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Abstract

Estimates of the level of inequality of opportunity have traditionally been proposed
as lower bounds due to the downward bias resulting from the partial observability
of circumstances that affect individual outcome. We show that such estimates may
also suffer from upward bias as a consequence of sampling variance. The magnitude
of the latter distortion depends on both the empirical strategy used and the observed
sample. We suggest that, although neglected in empirical contributions, the upward
bias may be significant and challenge the interpretation of inequality of opportunity
estimates as lower bounds. We propose a simple criterion to select the best specification
that balances the two sources of bias. Our method is based on cross-validation and
can easily be implemented with survey data. To show how this method can improve
the reliability of inequality of opportunity measurement, we provide an empirical
illustration based on income data from 31 European countries. Our evidence shows
that estimates of inequality of opportunity are sensitive to model selection. Alternative
specifications lead to significant differences in the absolute level of inequality of
opportunity and to the re-ranking of a number of countries, which confirms the need for
an objective criterion to select the best econometric model when measuring inequality
of opportunity.
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1 Introduction

The measurement of inequality of opportunity (IOp hereafter) is a growing topic in
economics, and in the past two decades, the number of empirical contributions to this
literature has increased substantially: see Ferreira and Peragine (2016), Roemer and
Trannoy (2015), and Van de gaer and Ramos (2016) for a review. The vast majority of
these contributions are based on the approach proposed by Roemer (1998) and follow
a two-step procedure. First, a counterfactual distribution is derived from an outcome
distribution (typically income or consumption). This counterfactual distribution repro-
duces only unfair inequalities, i.e. inequalities due to circumstances beyond individual
control, and does not reflect inequality arising from individual choice and effort. Sec-
ond, a suitable inequality measure is used to quantify inequality in the counterfactual
distribution.

The empirical literature has extensively used two methods to compute counterfac-
tual distributions of survey data: parametric and non-parametric methods. One of the
main drawbacks of both approaches is that, unless all the circumstances beyond an
individual’s responsibility are observable, they produce biased estimates of IOp. While
the magnitude of this bias may be impossible to determine (Bourguignon et al. 2013),
under some assumptions discussed in the literature, it can be shown that the sign of
the bias is negative (Roemer 1998; Ferreira and Gignoux 2011; Luongo 2011). This
explains why IOp estimates are generally interpreted as lower-bound estimates of the
“true” I0p, whereas the true IOp is interpreted as the estimate one would obtain if all
circumstances were observable. The usefulness of those lower-bound measures has
been challenged in recent literature, see Kanbur and Wagstaff (2016), Balcazar (2015),
and Wendelspiess (2015). In particular, Balcazar (2015) and Ibarra et al. (2015) sug-
gest that the downward bias may lead to a substantial underestimation of the true IOp
in empirical applications.

Typically, authors address this problem by using richer data sources and by adopting
a variety (or a combination) of empirical strategies: (i) by increasing the number of
circumstances, as in Bjorklund et al. (2012); (ii) by introducing interaction terms
among different circumstances, as in Hufe and Peichl (2015); (iii) by splitting the
population into finer partition of types.

These empirical strategies reduce the downward bias, increasing the explained
variability attributable to IOp. In this paper, we emphasize that these procedures are
not riskless and might lead to an upward distortion of IOp estimates. Indeed, the
reliability of the estimates depends not only on the number of circumstances and the
population partition, but also on the sample distribution across types.

In both parametric and non-parametric approaches, we recognize a trade-off
between the downward bias resulting from the observability of circumstances and the
upward bias related to the sampling variance of the estimated counterfactual distribu-
tion. Although this topic is not new to econometricians and practitioners, our concern
over upwardly biased IOp estimates has been neglected in the empirical literature
of I0p measurement. This is surprising because, as shown in the empirical section,
such a distortion is likely to be far from negligible. We show that the magnitude of
the upward distortion depends upon the strategy used to obtain the counterfactual
distribution. This problem is particularly straightforward when applying a parametric
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approach but can easily be generalized to the non-parametric method. The number of
explanatory variables involved and the division into types may lead to distortions in
both directions. Overfitted models result in upward bias, whereas underfitted models
reinforce the well-known downward bias caused by partial observability. We suggest
that, when choosing among alternative specifications, scholars should opt for the best
balance between the two sources of bias, and we propose a method to select the best
econometric specification that minimizes the sum of the two biases. Our method is
based on cross-validation (CV hereafter), which is a methodology commonly adopted
by statisticians to evaluate the performance of predictive models and is increasingly
used by economists (Varian 2014). CV directly provides a nearly unbiased measure
of the out-of-sample prediction error. The major interest of CV lies in the minimal
assumptions required to obtain unbiased measures of model performance (Arlot and
Celisse 2010).

The out-of-sample prediction error is estimated by dividing the original sample
into training and test sets. The association between circumstances and outcome is
first estimated on the training sample under a large number of meaningful model
specifications. Next, the derived coefficients are used to predict the outcome on the
test sample. The specification selected is the model that, on average, minimizes the
prediction error in the test sample.

Because minimizing the prediction error is equivalent to maximizing the ability
of the model to explain the variability of the dependent variable out-of-sample, the
proposed criterion does minimize the downward bias due to partial observability out-
of-sample. In other words, using CV, we select the model specification that minimizes
the downward bias without overfitting the data.

To demonstrate the usefulness of our approach, we apply our method to income
data from 31 European countries using the European Union Survey on Income and
Living Conditions (EU-SILC) 2011 database. Our evidence shows that IOp estimates
are extremely sensitive to model selection. Alternative specifications lead to signifi-
cant differences in the absolute level of IOp, and in many cases, to the re-ranking of
countries. Since our preferred specification is different from what is typically used in
the literature, our estimates differ from those provided by other authors who use the
same data to estimate IOp.

The rest of this paper is organized as follows: Sect. 2 introduces the canonical
model used to measure 10p, presents the estimation methods used to implement it,
and clarifies the two possible sources of distortion. Section 3 proposes a criterion to
balance the trade-off between the two types of bias when selecting the specification to
estimate IOp. Section 4 presents an empirical implementation, and Sect. 5 concludes.

