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 19 

Abstract  20 

An untargeted method using headspace solid-phase microextraction coupled to electronic 21 

nose based on mass spectrometry (HS-SPME/MS-eNose) in combination with chemometrics 22 

was developed for the discrimination of oranges of three geographical origins (Italy, South 23 

Africa and Spain). Three multivariate statistical models, i.e. PCA/LDA, SELECT/LDA and 24 

PLS-DA, were built and relevant performances were compared. Among the tested models, 25 

SELECT/LDA provided the highest prediction abilities in cross-validation and external 26 

validation with mean values of 97.8% and 95.7%, respectively. Moreover, HS-SPME/GC-MS 27 

analysis was used to identify potential markers to distinguish the geographical origin of 28 

oranges. Although 28 out of 65 identified VOCs showed a different content in samples 29 

belonging to different classes, a pattern of analytes able to discriminate simultaneously 30 

samples of three origins was not found. These results indicate that the proposed MS-eNose 31 

method in combination with multivariate statistical analysis provided an effective and rapid 32 

tool for authentication of the orange’s geographical origin. 33 

 34 

Key-words: oranges, MS-based electronic nose, geographical origin, volatile compounds, 35 

chemometrics. 36 

 37 

38 
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1. Introduction  39 

Sweet orange (Citrus sinensis L. Osbeck) is one of the most popular fruits all over the world 40 

because it is very well-accepted by consumers for its nutritional, nutraceutical and sensorial 41 

attributes. Sweet oranges are usually classified into three main groups (i.e. common, navel, 42 

blood), with a diversification in terms of agronomical features within each group. Sweet 43 

orange accounting for 70% of worldwide citrus production is widely consumed both as fresh 44 

fruit as well as fruit juice. An annual global production was estimated at 73 million tons for 45 

oranges in 2016, and the main producers were Brazil, China, India and the United States 46 

(FAO, 2016).  47 

Orange production at EU level was higher than 6 million tons for the 2016/2017 harvest and it 48 

is mainly concentrated in the Mediterranean basin with Spain and Italy representing about 49 

80% of the total yield, followed by Greece and Portugal (Citrus Annual, 2017).  50 

For both the high productive vocation of its geographical area and the quality of products, Italy 51 

occupies a prominent position in the production of oranges that amounted to 1,2 milion tons in 52 

the 2016/2017 season with geographic origin brands recognized by the European 53 

Commission (DOOR, 2018). Sicily and Calabria are the predominant production regions 54 

covering 80% of total Italian production (ISTAT, 2016). Although Italian oranges are 55 

considered of a premium quality, in the last few years the country has lost its leading role in 56 

the Mediterranean basin, due to the high costs of production and considerable loss of 57 

production due to the recent epidemic of the Citrus tristeza virus (CTV). In this contest, Italy 58 

commonly imports oranges from Spain and South-Africa which are gradually increasing their 59 

productions (Citrus Annual, 2017). Imports are mainly requested to cover the lack of 60 

availability of Italian products in some periods of the year (i.e. summer months), providing 61 

year-round availability for consumers. However, there are overlapping periods between Italian 62 
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and foreign productions, with an increased possibility for the consumer to buy mislabelled 63 

products with a lower product quality. Indeed, the geographical origin identification becomes 64 

more important for food with an origin label (e.g. "Made in Italy") since these products having 65 

acquired an “added-value” are more likely to become a target for frauds. 66 

Considering that the illegal food trade is increasing around the world, traceability certifying the 67 

food authenticity including a correct labelling of origin is of great importance for traders, 68 

producers and consumers. Determination of food origin is commonly applied to control 69 

products with labelled or undeclared geographical provenances, for customs control and for 70 

self-control programs in the food industry. 71 

For this reason, the development of rapid and reliable analytical methods to assess the 72 

geographical origin of food is highly demanded. For food authentication, non-targeted 73 

analysis (fingerprint) in combination with multivariate statistical analysis is a promising 74 

approach that allowing the detection of many metabolites as possible and permits to classify 75 

samples based on pattern of metabolites. A variety of non-targeted analytical techniques, 76 

mainly based on vibrational spectroscopy, mass spectrometry and NMR, have been applied 77 

to discriminate geographical origin of several food matrices and recently reviewed (Cubero-78 

