be approximated by a curved structure. Hence, we try to

find the morphological structure that best approximates the microcalcification

boundary by using the Hough transform [28, 29, 30]. This technique is used to

transform a set of feature points in the image space into a set of accumulated

votes in a parameter space. For each feature point, votes are accumulated in

an accumulator array for all parameter combinations. The array elements that

contain the highest number of votes indicate the presence of the shape.

The parameter space of the Hough transform is three-dimensional: it consid-
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ers the coordinates of the center and the dimension of the structures. This could

make a direct implementation of the Hough transform very complex. However,

medical literature provides information about the dimension of microcalcifica-

tions. Hence, we can exploit this a priori knowledge to reduce the computational

effort required by the application of the Hough transform. The Hough trans-

form was therefore applied with the constraints of finding circles with a radius

varying from r1 = 2 pixels to r2 = 20 pixels2, as defined on the basis of domain

expert knowledge and according to medical literature [31]. The circles that best

match the microcalcification edges in the binary image are selected.

However, before applying the Hough transform to the pre-processed image,

a noise removal step is necessary. Although microcalcifications in mammograms

appear as relatively bright regions in comparison with the surrounding breast

tissue or masses, when a lot of glandular tissue is present the mammograms are

very bright even after the first general pre-processing phase, thus making small

microcalcifications poorly visible [32]. For this reason, it is necessary to increase

the contrast of the pre-processed image with respect to its distribution of gray

levels.

Therefore, in order to adjust mammography intensity values, the grayscale

pixel values of the pre-processed image are mapped into a new image such

that values lower than a certain threshold become saturated. In particular,

two levels of threshold on different selections of the image are defined. In the

first one, a first threshold of saturation (α1) is fixed that works on the whole

image (see Alg. 2: line 1). In the second level, carried out after a preliminary

application of the Hough transform (Alg. 2: line 2), microcalcifications found in

the first step are brought to the average level and another saturation threshold

level (α2) is applied on 200x200 pixels windows selected in the neighborhood

of each microcalcification detected by the Hough transform in its preliminary

2In the specific case of the dataset exploited for the study, the images have a spatial

resolution of 72ppi (0.35mm/pixel) and hence the range 2-20 pixels corresponds to a value

ranging from 0.7 to 7 mm.
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application (i.e. Alg. 2: line 2). As last step, the Hough transform is applied

again on each of the selected sub-images (Alg. 2: lines 5-13).

This cascaded segmentation process is aimed at reducing the number of false

positives in the image.

Algorithm 2 Microcalcification Detection

Require: I = pre-processed image;

Orig = Original mammogram;

Ensure: F = superimposition of detected microcalcifications on starting image;

{[R,C]} = detected microcalcifications: radii and center coordinates;

1: I1 = First Saturation on I (α1);

2: {[R1, C1]} = Apply Hough Transform on I1 - radius in {r1 . . . r2};

/* {[R1, C1]} = {[radii of detected microcalcifications, centers]} */

3: Radii = {R1};

4: Centers = {C1};

5: for [r, c] ∈ {[R1, C1]} do

6: W = Select a 200x200 pixel window on the neighborhood of c;

7: mW = average gray-level on W ;

8: W = Saturate to mw the pixel gray-level value in the area with center c

and radius r;

9: W1 = Second Saturation on W (α2);

10: {[Rc, Cc]} = Apply Hough Transform on W1 - radius in {r1 . . . r2};

11: Radii = {Radii ∪Rc};

12: Centers = {Centers ∪ Cc};

13: end for

14: {[R,C]} = {[Radii, Centers]} (radii and centers of detected structures);

15: F = Detected microcalcifications depicted on original mammogram Orig;

2.2.3. Image Segmentation: Cluster Detection

Once all the single microcalcifications have been detected, a cluster identifi-

cation step is performed. This step is based on a set of expert domain codified
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Figure 5: Microcalcification cluster detection. (a) A sliding window of 100X100 pixels is

moved on the image and horizontally and vertically shifted by 50X50 pixels at each run. (The

green circles correspond to the microcalcifications detected with the first saturation threshold

(α1) on the whole image, while the blue circles correspond to microcalcifications found with

the second saturation threshold (α2) on 200x200 pixel windows selected in the neighborhood

of each microcalcification detected in the first detection step (see Alg.2)). (b) Only significant

microcalcification clusters: only clusters containing more than three microcalcifications are

significant.

rules: the first one regards the position of the microcalcification that can never

appear on the breast borders, the second rule considers the cluster character-

ization, i.e. a cluster becomes significant, and hence deserving attention, if it

contains a set of microcalcifications in a restricted area [33, 34].