2 Downward and upward biased I0p

The canonical equality of opportunity model can be summarized as follows (see Fer-
reira and Peragine 2016). Each individual in a society realizes an outcome of interest,
v, by means of two sets of characteristics: circumstances beyond individual control, C,
belonging to a finite set 2 = {Cy, ..., C;}, and a responsibility variable, e, typically
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treated as scalar. A function g : Q x %4 — N, defines the individual outcome:

y=2g(C,e). (D

Forall j € {1, ..., J},letus denote by K ; the possible values taken by circumstance
C; and by ]K j] the cardinality K;. For instance, if C; denotes gender, then K; =
{male, female}. We can now define a partition of the population into T types, where
a type is a selection of values, one for each circumstance, that is, 7 = I1 iJ: y |K j | Let
us denote by Y the overall outcome distribution.

The IOp is then defined as the inequality in the counterfactual distribution, f’, which
reproduces all inequalities due to circumstances and does not reflect any inequality
due to effort. A number of methods have been proposed to obtain Y, and in general,
the selected method affects the resulting IOp measure (Ferreira and Peragine 2016;
Roemer and Trannoy 2015; Van de gaer and Ramos 2016). In what follows, we focus
on the ex ante approach introduced by Bourguignon et al. (2007) and Checchi and
Peragine (2010), which is by far the most commonly adopted method in the empirical
literature (Brunori et al. 2013).! This approach interprets the type-specific outcome
distribution as the opportunity set of individuals belonging to each type. Then, a given
value v, of the opportunity set of each type is selected. Finally, ¥ is obtained by
replacing the outcome of each individual belonging to type ¢ with the value of her type
v, forallt =1,...,T.

2.1 Counterfactual estimation

Ex ante 10p can be estimated by either a non-parametric or a parametric approach.
Checchi and Peragine (2010) propose non-parametric estimation of ¥ following the
typical two-stage method: (i) after partitioning the sample into types on the basis of
all observable circumstances, they choose the arithmetic mean of the outcome of type
t, denoted by u;, as the value v, of type ¢; (ii) for each individual i belonging to type
t, they define y; = j[i,—where (i, is the sample estimate for yu,—and measure the
inequality in Y.

Alternatively, Bourguignon et al. (2007) propose parametric measurement of ex
ante 10p by estimating Y as the prediction of the following reduced form regression:

J K
Vi =) ) XiCije + i, @)

j=1k=1

I Other well-established approaches can be used to measure IOp. Approaches differ in how they define the
principle of equal opportunity and in the way the counterfactual distribution is constructed (Roemer 1998;
Lefranc et al. 2009; Fleurbaey and Schokkaert 2009; Checchi and Peragine 2010). However, because the
construction of these alternative counterfactual distributions generally requires the observation or identifi-
cation of effort (an extremely difficult variable to measure), they are less frequently adopted in the empirical
literature.
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where ¢;j, identifies each category of the observable characteristics by means of a
dichotomous variable, and y j, is the corresponding coefficient.? In the original spec-
ification, the parametric approach consists of ordinary least squares regression where
the total outcome variability is explained by a linear combination of regressors with no
interaction terms.> Hence, the parametric approach does not estimate the counterfac-
tual distribution, Y, by directly identifying types. It linearly approximates the types’
average outcome by the predictions of a regression of circumstances on outcome. This
approach has the main advantage of being more parsimonious than the non-parametric
approach. In practice, parametric estimations have been proposed as a reasonable alter-
native to non-parametric estimation when few observations are available, see Ferreira
and Gignoux (2011) and Ibarra et al. (2015). However, parsimony comes at the cost
of imposing the effect of the circumstances on outcome to be fixed and additive. For
example, being a women is assumed to have an effect on earning that is indepen-
dent of all the other circumstances, such as socioeconomic background or race. This
assumption constrains the ability of regressors to capture outcome variability.

Recently, Hufe and Peichl (2015) discuss the importance of considering interaction
terms in estimating IOp. They estimate ex ante 10p using the Child & Young Adults
Supplement of the National Longitudinal Survey of Youth and alternative model spec-
ifications. They implement both a linear model, as in (2), and a non-linear model,
where circumstances fully interact, and they acknowledge a critical divergence of the
IOp estimates among the different specifications.

Indeed, it is important to note that the parametric and the non-parametric methods
coincide when all explanatory variables are categorical, and the parametric counter-
factual distribution is obtained by the prediction of a regression model where y is
regressed on all possible combinations of circumstance values, i.e. all values of all
regressors interact with each other to obtain a model with 7 = TI Z.J: j |K j| dummies.
In this particular case, each regressor captures the effect of belonging to one of all the
possible circumstance combinations, which is the effect of belonging to a given type.
The estimated model becomes:

T

Yi = Zﬁtﬂit + u;, 3)

t=1

where 7;; are T binary variables obtained by interacting all values of the circumstances.
Clearly, the typical (linear) parametric approach, (2), explains less inequality than the
non-parametric approach, (3), simply because model (3)—by construction—allows
variability to be explained by the full set of interactions.

Here, a trade-off emerges: while the linear specification might be too restrictive,
the inclusion of the full set of combinations of the circumstances’ values might lead to

2 In principle, if cardinal circumstances are observed, regressors might be non-categorical. However, to
the best of our knowledge in the empirical literature, this is never the case. Even if cardinal measures are
available, i.e. parental income, authors tend to use categorical regressors for the quantiles of the continuous
distribution (see, for example, Bjorklund et al. 2012).

3 Analogously to the Mincer equation, a log-linear specification is preferred by the majority of the authors.
(Ferreira and Gignoux 2011)
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very large sampling variance of the estimated counterfactual distribution, especially
when a limited number of observations is available for certain types.

Following the same reasoning, the sampling variance of the estimated counter-
factual distribution is also influenced by alternative population partitions: a broadest
partition might, again, lead to larger variance in the case of a limited number of obser-
vations per type.

Indeed, the reliability of both parametric and non-parametric IOp estimates requires
a sufficient number of observations characterizing each circumstance. Specifically, the
limitation might be more severe in the case of the non-parametric approach, where a
sufficient number of observations for each combination of circumstances is required.
This might represent a serious constraint in empirical applications; in survey data,
individuals are unlikely to be uniformly distributed across types and across popu-
lation partitions. For example, a typical argument arises when considering Western
countries in which researchers observe both parental education and parental occupa-
tion as circumstances. Those variables are usually strongly correlated with each other,
i.e. there are very few individuals whose parents are highly educated and employed in
elementary occupations or who have no education but work as managers. To overcome
this drawback, scholars tend to consider a limited number of circumstances in the def-
inition of types (using either parental education or parental occupation) or aggregate
the different values that a circumstance might take (using blue and white collars rather
than more specific occupation value). These are clearly ad hoc solutions, which might
greatly affect the shape of the counterfactual distribution and lead to misleading IOp
estimates. In what follows, we propose a statistical criterion to properly select among
different model specifications or alternative population partitions.