Leon et al. 2014, Essingler et al. 2014, Danezis et al. 2016), including fresh oranges (Diaz et 79 

al. 2014, Jandric and Cannavan 2017). Among these techniques, non-chromatographic mass 80 

spectrometry (MS) is an emerging approach for food authentication studies due to its several 81 

advantages in terms of rapidity, sensitivity, selectivity and high-throughput analysis (Danezis 82 

et al. 2016). In particular, the mass spectrometry-based electronic nose (MS-eNose) 83 

technique based on the use of headspace solid-phase microextraction (HS-SPME) directly 84 

coupled to MS is one of the most innovative approach that can be used to analyse volatile 85 

organic compounds (VOCs) of complex matrices. This technique provides a global mass 86 
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spectrometric fingerprint of VOCs of a sample, analyzed without chromatographic separation, 87 

in which each m/z ratio acts as a “sensor” whose intensity derives from the contribution of 88 

each compound producing that fragment. The main advantages of the proposed methodology 89 

are the minimum sample preparation required and the speed of analysis. The MS-eNose 90 

technique has been successfully applied to characterize several food matrices (i.e. coffee, 91 

raw spirits, milk and honey) for different purposes including the discrimination of geographical 92 

origin (Perez Pavòn et al. 2006, Jeleń et al. 2010, Liberto et al. 2013, Smyth and Cozzolino 93 

2013). 94 

Indeed, the aroma is one of the most important factors to discriminate food products and 95 

determine their quality. In particular, the aroma of fresh squeezed orange juice is a complex 96 

mixture of VOCs that is related to several factors, including orange cultivar, environment, 97 

geographical origin, degree of ripeness and storage conditions (Perez-Cacho and Rouseff 98 

2008a, Cuevas et al. 2017). The VOCs of orange consist of esters, alcohols, aldehydes, 99 

ketones, terpenes and furans (Perez-Cacho and Rouseff 2008a, Cuevas et al. 2017). VOCs 100 

of fresh oranges and orange juices have been successfully characterised for different 101 

purposes by several studies using GC-MS analysis (Cuevas et al. 2017, Cerdàn-Calero et al. 102 

2013, Reinhard et al. 2008, Cerdàn-Calero et al. 2012, Reid 2003, Zierler et al. 2004). 103 

However, to date the MS-eNose technique has not been applied for the discrimination of 104 

geographical origin of oranges.  105 

For this reason, the aim of this study was to demonstrate the feasibility of MS-eNose 106 

technique applied to the VOCs analysis for the discrimination of the geographic origin of 107 

oranges. In particular, a robust and suitable non-targeted MS-based electronic nose method 108 

in combination with multivariate statistical analysis was developed and validated for the 109 

discrimination of oranges of three different geographical origins, i.e. Italy, South Africa and 110 
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Spain. Moreover, an HS-SPME/GC-MS method was used to characterize the possible pattern 111 

of volatile compounds having a role in this discrimination. 112 

 113 

 114 

2. Materials and Methods 115 

2.1 Chemicals and reagents 116 

Methanol (HPLC grade) and (E)-3-hexen-1-ol (≥98%) was purchased from Sigma Aldrich 117 

(Milan, Italy). Ten milliliters headspace vials with magnetic screw cap containing a pierceable 118 

PTFE/silicon septa were purchased from Agilent Technologies (Palo Alto, CA, USA). Helium 119 

at a purity of 99.9995% was obtained by Sapio s.r.l. (Bari, Italy). The automatic solid-phase 120 

microextraction (SPME) fiber holder was obtained from Gerstel (Mulheim an der Ruhr, 121 

Germany).  122 

SPME-Fast Fit Fiber Assembly (FFA) divinylbenzene/carboxen/polydimethylsiloxane 123 

(DVB/CAR/PDMS, 50/30 μm, 1 cm fiber length), SPME Fiber Assembly for manual use 124 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm, 1 cm fiber 125 

length), polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm, 1 cm fiber length), 126 

carboxen/polydimethylsiloxane (CAR/PDMS, 85 μm, 1 cm fiber length) and the manual SPME 127 

holder were purchased from Supelco (Bellafonte, PA, USA). 128 

 129 

2.2 Samples collection and sample preparation 130 

Orange samples of the 2014/2015 crop season were collected from producers. A total of 137 131 

samples of different cultivars of three different geographical origins, i.e. Italy, South Africa and 132 