This consists of a preliminary cleaning phase on the set of the structures

found belonging to the breast border as they do not represent a breast le-

sion. Successively, the procedure scans the image looking for significant clusters,

namely it aggregates microcalcifications by using a sliding window of 100x100

pixels on the image, that is shifted by 50x50 pixels at each run, so as to overlap

its neighbors both horizontally and vertically (Fig. 5(a)). Since microcalcifica-

tions are suspect when they are in a cluster, in such a process, only clusters made

up of more than three microcalcifications in a well-defined area are considered

for the output result (Fig. 5(b)).

Finally, starting from the microcalcifications found, clustering techniques are
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applied to automatically identify the microcalcification clusters in the image. In

particular, in order to identify the number k of clusters, we first apply a Ward’s

hierarchical agglomerative clustering algorithm to the Euclidean distance be-

tween the coordinates of the microcalcifications within the image; successively,

to optimize the classification result, we apply a non-hierarchical algorithm, i.e.

k-means clustering [35].

Before reporting the results, an important comment on the measure of ac-

curacy adopted is in order. A cluster is considered as a True Positive (TP )

cluster, and hence considered in the evaluation, if the number of its detected

foci is larger than three, as explained above, and it is located within the true

marking (ground truth) of the radiologists. Compared to the manual segmen-

tation by radiologists, the performance of the proposed system was evaluated

in terms of sensitivity and false positives per image rate. Sensitivity (Sens) is

the proportion of True Positive (TP ) with respect to the total number of TP

and False Negatives (FN). TP are cases correctly identified by the system, in

accordance with expert annotations (the system and the experts are in accor-

dance), while with FN the experts tagged a cluster that the system was not

able to detect, i.e.

Sens = TP/(TP + FN)

The False Positives per image (FPi) Rate is the average of False Positive

(FP ) cases (the system identified a cluster that the experts did not tag) out of

the total of the images analyzed (n), i.e.:

FPi = FP/n

3. Results

3.1. Saturation Thresholds Validation

As reported in Algorithm 2 and explained in Section 2.2.2, the detection

of the individual microcalcifications is based on two levels of saturation, re-

spectively on the whole image and on the area around the microcalcification
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detected in the first step, that exploit as many saturation thresholds (α1 and

α2 in Section 2.2.2).

Here we report the analysis performed in cross-validation on the whole

dataset with the aim of evaluating the combination of the optimal saturation

thresholds. In particular, we evaluated the classification performance on 100

ten-fold cross-validation rounds, varying the saturation thresholds of the first

and second detection levels. We empirically assessed the effect of the combina-

tion of three values for the saturation thresholds (95%, 97%, 99%) applied to the

whole image (α1) and to the area of the microcalcifications (α2) identified in the

previous step (see Sec. 2.2.2). On the basis of the empirical evaluations carried

out, we estimated the Free-response Receiver Operating Characteristic (FROC)

curve for each of the three saturation threshold values on the first and second

detection level (Fig. 6) obtained in training and in testing cross-validation. The

combination of the saturation threshold that showed the best trade off between

sensitivity and FPi was α1 = 97% and α2 = 95%; this combination was able

to detect the microcalcification clusters with a median sensitivity of 91.46%

and 92.89%, and a median FPi value of 3.67 and 3.33 in training and in test

cross-validation, respectively.