2.2 Bias-variance trade-off in estimating I0p

A number of methodological contributions have shown that if the ‘true’ set of circum-
stances is not fully observable, the estimated ex ante IOp will be lower than the ‘real’
I0p (Roemer 1998; Ferreira and Gignoux 2011; Luongo 2011). This result follows
from the assumption of orthogonality between circumstances and effort (see Roe-
mer 1998) and explains why IOp measures are generally interpreted as lower-bound
estimates of IOp.

Authors often attempt to solve this problem by using rich datasets that contain the
largest possible number of circumstances, including outcome obtained during child-
hood (Bjorklund et al. 2012; Hufe et al. 2017). Recently, Niehues and Peichl (2014)
endorse an extreme perspective. By exploiting longitudinal datasets, they measure
1Op, including individual fixed effects among circumstances beyond individual con-
trol, implying that any unobservable individual characteristic that persists over time
is considered a source of IOp. Understandably, this method has been, proposed as an
‘upper-bound’ estimate of the true IOp.

However, interpreting IOp estimates as lower bounds is correct only if the entire
population of interest is observed. When using survey data, attempting to reduce the
downward bias by increasing the number of circumstances or the number of val-
ues within each circumstance results in a counterfactual distribution based on a finer
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partition into types. By construction, this process results in a smaller number of obser-
vations in each type,* which might increase the sampling variance when estimating
the counterfactual distribution.

Surprisingly, the empirical literature on IOp estimation has neglected this second
implication thus far. Only recently, the issue has gained importance in the debate
on the IOp measurement. Brunori et al. (2016) note that the use of very detailed
circumstances, such as hundreds of ‘villages of birth’ in Madagascar or hundreds of
‘ethnic groups’ in Congo, tends to dramatically increase the IOp estimates.’

Crucially, when measuring inequality, higher sampling variance of the estimated
distribution implies an upward-biased IOp measure. This result is easily shown by
applying what Chakravarty and Eichhorn (1994) proved for the case of inequality
estimation when the variable of interest is measured with error. It turns out that in the
IOp framework, higher sampling variance of the estimated type mean might be due
to a finer population partition rather than to the classic measurement error. A formal
proof based on Chakravarty and Eichhorn (1994) is available in Appendix A.6

This result has two interesting consequences in the measurement of IOp. First, it
states that if all circumstances are observable and IOp is measured on an appropriate
subsample of the original population, such as a typical representative survey, IOp is
upward biased. Second, whenever circumstances are not fully observable, two opposite
distortions might bias our estimates; hence we can no longer claim that the estimated
IOp is a lower-bound of the true I1Op.

When the sample size is large relative to the number of circumstances included in
the model, the downward bias is likely to be considerable. However, when the sample
size is small relative to the number of types/regressors, upward bias might prevail.
Simulations in Appendix B illustrate the possible relevance of the upward bias in
small samples. Indeed, the absolute and relative sizes of the two biases depend upon a
number of factors: the sample size, the joint distribution of outcome and circumstances,
and the model specification used to estimate the counterfactual distribution. In other
words, it is ultimately an empirical issue.

This discussion should clarify that when estimating IOp, we should aim at minimiz-
ing two different sources of distortion that bias our estimates in opposite directions:
partial observability and sampling variance of the counterfactual distribution. The
solution to minimize the downward distortion cannot consist of ad hoc strategies such
as simply including a larger number of circumstances or considering a broad parti-
tion of the population. The choice of the researcher should be based on a statistical
criterion. In the following section, we propose a simple method for selecting the best

4 Or,if adopting a parametric approach, regression with a larger number of controls and fewer degrees of
freedom.

5 Note also that the approach proposed by Li Donni et al. (2015), although not explicitly discussed by
the authors, represents a possible strategy to address this issue. They define Roemerian types using latent
class analysis. That is, they assume that observable circumstances are manifestations of an unobservable
membership to a number of latent groups. Their method reduces the number of types and hence avoids large
sampling variance in the counterfactual distribution.

6 Inaframework where the outcome is measured with error and the sampling variance of the counterfactual
distribution is ignored, Wendelspiess (2015) predicts the opposite direction of bias.
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model to measure IOp, a method that exploits the information contained in survey data
and minimizes the distortion due to the two biases.

3 Model selection for measuring IOp

Since Bourguignon et al. (2007), IOp has been measured using a reduced form model,
with no assumptions about the functional form of Eq. (1). We follow this strand of the
literature and do not impose any a priori restriction on the effect that circumstances
might have on outcome. Hence, in this section, we propose a method to select the most
suitable model among all possible alternative specifications.

The aim is to select the model specification producing the most reliable measure of
inequality in Y. To avoid downward bias, and not knowing which circumstance deter-
mine the outcome and how, we would like to specify the most flexible possible models
including all observable circumstances and their interactions. That is, we would like
to maximize the variability in y that can be explained by C and their interactions. In
the observed sample, the outcome variability that can be explained by a set of controls
is monotonically increasing with the number of estimated parameters. With a minimal
number of observable circumstances, we can easily obtain a model that perfectly fits
the data. In this way, IOp is equal to total inequality, and the downward bias is elimi-
nated. However, researchers are generally interested in estimating the level of IOp in a
population and not in a particular observed sample. Using a model with zero degrees of
freedom will produce unreliable estimates of ¥ and, as proved above, upward biased
IOp estimates. We claim here that the most appropriate model is a specification that
minimizes the out-of-sample downward bias due to partial observability. That is, the
model that maximizes the variability of y that can be explained by C if a different
random sample from the same population was observed.

Viewed from this perspective, the estimation of IOp can be understood as a predic-
tion problem. When willing to predict an outcome based on a set of controls, we try to
fully exploit the informative content of the observed data. However, with a finite set
of observations, increasing the complexity of the model implies loosing confidence
on the parameters estimated. Therefore, increasing the model complexity, we improve
our predictive performance only if the gain in terms of model flexibility is larger than
the loss in terms of parameters reliability. Too complex models will precisely explain
the outcome variability in sample, but will poorly predict out-of-sample. Similarly,
too simple models will neglect important information contained in the controls and
will imprecisely predict both in sample and out-of-sample. The aim of a statistical
learning model is to maximize out-of-sample predictive performance trading-off the
need of minimizing both sources of error.