Spain, was collected. Table 1 reports the number and the cultivars of samples collected for 133 

each geographic area. 134 
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The collected samples (five oranges for each sample) were squeezed and the juice was 135 

frozen at -20 ° C until the analyses. The stored juice after thawing was centrifuged for 20 min 136 

at 13000 rpm. Aliquots (2g) of the supernatant were placed in 10 mL headspace vials, adding 137 

as internal standard (E)-3-hexen-1-ol in methanol to obtain a concentration of 2 µg/g. Then, 138 

vials were sealed for the analysis with both analytical methods (i.e. HS-SPME/MS-eNose and 139 

HS-SPME/GC-MS). The extraction, desorbtion and sample introduction of the samples were 140 

performed automatically in HS-SPME/MS-eNose and manually in HS-SPME/GC-MS analysis. 141 

 142 

2.3 HS-SPME/MS-eNose analysis  143 

The squeezed orange juice samples were analysed by the mass spectrometry-based 144 

electronic nose (MS-eNose) GERSTEL Headspace ChemSensor System (GERSTEL, 145 

Mülheim, Germany) consisted of a headspace multi-purpose sampler MPS 2 (Gerstel, 146 

Mulheim an der Ruhr, Germany) and the Agilent 7890A GC System (Agilent Technologies, 147 

Palo Alto, CA, USA), modified for non-separative analysis with a deactivated fused-silica 148 

tubing (transfer column, 10 m x 0.18 mm i.d., 0 μm film thickness, Agilent Technologies), 149 

coupled to the Agilent 5975C inert MSD mass spectrometer. Moreover, the MS-eNose was 150 

online integrated with a multi-purpose sampler MPS 2 (Gerstel, Mulheim an der Ruhr, 151 

Germany), which was equipped with headspace incubation chamber and SPME sampling 152 

unit. An HS-SPME/MS-eNose protocol of analysis was in-house optimized according the 153 

procedure reported by Cefola et al. 2018. In particular, the headspace vial was kept at 154 

temperature of 40 °C for 10 min in the incubator-agitator of the MPS 2 autosampler to 155 

generate the headspace. The extraction from the headspace was performed by exposing a 156 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber at 40 °C for 30 min. 157 

After extraction, compounds were thermally desorbed exposing the fiber in the CIS-4 158 



8 

 

programmed temperature vaporization (PTV) injector (Gerstel) of the MS-eNose at 250 °C for 159 

5 min. Then, the MS-eNose analyses were carried out for 5 min using the following 160 

experimental conditions: the injection port fitted with a 1 mm i.d. liner was maintained at 250 161 

°C in splitless mode; the oven, transfer line, ion source and quadrupole temperatures were 162 

180, 280, 230 and 150 °C, respectively; the helium flow rate was held constant at 1 mL/min; 163 

Electron impact Ionization (EI+) mode with an electron energy of 70 eV was used; the mass 164 

spectrometer acquired data in full scan mode (scan range: 40–300 amu).  165 

For each analysis mass spectral fingerprint was obtained by the software Chemsensor 6.912 166 

(Gerstel, Mülheim and der Ruhr, Germany) corresponding to the sum of mass spectra 167 

obtained in the time range 0.22-2.0 min. Mass intensities of mass spectral fingerprint were 168 

estimated as relative abundances by comparing the mass intensity of each ion with the 169 

intensity of ion at 43 amu of the internal standard (i.e. (E)-3-hexen-1-ol). 170 

 171 

2.4 HS-SPME/GC-MS analysis  172 

A subset of 27 orange samples of different geographical origin (9 samples for each origin) 173 

were randomly selected from the entire set of 137 samples and analysed in duplicate by HS-174 

SPME/GC–MS. The extraction and desorption steps of volatile compounds were performed 175 

following the same experimental parameters optimized for the HS-SPME/MS-eNose method, 176 

while GC-MS analysis was carried out according the procedure reported by Cefola et al. 2018 177 

with some modifications. In particular, the GC-MS analyses were carried out by an Agilent 178 

6890 Series GC system (Agilent Technologies, Palo Alto, CA, USA) equipped with a VF-179 

WAXms (60 m x 0.25 mm i.d., 0.25 μm film tickness, Agilent Technologies) fused-silica 180 

capillary column and coupled to an Agilent 5973 Network Mass Selective Detector mass 181 

spectrometer. The injection port fitted with a 0.75 mm i.d. liner was maintained at 250 °C in 182 
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splitless mode. The analyses were performed with programmed temperature: initial 183 

temperature 40 °C maintained for 6 min, from 40 to 120 °C at 2 °C/min, 120 to 230 °C at 10 184 