The first threshold of saturation α1 = 97% on the whole image was more

conservative with respect to the second one, α2 = 95%, which is applied only to

the selected windows in the neighborhood of each microcalcification detected at

the first step, thus allowing a reduction in the number of false positives in the

image. Figure 7 shows the result of the double level of detection and its efficacy

in recovering microcalcification structures potentially involved in the definition

of a cluster.

3.2. Performance Evaluation

In the following, the results for α1 = 97% and α2 = 95% saturation thresh-

olds are reported as this combination allowed us to obtain a good compromise

between sensitivity and FPi. The proposed computer-aided detection system

was able to detect the microcalcification clusters with a sensitivity of 91.78%
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Training

Test

Training

α1 (Sens % – FPi # – Standard Error)

95% 97% 99%

α2 Sens FPi Sens FPi Sens FPi

95% 93.73 ± 0.02 4.47 ± 0.01 91.46 ± 0.02 3.67 ± 0.00 78.97 ± 0.03 2.50 ± 0.00

97% 88.92 ± 0.02 3.74 ± 0.01 86.38 ± 0.03 2.88 ± 0.00 76.97 ± 0.04 2.41 ± 0.00

99% 79.26 ± 0.03 2.81 ± 0.00 78.18 ± 0.03 2.30 ± 0.00 66.77 ± 0.04 1.25 ± 0.00

Test

α1 (Sens % – FPi # – Standard Error)

95% 97% 99%

α2 Sens FPi Sens FPi Sens FPi

95% 93.01 ± 0.21 4.50 ± 0.07 92.89 ± 0.22 3.33 ± 0.02 79.54 ± 0.31 2.46 ± 0.02

97% 88.19 ± 0.23 3.41 ± 0.07 87.67 ± 0.25 2.83 ± 0.04 77.78 ± 0.34 2.30 ± 0.02

99% 80.20 ± 0.31 2.75 ± 0.02 78.26 ± 0.31 2.28 ± 0.03 67.61 ± 0.37 1.19 ± 0.01

Figure 6: Free-response Receiver Operating Characteristic (FROC) curve (Graphics) and

median values of the detection performance (Sens and FPi along with the Standard Error)

(Tables) estimated in cross-validation for each of combination of the three saturation threshold

values of the first (α1) and second (α2) detection steps.
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Figure 7: Single microcalcification detection. (a) Original Image (b) Pre-processed image.

(c) Step1: conservative Saturation Threshold on Image with α1 = 97% (d). Step2: Hough

Transform on image c (and superimposition of detected microcalcifications - green circles - on

starting image). (e) Step3: relaxed Saturations Threshold on Selected Windows of 200x200

pixels with α2 = 95%. (f) Step4: Hough Transform on thresholded 200x200 pixels selected

windows (and superimposition of detected microcalcifications - blue circles - on starting im-

age). Final detected microcalcifications.

with 2.87 FPi. In particular, the lowest sensitivity equal to 81.15% was obtained

for the clusters tagged as BIRADS category 3, the dubious nature of lesions,

while the system identified 98.26% and 94.92% of the clusters of BIRADS 2 and

BIRADS 4-BIRADS 5, respectively.

The performance of the system remained high for younger patients charac-

terized by a dense breasts (Tab. 3). Specifically, the model detected the micro-

calcification clusters in women with breast density over 50% with a sensitivity

higher than 90% and FPi less than 3.
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Density classes Mean Age N. images N. micro Sensitivity FPi

< 25% 60.86 ± 11.06 72 46 88.89% 2.58

25 − 50% 60.86 ± 9.62 98 80 95.00% 2.90

51 − 75% 54.43 ± 10.99 130 182 90.66% 2.49

> 75 47.10 ± 5.07 42 40 92.50% 2.93

Table 3: Performance on different breast density classes (Images of breast with a density not

available (Nan) were not considered).