Machine learning practitioners select the model that minimizes the out-of-sample
(squared) error. This model selection approach is gaining attention in the social sci-
ences literature and increasingly adopted by economists (Varian 2014; Mullainathan
and Spiess 2017; Athey 2018). Similarly, we propose to select the most appropriate
model to estimate IOp minimizing the same loss function. In fact, maximizing the
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predictive accuracy of a model is equivalent to maximizing its ability to explain the
variability of the dependent variable out-of-sample.’

The problem can be formally illustrated exploiting the decomposability of the mean
squared error (MSE). MSE is defined as:

MSE——Z i =€)
i=l1

where y is the dependent variable, C is the vector of controls, and i = 1,...,n are
the observations. For given out-of-sample observations yy and Cp, the MSE can be
understood as the sum of three components:

1. thevariance, Var(g(Cp)), which depends on how much the estimated relationship
between dependent variable and controls would change if a different sample from
the same population was observed;

2. the bias squared, [Bias (gr(Co))]z, which depends on how the chosen model,
adopting simplifying assumptions about the data generating process, constraints
our ability to correctly capture the relationship between C and y;

3. the variance of the irreducible error term, Var (u), which captures the variability
in y independent from C and represents the lowest possible error we can make in
predicting y.

E (yo — 2(C))” = Var(g(Co)) + [Bias (§(C))]” + Var(w), (4)

Note that Eq. (4) formally connects the two sources of bias when measuring IOp with
the expected prediction error out-of-sample of a model explaining y as a function of C.
The downward bias due to unobservable circumstances (and neglected interactions),
largely discussed by the literature, is captured by the bias. The upward distortion,
discussed in Sect. 2.2 and proved in Appendix A, is taken into account by the variance.
The most reliable I0p estimate should be based on the model that minimizes the sum
of the first two sources of error. Since the variance of the prediction error, Var(u),
cannot be reduced, this is equivalent to minimizing the out-of-sample MSE of the
model.

Minimizing MSE is the fundamental problem of statistical learning. The magnitude
of bias and variance depends on the complexity of the model specified. On the one
hand, to minimize the variance we should maximize the available degrees of freedom.
For a fixed set of observations, this implies specifying the simplest possible model.
The model with lowest possible variance is a model that contains a single parameter.
In such a case, the only parameter estimated is the sample mean, circumstances have
no effect on outcome, and IOp is zero (we are minimizing the upward bias at the cost
of the largest possible downward bias). On the other hand, in order to reduce the bias,
we would like to specify the most complex possible model. This would result in a
very general model, estimated with low level of confidence (the upward bias will be

7 Based on our conclusion Brunori et al. (2018) have recently compared popular econometric approaches to
estimate IOp. Their analysis shows that conditional inference random forests, a machine learning algorithm
introduced by Hothorn et al. (2006), outperforms other methods in predicting IOp out-of-sample.
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large). This trade-off, known as the bias-variance dilemma, can be solved weighting
equally the first two components of Eq. (4) and minimizing the sum of the two, that is,
minimizing the out-of-sample MSE. This criterion selects the model that maximizes
the ability of circumstances to explain the outcome variability out-of-sample, and
produces the largest possible IOp estimate out-of-sample.

The implementation of such a criterion for selecting the best model is comparative
and involves two steps: first, we estimate a number of alternatives, such as model
(2), model (3), and all the specifications obtained by both interacting only a subset of
circumstances and using different population partitions; second, we choose the best
specification by means of cross validation (CV).8

The CV originates from the validation approach, which is a data-driven model selec-
tion criterion. Historically, the validation approach has been proposed as a method to
assess models’ performance by avoiding to incur in overoptimistic conclusions (Lar-
son 1931). Once a model has been estimated, the assessment of its performance should
ideally rely on new data, such as out-of-sample observations. However, since those
observations are rarely available, other solutions have been proposed. In the validation
approach, for instance, observed data are randomly divided into two subsamples, one
is used to estimate the models (training set) and the other used to evaluate models’
accuracy (validation or test set). Indeed, the test set can play the role of unseen obser-
vations as long as it has been randomly drawn from the original sample. Hence, in
the validation approach, the model is fitted on the training set, saving the estimated
prediction function, and then used to predict the dependent variable into the hold-out
test set. The MSE estimated in the hold-out set directly provides a nearly unbiased
measure of the out-of-sample prediction error (Arlot and Celisse 2010). However, as
widely acknowledged, this validation approach has, at least, two main drawbacks.
First, the MSE estimates tend to heavily depend on the observations included in the
training set and those that are held-out. Second, it does not fully exploit all available
information. In fact, only observations included in the training set are used to fit the
model (Gareth et al. 2013).

In order to overcome these two downsides other resampling assessment methods,
based on the same validation idea, have been proposed in the literature. For instance,
in k-fold CV, the sample is randomly divided into k equal-sized parts. Leaving out part
k (test sample), the model is fitted to the other k — 1 parts (training sample), and out-
of-sample predictions are obtained for the left-out kth part. For each specification, the
average of the k MSEs is stored and the best specification is selected by minimizing the
average MSE. CV is commonly adopted by statisticians to evaluate the performance
of predictive models as it lies in the minimal assumptions required to obtain unbiased
measures of model performance (Hastie et al. 2009).

Also, notice that minimizing MSE estimated by CV is asymptotically equivalent to
minimizing the Akaike’s Criterion and (Stone 1977). Similarly, the Schwarzs Bayesian

8 We are aware that the number of alternative models exponentially increases when circumstances are
interacted. Moreover, researchers might have the choice to consider some circumstances with different levels
of aggregation, e.g. country/region/district of birth. In these cases, our method should be complemented
with an algorithm that can restrict the number of models considered, for example, best subset selection or
stepwise selection, see Gareth et al. (2013).
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Information Criterion is asymptotically equivalent to k-fold CV for a particular value
of k (Shao 1997).