°C/min, the final temperature being maintained for 10 min. The helium flow rate was held 185 

constant at 1 mL/min. The transfer line, ion source and quadrupole temperatures were 280, 186 

290 and 150 °C, respectively. Electron impact Ionization (EI+) mode with an electron energy 187 

of 70 eV was used. The mass spectrometer acquired data in full scan mode (scan range: 40–188 

300 amu). The compounds were identified by comparison of experimental mass spectra with 189 

ones present in the NIST v2.0 and Wiley 138 libraries using a match quality higher than 70. 190 

The identification of volatile compounds was also verified by comparison of their linear 191 

retention indices (LRI) determined in relation to the retention times of C5–C14 and C8-C40 n-192 

alkanes series, with those reported in literature [Zellner et al., 2008]. Quantification of 193 

compounds was performed by the same method of internal standardization used for HS-194 

SPME/MS-eNose analysis. The amount of each identified compound was estimated by 195 

comparing the total ion current (TIC) peak area with (E)-3-hexen-1-ol peak area and 196 

expressed as area ratio. All mass spectrum fingerprints were combined to obtain a data 197 

matrix containing 137 objects and 260 variables that was submitted to statistical analyses. 198 

 199 

2.5 Statistical data analysis 200 

Before chemometric analysis, data obtained by the Chemsensor 6.912 software were pre-201 

treated by baseline correction, through noise subtraction, and by internal normalization of the 202 

signal from each sample (Perez Pavon et al. 2006). The internal normalization allowed to 203 

remove the efficiency loss during the extraction process of volatile components due to the 204 

variability of the SPME fiber performance and MS signal instability. Subsequently, data were 205 

pre-processed by Pareto scaling and then submitted to multivariate statistical analyses. 206 
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The presence of outliers was evaluated observing the influence plot obtained by applying 207 

PCA (Principal Component Analysis) for each single class of different geographical origin. 208 

Samples identified as extreme outliers will be excluded. For this reason, NIPALS (Non-linear 209 

Iterative Partial Least Squares) algorithm was applied, considering V-fold equal to 10 in the 210 

cross validation process (CV=10), establish the exact number of PCs to use to build PCA 211 

models. PCA was also applied as exploratory technique with the aim to visualize if sample 212 

clustering was present as a function of the geographical origin of the samples (Jolliffe 2002).  213 

Then, supervised pattern recognition techniques, i.e. Linear Discriminant Analysis (LDA) and 214 

Partial Least Squares Discriminant Analysis (PLS-DA) (Oliveri and Downey 2012), were used 215 

in order to classify orange samples on the basis of their geographical origin. For this purpose, 216 

the data matrix was divided in two subsets: a modeling set (containing 90 samples) and a test 217 

set (containing 47 samples). In particular, the modeling set, built using only Navel orange 218 

samples, was represented by 30 samples for each class (different geographical origin) and 219 

was used to build the statistical models, while the test set, consisting of 19 Italian, 22 African 220 

and 6 Spanish samples, was used to their validation.  221 

In the case of LDA, to prevent model overfitting two different strategies PCA (unsupervised 222 

approach) and SELECT (a supervised feature selection algorithm) were used to reduce the 223 

number of variables that exceeded the number of objects (Berrueta et al. 2007, Casale et al. 224 

2010, Vandeginste et al 1998). In particular, the number of variables should not exceed (n-225 

g)/3, where n is the number of objects and g is the number of categories, i.e. 29, considering 226 

90 objects (number of samples) and 3 categories (number of geographical origins). 227 

On the other hand, PLS-DA was used as an alternative approach to avoid variables reduction 228 

being it frequently used in the case of large number of variables (Massart et al. 1997, Oliveri , 229 

2017). 230 
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The PCA/LDA and PLS-DA models were built evaluating the proper number of principal 231 

components and latent variables, respectively, which returned the lowest root mean square 232 

error of cross validation (RMSECV). This parameter can guarantee that feature variables are 233 

collected as much as possible and they are not overfitted. Therefore, performances of the 234 