4. Discussion

In this study, a fully automated CAD system for detecting clusters of micro-

calcifications in full-field digital mammograms has been proposed. It consists

of three steps: a phase devoted to the enhancement of the structures of interest

by means of image analysis techniques; the detection of individual microcalci-

fications performed by using a combination of a threshold-based method and

Hough transform; finally, a cluster identification process that codifies some do-

main expert rules is carried out in order to group single microcalcifications into

clusters. Experimental results showed that the proposed method is able to de-

tect microcalcifications with a sensitivity of 91.78% and 2.87 FPi. In particular,

the performance of our approach still remains high (over 89%) in the case of

more difficult clinical cases of mammograms characterized by high-density breast

tissue because of the predominance of fibroglandular tissues, thus resulting in

a reduced contrast between microcalcifications and surrounding dense tissues.

Indeed, it is well known that in particularly dense breast mammography sensi-

tivity for early malignancy detection is reduced as a result of the effort required

in locating cancer within an opaque and uniform background.

For the purpose of comparing the performance of the proposed approach

with respect to the literature, the methods that use only full-field digital mam-

mograms were selected, even if in some cases they use private databases. It

is worth noting that since each approach uses a different set of images coming

from different databases, the comparison is only made in a qualitative way.

As shown in Table 4, the result obtained by the proposed model is com-

parable to the state-of-art approaches, also with respect to the methods that
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Methods Data (N. mammograms) Sensitivity FPi

(with microcalcifications)

DoG and SVM [14] 188 (188) (Private DB) 85% 0.28

Wavelet Decomposition[17] 138 (14) (Private DB) 92.9% 0.08

FCM-WF [18] 39 (39) (Private DB) 93% 0.04

Boosting classifier [19] 280 (90) (Private DB) 80% [1.28 − 3.02]

Boosting classifier (CI) [19] 280 (90) (Private DB) 90% [3.54 − 4.09]

ICA [20] 200 (100) (DDSM [36]) 81.8% 2.55

ICA + Age Feature [20] 200 (100) DDSM [36] 91.8% 4.45

Deep Learning (SAE) [37] 1204 (1204) (Private DB) 93% Not Available

Deep Learning (CNN) [21] 188 (188) (Private DB) 90% 1.17

Proposed Method 364 (236) (BCDR [22]) 91.78% 2.87

Table 4: Performance comparison of the proposed approach wrt the literature.

use well known machine learning approaches in order to learn classifiers able to

characterize individual microcalcifications [14, 19, 20]. These approaches per-

form an initial training step on regions of interest previously determined and

labeled in order to automatically learn and select the most salient features,

which are subsequently used in a classifier to perform the detection of indi-

vidual microcalcifications. Our approach outperforms the best performance in

terms of sensitivity reported in [14] that was obtained with the combination

of Difference-of-Gaussians (DoG) detector and SVM. The same applies with re-

spect to the method reported in [19], where an increment of sensitivity (90% wrt

80%) is reached with a consequent increase in the false positive rate ([3.54−4.09]

wrt [1.28 − 3.02] confidence interval), and the one presented in [20] where an

increment of 10% in sensitivity (91.8% wrt 81.8%), with an increase in the false

positive rate from 2.55 to 4.45, is reached when the patient’s age is taken into

account in the learning phase. All these works, however, unlike our approach,

for training the model require a large set of data that has to contain a signifi-

cant number of cases representative of different situations that can occur in real

domains.

As to the methods that use image analysis techniques to suppress the noise

in the image and improve the contrast between the regions of interest and the

background [17, 18], they show a sensitivity still comparable to that obtained by
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our proposed method but declare less than one FPi. However, in [17] the per-

formance was evaluated on a unbalanced dataset made up of 138 mammograms

of which only 14 images contain microcalcifications. On the other hand, in [18]

the results were obtained on dataset decidedly reduced compared to those in

the literature; moreover, they used a private dataset purposely designed for the

task. Indeed, in this last work, a simulated database was created by injecting

microcalcifications in healthy mammograms, the number of false positives was

computed as the number of healthy segmented microcalcifications that were er-

roneously associated with the cluster and the method was evaluated by counting

the number of single microcalcifications correctly associated to the clusters.

The proposed method still performs when compared to deep learning ap-

proaches that have recently been used to characterize clusters of microcalcifica-

tions [37, 21]. Nevertheless, the drawback of such methods consists in requiring

a large dataset for their discrimination [38].