A not negligible aspect of using CV is the choice of k. The validation approach is
close to CV when k = 2. At the opposite extreme leave-one-out CV uses a number of
folds equal to the number of observation in the original sample. The choice of k leads
again to a trade-off: a low k tends to select models characterized by low variance and
high bias. A large k tends to select flexible model with relatively high variance. As a
rule of thumb machine learners practitioners tend to choose a value of k between five
and ten. The exact choice depending on the sample size, the number of models to test,
and the type of problem under scrutiny (Kohavi 1995; Hastie et al. 2009; Rodriguez
et al. 2010).

Using k-fold CV to select the most appropriate specification to measure [Op might
imply the use of an alternative model for data sourced by the same country but in
different time periods and, in general, each time the country’s sample differs. As a
consequence, when comparing different countries in terms of IOp, we might com-
pare measures obtained with different specifications. This is in contrast with what is
generally proposed in the literature. In practice, so far, when the same source of data
is available for different countries, comparable measures of IOp have usually been
computed using the same model specification for all countries, see Marrero and Rodr-
guez (2012), Brzenzinski (2015), Checchi et al. (2016), and Sudrez and Menéndez
(2017). Here, we suggest a different approach: comparable IOp measures should be
calculated using the best performing model given the observable circumstances. As a
simple example, let us consider the comparison between France and Belgium in terms
of I0p. Including ‘mother tongue’ among circumstances in France would probably
make little sense: it would not explain much of the outcome inequality in the country,
but regressors although not statistically significant, will not be exactly equal to zero.
The model will therefore capture too much variability in the sample, this variability is
due to sampling variance, but will be interpreted as IOp. However, the same circum-
stance is likely to be an important source of opportunity inequality in Belgium. Hence,
we might infer that ‘mother tongue’ should be excluded for France and included for
Belgium.

We consider our method to be preferable when the intent is to compare the level
of IOp in two populations. The derived IOp measures would be the two most reliable
estimates of the effect of circumstances on outcome, given the information available
and the statistical relevance of the characteristics that influence IOp. We believe that
the specification used may differ for at least two reasons: first, because the set of
available information may not be the same for the two populations; second, and most
importantly, because the nature of opportunity inequality, i.e. how circumstances affect
individual outcomes, may differ in the analysed populations.

4 An empirical illustration
In this section we provide an empirical illustration based on the EU-SILC 2011 dataset.

We show that our method is easily implementable and can substantially improve our
understanding of IOp. The EU-SILC is a reference source for comparative statistics
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on income distribution in the European Union. Because of special module on the
intergenerational transmission of poverty included in a number of EU-SILC waves,
the same data have been exploited for other estimates of IOp in the past, see Sudrez and
Menéndez (2017), Marrero and Rodrguez (2012), Brzenziriski (2015), and Checchi
etal. (2016). The 2011 is the most recent wave, which contains information on family
of origin and socioeconomic background. The data refer to 31 European countries.’ In
this analysis, we restrict the EU-SILC sample to households whose head is between 26
and 60 years old. The outcome variable is the equivalized disposable income, obtained
by dividing total household disposable income by the square root of the household size.
The circumstances are categorical and identify area of birth and family background
(summarized by retrospective questions about parental education and occupation when
the respondent was 14 years old). In selecting the best specified model, we consider
all possible models ranging from the most parsimonious to a non-parametric partition
based on a large number of types.

In the most parsimonious model, we regress the outcome on four regressors with
no interactions: country of origin (a binary variable that takes the value of one if the
respondent was born in the country of residence), father’s and mother’s occupation
(white or blue collar),'? and parental education (low/high).!!

These variables are initially coded into a larger number of values: mother’s and
father’s occupation in 10 values,'2, mother’s and father’s education in five values!3
and area of birth in three values (native, born in Europe, and born outside Europe).
Interacting all variables coded under the maximum level of detail would result in 7500
types, a number far greater than the average sample size in EU-SILC. Hence, under
the broadest sample partition, we opt for a more compact definition, where country of
origin is divided in two values, father’s occupation into 10 values, mother’s occupation
into two values, father’s education into four values, and mother’s education into four
values. This model results in 640 possible types. Table 1 shows descriptive statistics.
Intermediate models include subsets of interactions.

Figure 1 shows the level of IOp in the 31 countries. Each bar indicates the mean
logarithmic deviation (MLD) of the counterfactual distribution. For each country, the
three bars refer to the following cases: (i) the model described in Eq. (1), (linear); (ii)

9 Austria (AT), Belgium (BE), Bulgaria (BG), Switzerland (CH), Cyprus (CY), Czech Republic (CZ),
Germany (DE), Denmark (DK), Estonia (EE), Greece (EL), Finland (FI), France (FR), Croatia (HR),
Hungary (HU), Ireland (IE), Italy (IT), Iceland (IS), Latvia (LV), Lithuania (LT), Luxembourg (LU), Malta
(MT), the Netherlands (NL), Norway (NO), Poland (PL), Portugal (PT), Romania (RO), Spain (ES), Slovakia
(SK), Slovenia (SI), Sweden (SE), and the United Kingdom (UK).

10" Those are based on the International Standard Classification of Occupations, published by the Inter-
national Labour Office ISCO-08. Blue collar includes parents that who do not work or were occupied as:
clerical support workers; service and sales workers; skilled agricultural, forestry and fish; craft and related
trades workers; plant and machine operators; elementary occupations.

' Edycation categories are based on the International Standard Classification of Education 1997 (ISCED-
97). When coded into two, low includes ISCED below level 3.

12 15C0-08 1-digit: armed forces occupations; managers; professionals; technicians and associate pro-
fessionals; clerical support workers; service and sales workers; skilled agricultural, forestry and fish; craft
and related trades workers; plant and machine operators; elementary occupations; did not work/unknown
father/mother

13" Unknown father/mother, could neither read nor write; low level (ISCED 0-2); medium level ISCED
3-4); high level (ISCED 5-6).
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Models

[ Best

Zﬁ 1muummmhllllﬂlim

IS NO DK NL FI DE SK LT Cz SI SE EE CHMT HR FR AT CY UK IT LV BE HU PL IE EL ES RO PT BG LU

IOp (MLD)

o
e

Fig.1 IOpin 31 European countries under different model specifications. The Figure shows each country’s
IOp measure obtained with the three alternative methods: (i) the linear, most parsimonious case (linear),
(ii) the fully interacted model ( f ull); (iii) the best model selected (best). Countries are ordered according to
the IOp level based on the best model specification with 95% confidence intervals. Table 2 in the Appendix
contains IOp estimates and relative bootstrapped standard errors based on 500 replications for the three
alternative model specifications . Source: EU-SILC, 2011

the model described in Eq. (2), (full); (iii) an intermediate measure computed from
the best model selected by CV (best). k-fold CV is performed by the routine written
by Daniels (2012). The number of folds is five for all countries. However, increasing
the number of folds up to 10, the model specifications selected appear to be rarely
affected.