PCA/LDA, SELECT/LDA and PLS-DA models were compared in terms of recognition ability, 235 

i.e. its ability to correctly classify the samples used for the building of the model, prediction 236 

ability in cross-validation (CV), i.e. its ability to correctly classify samples of a test set 237 

generated in a V-fold cross validation (with V equal to 10) and prediction ability in external 238 

validation calculated using the test set. 239 

Univariate statistical analysis, i.e. one-way analysis of variance (ANOVA) followed by a post 240 

hoc Tukey's honestly significant difference (HSD) test (p < 0.05), was performed to assess 241 

the differences between mean peak area ratios of identified volatile molecules of orange 242 

samples of three different geographical origins obtained by HS-SPME/GC-MS analysis.  243 

Data analyses were performed by using Pirouette software ver. 4.0 (Infometrix, Inc., Bothell, 244 

WA, USA), V-Parvus release 2010 (http://www.parvus.unige.it, Genova, Italy), Classification 245 

Toolbox in Matlab (Mathworks Inc., Natick, Massachusetts, USA) and Statistica 6.0 (StatSoft, 246 

Tulsa). 247 

 248 

 249 

3. Results and Discussion 250 

3.1 Geographical origin discrimination using HS-SPME/MS-eNose 251 

In order to find anomalous samples (outliers), data were processed in specific PCA models 252 

for each geographical origin (class) showing that 9, 11, and 9 PCs explained 97.0, 97.0, and 253 

95.0% of the total variance, for the Italian, South African, and Spanish origin, respectively. 254 
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Influence plots obtained by plotting the Mahalanobis distance versus sample residual showed 255 

that all the samples coming from a specific class fit in the respective model then excluding the 256 

presence of outliers. 257 

Subsequently, to get a general overview of the data distributions an explorative PCA was 258 

applied on all data and by plotting the PC1 vs. PC2 sample scores (Figure 1) a poor visual 259 

clustering of the objects based on their geographical origin was showed (PC1 and PC2 260 

explained respectively 42.5% and 14.5% of the total variance). Moreover, no significant 261 

separation was evidenced when the score plots of the remaining PCs were observed. This 262 

aspect was also confirmed evaluating the PC Fisher weights (FW) values, i.e. the measure of 263 

the between-class variance/within-class variance ratio, that resulted to be considerably lower 264 

than 1 (data not shown), meaning that no single PC was sufficiently suitable to distinguish 265 

samples for their geographical origin (Harper et al. 1977). Therefore, these results highlighted 266 

the necessity to use supervised techniques, i.e. discriminant techniques such as LDA and 267 

PLS-DA. These classification techniques were applied to data matrix divided into the two data 268 

subsets: modeling set and test set. The overall results of these classification models are 269 

reported and compared in Table 2. 270 

In the case of LDA, two variable reduction strategies, i.e. PCA and SELECT were adopted to 271 

avoid model overfitting. In particular, PCA was applied to compress the information and the 272 

number of PCs chosen to get the lowest error in prediction cross validation and then used to 273 

build the PCA/LDA model was of 13 (CV procedure, V=10). The PCA/LDA model provided 274 

mean values of the recognition (classification) ability and CV prediction ability of 82.2% and 275 

78.9%, respectively (Table 2). In particular, the model correctly predicted 21/30 Italian 276 

samples, 22/30 South African samples and 28/30 Spanish samples. Despite these low 277 

performances, the applicability of the model was also evaluated by an external test obtaining 278 
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a similar mean prediction ability of 80.9%. In the case of SELECT, 29 variables out of 260 279 

were selected and then used to build the SELECT/LDA model. Mean percentages of 280 

recognition ability and CV prediction ability obtained using SELECT/LDA model, were 100.0% 281 

and 97.8%, respectively (Table 2). In particular, this model permitted to correctly classify all 282 

