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Abstract

Classifying every pixel of a hyperspectral image with a certain land-cover type

is the cornerstone of hyperspectral image analysis. In the present study a

segmentation-aided methodology for the spectral-spatial classification of hyper-

spectral data is proposed. It considers the spatial dependence of the spectral

bands, deals with the curse of dimensionality and handles the spectral vari-

ability. A local spatial regularization of spectral information is used, in order

to derive an informative joint spectral-spatial representation of the data. A

contiguity-based segmentation algorithm is formulated, in order to build the

object-wise texture that can aid classifier learning. The hybrid use of the seg-

mentation texture is evaluated in both pre-processing (i.e selecting represen-

tative pixels to learn the classifier) and post-processing (i.e. refining predicted

labels and removing possible outlier classifications). The experiments performed

with the proposed methodology provide encouraging results, also compared to

several recent state-of-the-art approaches.
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1. Introduction

Hyperspectral (HS) remote sensing, also known as imaging spectroscopy,

is a major breakthrough in remote sensing technology. HS sensors, mounted

on aircraft or satellites, produce digital images (HyperSpectral Images - HSI)

of an observed scene, by recording reflected light in hundreds of narrow fre-5

quencies covering the visible, near-infrared and shortwave infrared bands (pixel

spectrum). Such an abundance of spectral data represents an invaluable source

of knowledge regarding the physical nature of the different materials possibly

observed. In particular, the high-dimensionality of the measured spectrum is

useful for pixel classification, in order to distinguish different landscapes in the10

image scene [1].

Land cover classification in HSI data is a hot topic, that is still challenging

[2]. One of the major reasons is the curse of dimensionality [3]. This is related to

the human-supervised effort needed to collect only few labeled imagery pixels

(training set) that should also be properly distributed among the classes [4].15

In fact, the commonly low number of collected ground-truth labels, compared

to the high number of spectral bands (curse of dimensionality), is not always

sufficient for a reliable estimate of the classifier parameters. As discussed in [5],

this is prone to problems of over-fitting (i.e. the classification model exactly

fits the training data without accounting for a wider generalization) or under-20

fitting (i.e. the model complexity is constrained excessively), which cause a

reduction in the classifier’s ability. To mitigate the curse of dimensionality,

Support Vector Machine is considered an effective method [5], while a data

reduction of HSI is widely used [6, 7, 8, 9, 10], in order to decrease the number

of spectral bands and select (extract) non-redundant informative features that25

preserve the discriminative properties of the data. However, recent studies [11,

12] point out that when the number of labels is too scarce to rely on, a supervised

classifier may suffer from under-fitting rather than over-fitting. This is due

to the fact that the complexity of the learnable parameters far exceeds the

limited amounts of training samples. To handle the under-fitting problems30

2



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

that often occur under small sample conditions, one possibility is to reconsider

classification as a process of choosing an optimal set of training samples for

supervised classifiers, under limited sample conditions.

In the early stages of HSI classification, many methods have concentrated

on handling the curse of dimensionality when the abundant spectrum of a pixel35

is exclusively considered to determine its class [1]. In any case the most recent

search trend has definitely highlighted that the presence of spectral variability

is a further complexity factor. Spectral variability is caused by many condi-

tions such as incident illumination, atmospheric effects, unwanted shade and

shadow, natural spectrum variation and instrument noises. These conditions40

may provoke two main difficulties which hinder classification [2]. On the one

hand, high intra-class spectrum variability makes the identification of a given

class very difficult. On the other hand, low inter-class spectral variability makes

the discrimination of different classes hard. All such difficulties lead to unsatis-

factory classification performances with pixel-wise methods [2]. In general, the45

consideration of spatial information, which originates from homogeneous areas

of contiguous pixels in HSI, provides complementary information to spectral

bands, by offering the possibility to boost the pixel-wise classification. Early at-

tempts to incorporate spatial information into hyperspectral classification can

be traced back over the last decade [13]. Since then spectral-spatial classifi-50

cation has witnessed a great surge of interest. A wide plethora of successful

studies has definitely proved the ability to enhance the performance of spectral

pixel-wise classification with object (neighborhood)-based spatial information in

precise land-cover mapping, forest inventory or urban-area monitoring (see [2]

for a survey on the recent state-of-the-art in spectral-spatial HSI classification).55