The three alternative measures clearly differ among each other, and in some cases
(mostly on the left), the best model is very close to the linear model (Denmark and
Netherlands, for example). These are mainly Nordic countries characterized by a low
level of IOp. Note also that for the same countries, the difference in IOp measured
with the linear specification and IOp measured with the full model is substantial.
This large gap between the two extremes, together with the low level of covariance of
circumstances and outcome, is due to the small sample sizes for these countries. When
the sample size is limited, such as for Sweden and Iceland, overfitting occurs, even for
relatively simple model specifications, and the upward bias discussed above tends to
be more pronounced. Interestingly, for Italy, Poland, and Hungary, the three countries
with the largest sample sizes, the difference between the two models tends to be small.
It might be the case that with a sample larger than 12,000, the problem of upward bias
becomes less relevant. The role of sample size in determining the magnitude of the
bias is yet analysed in Appendix B by means of simulations.

In other cases (concentrated on the right-hand side of the graph), the best model
is far from the linear specification and rather close to the most flexible specification.
In particular, in Italy, Poland, Romania, Portugal, Bulgaria, and Luxembourg, our
preferred estimate is closer to the full model than to the linear.
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An immediate implication is that the countries’ rankings clearly depend on the
model specification chosen by the researcher. Consider again Fig. 1, where countries
are ordered according to the IOp level based on the best model specification. The
non-monotonicity of the other two series of bins, linear and full, indicates that the
countries’ rankings vary with the model specified. For instance, France ranks 19th
according to the best model specification but would do much better, ranking 12th, if
we consider the most parsimonious specification.

To further investigate the problem of IOp sensitivity to alternative econometric
specifications, we consider the measures of IOp proposed in two recent papers, see
Brzenziniski (2015) and Sudrez and Menéndez (2017). Both analyses use the same 2011
EU-SILC data, follow the ex ante approach and use equivalized disposable income as
outcome variable. The measures obtained by these authors differ because they use dif-
ferent model specifications. Sudrez and Menéndez (2017) estimate IOp parametrically
considering the following circumstances: gender, nationality, urban density, parental
education, and parental occupation. Brzenzifiski (2015) adopts a parametric approach
that includes parental education, parental occupation, and nationality. Both models
are estimated using log-linear OLS regression with no interactions.

Figure 2 shows the rank correlation of our best measure and the two alternative esti-
mates for the 24 countries considered in both studies. We note that the final assessment
differs substantially in both cases. Although the rank-correlation is clearly positive and
significant, a number of countries lie outside the 45 degree line. Indeed, the re-ranking
is substantial in a few cases. For example, in Sudrez and Menéndez (2017), Ireland
ranks 17th and Belgium ranks 7th, whereas with our best measure, they rank first and
17th, respectively. Additionally, in Brzenzifiski (2015), Portugal ranks 13th, whereas
if our best specification is adopted, it ranks 23rd. 14

We believe that this exercise provides convincing evidence that the variance-bias
trade-off in IOp measurement is far from negligible in empirical applications. Hence,
it is crucial to introduce a statistical criterion to select the best model among a very
large number of possible specifications.

5 Conclusions

The past two decades have seen growing interest from scholars and policy makers in the
measurement of inequality of opportunity. A number of methodological contributions
have shown that estimates of inequality of opportunity are mostly downward biased.
This is a consequence of the partial observability of circumstances beyond individual
control that affect individual outcome. This issue has typically been addressed by
resorting to rich datasets and adopting broad econometric specifications. However,
since IO0p is measured as inequality in a counterfactual sample distribution, a second
possible source of bias might be related to the sampling variance of the estimated
counterfactual distribution. In this paper, we discuss this additional source of bias,
which has surprisingly been neglected by the empirical literature on IOp measurement.

14 Figure 4 in Appendix C shows a closer but far from perfect ranking correlation between the estimates
of Brzenzinski (2015) and Sudrez and Menéndez (2017).
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Fig.2 IOp estimates in 24 European countries from different studies. The Figure shows the rank correlation
of countries in terms of IOp. Our best model specification is compared with Sudrez and Menéndez (2017)
and Brzenzinski (2015) . Source: EU-SILC, 2011

We show that it implies an upward bias of IOp, which challenges the interpretation of
IOp estimates as lower-bound estimates of the real IOp.

We stress that because the empirical specification used to estimate IOp largely
influences its magnitude, we require a reasonable statistical criterion to select among
alternative models. We suggest that this criterion minimize the two sources of bias.

We interpret this problem as a typical variance-bias trade-off and propose a simple
CV method to find the best-fitting model. Cross-validation methods assess the predic-
tive performance of alternative models to estimate a dependent variable out-of-sample.
Overfitted models tend to be extremely accurate in explaining variability in sample
but perform poorly in predicting on a test sample not used to estimate the model.
By providing an unbiased assessment of the relative predictive performance of each
possible model specification, CV can be used by researchers as a guide to choose the
best model to estimate 1Op.

The models selected by the algorithm typically differ across countries in terms of the
variables considered and the interactions included, suggesting that, when attempting
to produce comparable IOp estimates, scholars may abandon the idea of specifying the
same model for all countries in all time periods. By contrast, comparable estimates
may be obtained using the model specification that best captures the correlation of
individual outcome and circumstances beyond individual control separately for each
country and time period.

Finally, we show the empirical relevance of our intuition and implement the pro-
posed method to measure IOp in 31 European countries. Our empirical evidence
illustrates that the choice of model specification strongly affects the estimated 10p
and demonstrates the importance of having a widely accepted criterion to identify the
best possible specification.
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A Upward bias when estimating I0p with survey data

Chakravarty and Eichhorn (1994) distinguish between the true distribution of income,
v, and the observed distribution, y, where y = y + e and e is commonly defined as the
measurement error such that e ~ iid(0, o2). By considering a strictly concave von
Neumann—Morgenstern utility function, U, they prove by analogy that if we measure
inequality /(y) with an inequality index [ that satisfies symmetry and the Pigou-
Dalton transfer principle, then the inequality of the true y distribution is smaller than
inequality in the observed distribution.