South African and Spanish samples and 28 samples out of 30 Italian samples giving a value 283 

of specific prediction percentage of 93.3% for this class.  284 

Therefore, the supervised selection approach SELECT allowed significantly improvement of 285 

results in terms of recognition and prediction abilities than those obtained using the 286 

unsupervised PCA compression method. These results can be justified by considering that 287 

the direction of maximum variability of data, used in the PCA approach, of the data could not 288 

correspond to the direction of maximum discrimination among defined classes. Indeed, if the 289 

variability associated with geographical origin is small with respect to the total variability, the 290 

use of PCA variable reduction method can partially hide its specific feature contribution. On 291 

the other hand, SELECT, by choosing the variables that contain the best information for the 292 

under study classification, provides decorrelated variables avoiding redundant information. In 293 

order to confirm these results, the SELECT/LDA model was also validated using the external 294 

set. An external prediction ability of 95.7% was obtained with all South African and Spanish 295 

samples correctly recognized (specific prediction rates of 100.0%) while only 2 samples out of 296 

19 Italian samples were not correctly assigned, with a specific prediction rates of 89.5%. 297 

Furthermore, PLS-DA was applied to test an alternative multivariate statistical approach of 298 

classification and avoiding the process of variables reduction. By implementing a 10-fold 299 

cross-validation, 12 latent variables guaranteed the optimal model complexity, leading to a 300 

97.8% average recognition rate. In particular, the totality of the Italian and Spanish samples 301 

were correctly classified, and only two out of 30 African samples was not correctly assigned. 302 
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The average CV prediction rate was 85.6% with CV prediction abilities for the Italian, African 303 

and Spanish categories of 83.3%, 76.7% and 96.7%, respectively. Moreover, the external 304 

validation procedure provided prediction abilities of 84.2% for Italy, 81.8% for South Africa 305 

and 100.0% for Spain orange samples, corresponding to an average prediction rate of 85.1%. 306 

These results showed that although PLS-DA model permitted acceptable prediction abilities, 307 

they were significantly lower than those obtained by the SELECT/LDA model. 308 

These results demonstrated that HS-SPME/MS-eNose experimental data contain enough 309 

information to allow the construction of appropriate models for the discrimination of orange 310 

samples on the basis of their geographical origin. 311 

 312 

3.2 Characterization of the pattern of volatile compounds by HS-SPME/GC–MS 313 

In order to identify the most important volatile organic compounds (VOCs) to be used as 314 

markers in distinguishing oranges according to the country of origin, 27 orange samples of the 315 

three different geographical origins (9 for each class) were analysed by HS-SPME/GC-MS 316 

technique under the optimized experimental conditions. A total of 65 VOCs have been 317 

identified belonging to a wide range of chemical classes including aldehydes (5), ketones (4), 318 

esters (16), acids (3), alcohols (8), terpenes (20), heterocyclic compounds (4), saturated, 319 

unsaturated and aromatic hydrocarbons (5) (Table 3). In particular, aldehydes as hexanal and 320 

terpenes as D-limonene and β-linalool are responsible for characteristic orange juice flavour. 321 

Conversely, fruity notes are mainly due to ethyl butanoate with minor contributions from ethyl 322 

2-methylpropanonate and ethyl 2-methylbutanoate (Perez-Cacho et al., 2008b). Moreover, 323 

high content of ester compounds have been shown to discriminate oranges obtained under 324 

conventional procedures from oranges cultivated under organic ones, characterized by high 325 

content of some terpenes and neryl acetate and geranyl acetate (Cuevas et al, 2017).  326 
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Accordingly, the composition (calculated as ratio of the analyte peak area relative to (E)-3-327 

hexen-1-ol peak area) of fresh squeezed orange juice headspaces was investigated by one-328 

way ANOVA analysis followed by a post hoc Tukey's HSD test in order to detect molecules 329 

discriminating samples in relation to their geographical origins. Among the identified 330 

compounds, the content of 28 molecules was significantly different among samples belonging 331 

to the three classes (p < 0.05). As reported in Table 3, 13 analytes allowed to dicriminate the 332 

geographical differences between Italian oranges and samples of the other two classes while 333 

only 2 volatile compounds discriminated South African oranges from the others. Moreover, 8 334 

and 3 molecules differentiated Italian samples from Spanish and South African samples, 335 

respectively. Moreover, Spanish oranges were distinguished from the samples of the other 336 

two classes by the high content of methyl butanoate and only from South African samples by 337 

the presence of 1-terpinen-4-ol.  338 

Among the selected analytes, (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (E)-β-ionone and 6-methyl-339 