5. Conclusion

Mammography is the most widespread screening method for early detection

of breast cancer. However, it is a heavy work for radiologists to provide an

accurate and uniform evaluation due to several factors.

Early detection of breast cancer is often difficult, especially with regard to

particular lesions such as microcalcifications and in women with dense breast

tissue. Therefore, improving the detection of early signs of cancer represent an

important task which could be effectively supported by automated system tools.

This work presents a method able to detect microcalcifications clusters in

full-field digital mammograms showing performance comparable to different

methodologies (machine learning, image analysis, multi-scale decomposition,

deep learning) used in the state-of-art approaches. The performance of our ap-

proach remained high also when the breast was characterized by high-density

tissue, that is when the human reader sensitivity for early detection is reduced

due to the effort required in locating cancer within an opaque and uniform back-
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ground. The computational effort required by almost all the methods reported

in literature,moreover, is higher with respect to our proposal.

Because of the particular nature and dimensions of microcalcifications, this

type of lesion requires a dedicated CAD system. However, as a supporting

system a functional CAD must be able to detect different kind of lesions such

as masses or distortions. The model developed therefore could be integrated in

a more complex diagnostic tool.

As a concluding remark, it is worth noting that although mammography

is still the standard of care for breast cancer prevention, according to Amer-

ican College of Radiology (ACR) appropriateness criteria, also Digital Breast

Tomosynthesis (DBT) is currently considered a usually appropriate screening

modality. For non-calcified cancer, DBT has been shown to have higher accu-

racy compared to digital mammography [39, 40, 41], whereas for evaluation of

microcalcification clusters there are discordant observations [42, 43, 44]. In any

case, a CAD system for detecting microcalcification clusters may be useful be-

cause of the limitations in their visibility due to several factors related to specific

characteristics of the instrumentation. DBT generates a pseudo 3-dimensional

volume which is different from the typical 2D image of a digital mammography.

However, in future work we will test our approach, opportunely revised, on the

3D images generated from DBT. In particular, we will analyze the possibility of

applying the proposed approach on each of the 2D slices generated by the DBT

exam and then combining the resulting analysis.
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P. Tuttobene, P. Bricolo, C. Fantò, M. Valentini, et al., Integration of

3d digital mammography with tomosynthesis for population breast-cancer

screening (storm): a prospective comparison study, The lancet oncology

14 (7) (2013) 583–589.

[40] B. M. Haas, V. Kalra, J. Geisel, M. Raghu, M. Durand, L. E. Philpotts,

Comparison of tomosynthesis plus digital mammography and digital mam-

mography alone for breast cancer screening, Radiology 269 (3) (2013) 694–

700.

[41] P. Skaane, A. I. Bandos, R. Gullien, E. B. Eben, U. Ekseth, U. Haake-

naasen, M. Izadi, I. N. Jebsen, G. Jahr, M. Krager, et al., Prospective trial

27



comparing full-field digital mammography (ffdm) versus combined ffdm and

tomosynthesis in a population-based screening programme using indepen-

dent double reading with arbitration, European radiology 23 (8) (2013)

2061–2071.

[42] M. L. Spangler, M. L. Zuley, J. H. Sumkin, G. Abrams, M. A. Ganott,

C. Hakim, R. Perrin, D. M. Chough, R. Shah, D. Gur, Detection and

classification of calcifications on digital breast tomosynthesis and 2d digital

mammography: a comparison, American Journal of Roentgenology 196 (2)

(2011) 320–324.

[43] D. Kopans, S. Gavenonis, E. Halpern, R. Moore, Calcifications in the breast

and digital breast tomosynthesis, The breast journal 17 (6) (2011) 638–644.

[44] A. Tagliafico, G. Mariscotti, M. Durando, C. Stevanin, G. Tagliafico,

L. Martino, B. Bignotti, M. Calabrese, N. Houssami, Characterisation of

microcalcification clusters on 2d digital mammography (ffdm) and digi-

tal breast tomosynthesis (dbt): does dbt underestimate microcalcification

clusters? results of a multicentre study, European radiology 25 (1) (2015)

9–14.

28