Without loss of generality, we apply their result to the case of non-parametric IOp
measurement (Eq. 2).

Proposition Let Y be the counterfactual distribution estimated with Eq. 2. Assume that
Y is estimated by observing the full set of circumstances and the entire population.

Let Y be the same counterfactual distribution estimated by observing the full set of
circumstances but considering only a proper subsample of the entire population. Let
10p and 1 Op be any measure of inequality that satisfies symmetry and the Pigou-

Dalton transfer principle applied to Y and Y respectively. Then, E (I @p) > [0p.

Proof LetM = 1, ..., ur be the vector of types” mean outcomes in the population.

LetM = iy, ..., (7 be the estimates of types’ means based on a proper subsample of

the population. Then, foreacht = 1,...,n, fiy = s + n, where n = \/Lﬁ ~ (0, x>
t

is the standard error of [i;.
Following Chakravarty and Eichhorn (1994), we assume that U is a strictly concave
function. By Jensen’s inequality, we have

E (U (M|M)) <U (E (M|M)) . (5)
Note that £ (M|M> =M, so:

E (U (M|M)) <UM). 6)
By taking expectations with respect to M on both sides, (4) becomes:

E (U (M)) < U(EM)). )

Because E(n) = 0, the two distributions have the same mean. If U is a strictly
concave function, then (5) is equivalent to saying that the distribution of M Lorenz
dominates the distribution of M, which implies that E(/ Op) > 1Op. O

Corollary When one or more of the relevant circumstances is not used to partition the
population into types (partial observability) and Y is estimated on a proper subsample
of the population, I Op cannot be interpreted as a lower bound of 1 Op.
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B A simulation to assess the magnitude of the upward bias

The reader may wonder whether the upward bias discussed in this paper actually rep-
resents a non-negligible issue in empirical implementations. To provide an idea of the
possible magnitude of the bias, we perform a simulation. When estimating inequality
of opportunity, the data generating process is typically unknown. We therefore prefer
to base the simulation on the entire EU-SILC dataset instead of creating an ad hoc
dataset.

Assume that the entire EU-SILC dataset is our population of interest. A population
composed of 202,843 individuals aged between 26 and 60 years (more than the same
age population in Iceland and approximately the same population in Luxembourg).
Additionally, assume that a few observable circumstances are the only circumstances
that determine inequality of opportunity. Individual outcome is assumed to be the result
of the interactions of three circumstances: parental education, parental occupation,
and origin. Individuals in the same type share the same highest parental education
(five values), same immigration history (a dummy that takes the value of one if the
respondent is a first- or second-generation immigrant), and the same highest parental
occupation (ISCO 1 digit).

Under our assumptions, we can observe the real partition of the population into
types. The observed between-type inequality is then the real IOp in the population.
The residual inequality is assumed to be due to effort. Measured by MLD, 1Op in the
entire sample is 0.0314, approximately 7% of the total variability.

Our aim is then to understand the circumstances under which an estimate of inequal-
ity of opportunity based on a random subsample of this population results in upward
bias. To this end, we estimate IOp using samples of increasing size. We start with 500,
which is approximately the sample size of the smallest country in EU-SILC (Sweden).
We then add 500 observations in each step until we have a sample of 20,000 observa-
tions (not far from Italy’s sample size, the largest country in EU-SILC). Each sample is
randomly drawn 500 times to obtain normalized bootstrap confidence intervals around
the point estimate.

Figure 3 shows the IOp estimates for samples of increasing size. In grey, we provide
a histogram showing the frequency of countries’ sample size (reported on the right
y-axis) in EU-SILC 2011.13

The estimates show a marked upward bias for the smallest samples. The average
IOp based on the samples is more than 1.2 times higher than the IOp in the population
for samples smaller than 4000. These are not unrealistically small samples: six of the
31 countries have smaller sample sizes. Interestingly, the confidence intervals of the
estimates do not contain the population’s estimate for all samples smaller than 3000
(Sweden, Iceland, Denmark, and Norway have smaller sample sizes). Moreover, the
upward bias is less than 10% only for sample sizes larger than 9000. Only France,
Germany, Hungary, Poland, Spain, and Italy have larger sample sizes.

Estimates based on the samples approach the IOp in the population rather slowly; at
the extreme right of the graph, the bias is approximately 4%. This may be considered

15 Note that these are the sample sizes used in the regression; they include only individuals with non-missing
information.
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Fig.3 IOp estimated on samples of increasing size . Source: EU-SILC, 2011

a negligible distortion. Interestingly, the reader may recall that in Fig. 1 of Sect. 4, we
found a relatively small difference between the IOp estimated with the two extreme
specifications for countries with sample sizes larger than 10,000. However, in our
simulation, a sample size of 20,000 observations is extremely large as it represents
slightly less than 10% of the population.

C Additional tables and figures

See Table 3 and Fig. 4.

@ Springer



Upward and downward bias when measuring inequality of opportunity

('npe “red 159y31y)
X (oym  IoyIe])

(‘npe “red 159y31y)
X (M IOYIO]N)
(‘npa “red 159yS1y)
X (mym 197IRg)
(‘npe ‘1ed 159y31y)
X (NYM IYIOIN)

(arym 1ouey)
X (edre  yurg)
(npa “red 1soy31y)
X (edre  yurg)
(ym Jaypour)
X (eare  yurg)

(nym Jaypour)
X (edare yurg)

(npa “red 1soy31y)
X (edre  yug)
(nym Jaypour)
X (MM ToyIR)
(ym Jotpour)
X (ym 1otpe)

('npo 1ed 1soy31y)  (‘npe red 1soy3Iy)
X (UM IOYION) X (AYm  IoUe)

(S) mpa 1oyIoN
(o1ym Jaypour)
X (edare  yurg)

(S) 'npa 19yl
(‘npa ‘xed 159y31y)
X (NyM  IoyIe)

(Srmym 1oue))
X (edare yug)

(S) mpa 1oyloN
(‘npe 1ed 350y31y)
X (omym 10yIR])

(mym 1aye))
X (eare  yurg)
(o1ym Jatpour)
X (edare yurg)
(91ym Jatpour)
X (eare  yag)

() 'npa 1oyIoN
(npa “red 3soy31y)
X (edre yurg)