5-hepten-2-one in the volatile fraction of Italian oranges showed the highest increase of 340 

contents from 7 to 19 times with respect to those measured for South African and Spanish 341 

oranges. (E)-2-hexen-1-ol and (Z)-3-hexen-1-ol have been already reported as volatile 342 

compounds of fresh prepared orange juice (Perez-Cacho et al., 2008b). Moreover, 4-methyl-343 

heptane and 1-penten-3-one were not detected in the headspace of Italian samples while 344 

ethyl octanoate, 1-octen-3-ol and β-caryophyllene were absent in volatile fraction of Spanish 345 

oranges. Most molecules in the selected pattern have already been associated to fresh 346 

orange juice (Cuevas et al, 2017; Bai et al., 2014; Perez-Cacho et al., 2008b; Sádecká et al., 347 

2014) with the exception of 2-methyl-1-pentene, 4-methyl-heptane, o-cymene and 4-methyl-2-348 

heptanone, which were related for the first time to orange fresh squeezed juices.  349 
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However, although the HS-SPME/GC–MS analysis clearly highlighted difference in the VOCs 350 

profile of the oranges from the three geographical origins, a pattern of analytes able to 351 

discriminate simultaneously samples of the three different origins was not found. 352 

Consequently, the application of the multivariate analysis to the whole dataset obtained by 353 

MS-eNose analysis was confirmed to be the most appropriate approach to permit the rapid 354 

prediction of geographical origin of oranges. 355 

 356 

4. Conclusion  357 

In this study, a rapid and inexpensive method based on MS-eNose analysis in combination 358 

with chemometrics was successfully used to classify orange samples of three different 359 

geographical origins, i.e. Italy, South Africa and Spain.  360 

In particular, three multivariate statistical approaches, i.e. PCA-LDA, SELECT-LDA and PLS-361 

DA, were tested. Although, all tested statistical models permitted acceptable recognition and 362 

prediction abilities, the SELECT/LDA model showed the highest percentages in terms of 363 

prediction ability in cross-validation and external validation, with average values of 97.8% and 364 

95.7%, respectively. The performances of the proposed method makes it suitable as powerful 365 

tool to assess the authenticity of oranges.   366 

Although, HS-SPME/GC–MS analysis showed the absence of specific markers, differences in 367 

the pattern and content of VOCs of orange samples of the three different geographical origins 368 

were observed confirming the validity of the multivariate statistical approach used in this 369 

study.  370 

 371 

372 
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Figure 1. PC1 vs PC2 scatter plot for orange samples. Geographical origins: Italy (о), Africa 481 

(□), Spain (+). 482 
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Table 1 

Orange samples for each geographic area 
 

Geographical origin Italy South Africa Spain 

N. Samples 49 52 36 

Cultivars 

Washington Navel, Newhall 
Navel, Navel Foglia, 

Navelina 
Bionda IGP, Duretta IGP, 

Ovale 
Valencia, Lane Late 

 

Navel, 
Navelina navel 

 

Lane Late, 
Navel Pawel 

Navel 
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Table 2 

Recognition, CV prediction abilities and external prediction for all models built classifying oranges samples according to their 

geographical origin. 

 

 
Model performance (%) 

  
Recognition ability (Modelling) 

 

 

 
Prediction ability (CVd 10) 

  
External Prediction 

 ITA
a S.A.

b SPA
c Mean 

 

ITA S.A. SPA Mean  ITA S.A. SPA Mean 

PCA/LDA 
(13 Principal 
Components) 

76.7 
(23/30) 

80.0 
(24/30) 

90.0 
(27/30) 

82.2 
 

70.0 
(21/30) 

73.3 
(22/30) 

93.3 
(28/30) 

78.9  68.4 
(13/19) 

86.4 
(19/22) 

100.0 
(6/6) 

80.9 

SELECT/LDA 
(29 variables) 

 

100.0 
(30/30) 

100.0 
(30/30) 

100.0 
(30/30) 

100.0 
 

93.3 
(28/30) 

100.0 
(30/30) 

100.0 
(30/30) 

97.8  89.5 
(17/19) 

100.0 
(22/22) 

100.0 
(6/6) 

95.7 

PLS-DA 
(12 Latent 
Variables) 

100.0 
(30/30) 

93.3 
(28/30) 

100.0 
(30/30) 

97.8 
 

83.3 
(25/30) 

76.7 
(23/30) 

96.7 
(29/30) 

85.6  84.2 
(16/19) 

81.8 
(18/22) 

100.0 
(6/6) 

85.1 

a: Italy; b: South Africa; c: Spain; d: Cross Validation. 
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Table 3 

Volatile compounds (n = 65) identified by HS-SPME/GC–MS analysis of Italian, South 

African and Spanish oranges. 

Volatile Compound Code LRIlt/LRIsp
d   Volatile Compound Code LRIlt/LRIsp 

Hydrocarbons      Alcohols   

2-methyl-1-penteneb 1 -e/644   2-methyl-2-propanol  4 900/904 

4-methyl-heptaneb 2 790/765   ethanol 5 937/937 

undecane 15 1100/1100   (Z)-2-penten-1-ol 30 1329/1330 
1,3-bis(1,1-
dimethylethyl)-benzene 36 1423/1433 

  
(Z)-3-hexen-1-ola,b 34 1393/1394 

4-acetyl-1-
methylcyclohexene 43 1568/1566 

  
(E)-2-hexen-1-ola,b 35 1417/1416 

Terpenes     1-octen-3-olb 38 1459/1459 

1R-α-pineneb 9 1022/1022   1-octanol 44 1575/1577 

α-thujene 11 1030/1027 
  

2,4-bis(1,1-
dimethylethyl)-phenol  62 2321/2321 

β-phellandrene 17 1183/1118   Acids   

3-carene 19 1146/1146   acetic acid 39 1468/1467 

D-limonenea,b 23 1200/1203   nonanoic acidb 61 2184/2184 

γ-terpinen 27 1249/1249   dodecanoic acid 63 2503/2495 

o-cymeneb 28 1276/1273   Esters    

α-terpinolenea,b 29 1285/1286   ethyl acetate 3 895/896 

β-linalool 42 1563/1562   ethyl propanoate 6 961/961 

β-caryophyllenea,b 46 1603/1602 
  

ethyl 2-methyl-
propanoate 7 966/969 

1-terpinen-4-olc 47 1616/1611   methyl butanoateb,c 8 993/992 

4,11-selinadienea,b 52 1656/1703   ethyl butanoate  12 1041/1041 

α-terpineol 53 1707/1708 
  

ethyl 2-methyl- 
butanoate 13 1057/1056 

valencenea,b 54 1728/1736   diethyl carbonate  16 1102/1114 

(S)-(+)-carvonea,b 55 1748/1752   ethyl (E)-2-butenoatea,b 20 1164/1168 

nerola,c 56 1817/1819   methyl hexanoate 22 1192/1194 

(Z)-carveolb 57 1856/1857   ethyl hexanoate  26 1239/1239 

(E)-carveol 58 1882/1888   2-hexenyl acetate 31 1323/1340 

β-iononea,b 59 1967/1969   ethyl 2-hexenoate 33 1357/1351 

nootkatoneb 65 2563/2590   ethyl octanoatea,b 37 1442/1442 

Aldehydes     methyl benzoate 48 1636/1636 

hexanala,b 14 1086/1086   butyrolactone 49 1643/1647 

heptanala,b 21 1191/1191 
  

ethyl 3-hydroxy-
hexanoate 51 1673/1693 

(E)-2-hexenal 25 1222/1222 
  

Heterocyclic 
compounds   

benzaldehydea,c 41 1535/1535   furfural 40 1475/1475 

3-methyl-benzaldehyde 50 1624/1663   5-methyl-2-furfural 45 1587/1586 

Table 3



Ketones     
2,5-
furandicarboxaldehyde 60 2022/2017 

1-penten-3-onea 10 1025/1025 
  

5-(hydroxymethyl)-2-
furfural  

64 2530/2543 

4-heptanone 18 1162/1128      

4-methyl-2-heptanonea 24 1206/1211      
6-methyl-5-hepten-2-
onea 32 1343/1343 

  
   

a: compound  selected by post hoc Tukey's HSD test and discriminating between Italian 
and South African oranges. 
b: compound  selected by post hoc Tukey's HSD test and discriminating between Italian 
and Spanish oranges. 
c: compound  selected by post hoc Tukey's HSD test and discriminating between South 
African and Spanish oranges. 
d: LRIIt: Linear Retention Index reported in literature by www.pherobase.com, 
www.flavornet.org, www.chemspider.com and www.nist.gov; LRIsp: Linear Retention Index 
calculated against n-alkanes (C5–C14 and C8-C40) on VF-WAXms column . 
e not available. 
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