(Srym xoye))
X (eare  yag)

(S) 'npa 1oye]

(S) mpa 1Yo
() 'npo 1oteg
(npa ‘red 1soy31y)
X (eare  yuig)
(S) mpa 1Yo
AYM IYIOIN
(ym Jayjou)

X (eare  yug)
() 'npa 1y

(S) 'mpa YO
(S) 'npa YO
() 'npa g

(S) mps YO

(§) npa 1YW

AIYM IO
AIYM Jayeq
(01) 990 IOYION
(ym Iapow)

X (edre  yag)

(S) 'mpa 1oyeg
AIYM IR

(§) npa 1YOW

(01) "000 197301

(S) mpa 1oyIeg

(§) npa 1y

(01) 990 1otPE]

(01) 090 JoyION

(01) 200 19YI0]N

(01) "090 1oyyEg

(01) 290 19yI0

(01) 200 19IR]

(01) "990 Iyl

QYA JOYIOIN
(€) vore yiaig

(§) "npa 1y

(0T1) 900 1oy1R]

(01) "090 JoyyE]

AIYM IoyIe]

(€) vare g

(01) "090 JoyyE]

(01) 200 19y1eg

dd

JE!

sq

gt

EE!
2d

4d

70

AD

HO

Dd

d4

IV

uoneoyIoads [opour (1saq, 2y Ul PApN[OUT SI0SSAITY Anuno)

1102 DTIS-NA 90108 * Suoneoy1oads [9POIN - € 3qel

pringer

as



P. Brunori et al.

(‘npa 1ed 359y31y) (Aym Joyour)
X (UM IYOTY) X (M IIL])

(‘npe 1ed 3soy31y)  (‘npe ed 3soySy) (onym 1oyour)
X (UM IYION) X (AMYM Ioye) X (YM  Ioyiey)

(9ym Japour)
X (ym 1oteg)
(‘npa “1ed 159yS1y)
X (MM ToyIR)

(9ym Iapour)
X (ym  1otpe)
(npa “red 1s9yS1y)
X (eare  yurg)
(‘npo ‘1ed 159y31y)
X (ym IOYIo]N)

(npa “red 1s9ys1y)
X (eare  yurg)

() 'npa 1o
(‘npa “red 159yS1y)
X (omym 10yIe])

(S) "mpa 1O

(npa “red 3soy31y)

X (eare  yug)
(npa “red 3soySiy)
X (eare yurg)

(1ym Jatpour)
X (nym 1oyred)

(Srym xoe))
X (eare  yug)

() 'npa 1ayIoN
(npa “red 3soy31y)
X (edre yurg)

(o1ym Iatpour)
X (eare  yag)

(9ym 1apow)
X (eare  yurg)
(o1ym Jaypour)
X (aym Ioyred)

(§) pa 1oy

() 'npa 1ayIoN
() 'npo 1oIEg

X

X

X

X

(ym Jayjou)
(eare )

(oY Joue))
(eore i)

(ym 190U
(eore )
(S) 'mpa IoyION
() 'npa g
(S) mps YO
(S) 'mpa 1yION
() "npa 1o
(ym 190U
(eore  yug)

(01) 290 19y10]q

() 'npo 1oteg
AIYM IOYION

() mpa 1oyreg

() mpo 1eyIo
(a1mym 1aype))

X (edre  yag)
() mpa 1oyieg
(01) 990 IOYION
() mpa 1oyeg

() mpa 1oyreg

() mpa 1oyeg
(a1mym 1aypey)

X (eore  yag)

(01) 090 19yBRg

AIYM IOYIOIN
(01) 990 1oyeg

(01) 290 19YI0]N

(01) 900 19U1R]

(S) 'npa YO

(01) 200 19yIe]

(0T1) 900 19yIR]

AIYM TYIe]

AIYM JoyIe]

(01) 900 19y1R]

(01) 990 1oYION

(€) eare ypuig

(€) eore g
(€) eore g

1d

ON

LN

N1

nl

IT

LI

ST

dI

NH
dH

uoneoyroads

[opowW ,1S9q, Y} UI pApN[OUI SI0SSAIZAY  Anuno)

panunuod ¢ 3jqe]

pringer

as



Upward and downward bias when measuring inequality of opportunity

jsenbar uodn ajqefreae are so[qe) uorssaigar oyordwo)) "sar10321Ld JO IQUUNU AY) 0) JAJAI sasdyjuated UT sTqUINN

(9ym Iajour)
X (ym  Jote)

(‘npo ‘1ed 159y31y)
X (Aym IOYION)
(‘npe 1ed 3soy3ry)  (‘npe 1ed 3soySry)
X (oYM IOIN) X (oYM IoyIe])

(‘np2 ‘xed 159y31y)
X (M IYION)
(91ym Iarpour)
X (edre  yurg)
(nym Jaypour)
X (omym 1oyIe])

(‘npo ‘1ed 159y31y)
X (ym  1otpe)
(npa “red 1soy31y)
X (eare  yurg)

(‘npa xed 159y31y)
X (anym Ioyred)

(ormym TayE])
X (edare yurg)

($) 'npa 1yl
(‘npa ‘xed 159y31y)
X (yM  I1oIe)

(91ym Jatpour)
X (UM 1oyeg)
(Srym 1oye))
X (eare  yurg)

(rym 1oyow) (orym 1ouey)
X (amym 1oyred) X (are i) (S) 'npa YO AN
(©
mpa red 3soyStyg  (Q) "990 JOYION (01) "990 1Ryl SIS
(S) mpa xR (OT) "990 YO (€) eare g I
(ym 19I0W)
X (ym Ioe) (S) 'mpa YO (€) eore g EN
(ym 190U
X (edre yuig)  (S) Mpa IO (O) "990 IO o¥

(S) "npa Iyo (¢) mpa 1oyieg (1) "990 YO 1d

uoneoy1oads [opowr 3$aq, Y3 Ul pApN[oul SI0SSAIZAY  ANuno))

panunuod ¢ 3jqe]

pringer

As



P. Brunori et al.

Rank (Suarez and Menendez, 2017)
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Fig.4 IOp estimates for 24 European countries from different studies. The figure shows the rank correlation
of countries in terms of IOp. The ranking proposed by Sudrez and Menéndez (2017) is compared with the
ranking proposed by Brzenzifiski (2015) . Source: EU-SILC, 2011
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