The use of feature engineering is one of the most popular spectral-spatial

approaches. It couples the spatial information to the spectral knowledge by pre-

extracting spatial feature profiles of the spectrum, which are then pushed into a

subsequent classifier. The morphological [14] and extended morphological [15]

profiles are the most frequently computed, due to the excellent spatial features60

created. Morphological profiles are also computed via collective inference, as a

3
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way to express the spectral-aware label dependency [16, 17]. Markov random

fields [18], Gabor wavelet transforms [19] and Extinction profiles [20] are also in-

troduced for a better understanding of the spectral scenes, by using spatial and

contextual properties. In addition, multi-objective optimization-based sparse65

unmixing methods are proposed, in order to take full advantage of the spectral

characteristics and exploit regularization by the spectral correlations among dif-

ferent individuals [21]. Very recently deep learning-based methods have finally

shown promising performance in HSI classification and achieved high accuracy

in obtaining discriminative spectral-spatial features [22, 23, 24, 25, 26, 27]. How-70

ever, the feature representation ability of deep learning is commonly at the cost

of a very complex learning process.

Alternatively, some spectral-spatial classification methods incorporate spa-

tial information via segmentation, often in post-processing, after a spectral-

based classification has been conducted. In the image segmentation process, an75

image is partitioned into non-overlapping homogeneous regions, based on one

or more homogeneity criteria. Depending on the features employed in the seg-

mentation process, the methods can be categorized into the following groups:

spatial-based, spectral-based and spatial-spectral-based (see [28] for a survey).

Spatial-based methods search for homogenous regions of spatially connected pix-80

els with the defined criteria. Representative methods in this group include region

growing, split-merge methods and watershed methods. Spectral-based meth-

ods, such as thresholding and partitional clustering, group pixels into spectral

clusters based on spectral similarity measures, without considering the spatial

locations of these pixels. Spatial-spectral-based methods exploit spectral-spatial85

information in the segmentation process and allow for the merging of spatially

disjoint regions. One of the first HSI classification methodologies, that uses

segmentation as spatial post-processing, is adopted in [29]. It combines the out-

put of a pixel-wise classifier with the morphological watershed transformation.

This method is extended in [30] with the incorporation of the segmentation into90

a multiple spectral-spatial classification that uses an ensemble of classifiers.

Subsequent studies also confirm that segmentation-based post-processing can

4
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lead to a better delineation of object borders, as well as to a refinement of spa-

tial features through both outlier removal and refinement of the classification

results [31]. Finally, a recent study [32] shows that spatial features can be con-95

structed from segmentation regions and segments can be used in combination

with iterative active learning, in order to select the pixels to expand the train-

ing set. Additional spectral-spatial studies resort to a Markov Random field

regularizer [33] and a Loopy Belief propagation [34] to perform pixel-wise clas-

sification post-processing. A few hybrid methods also use a mixture of feature100

engineering and post-processing [35, 36].

In this paper, we revamp the hybrid spectral-spatial philosophy and propose

an HSI classification methodology, named SoCRATE (Spectral-spatial COrRelation

SegmenTAtion-based ClassifiEr), that includes:

• A specific combination of dimensionality reduction and spectral-spatial105

feature engineering, which deals with the curse of dimensionality and di-

rectly introduces a spatial perspective of the spectrum in the classifier to

learn. Dimensionality reduction is performed using Principal Component

Analysis (PCA) of spectral data. Feature engineering is performed rely-

ing on the geostatistics theory and building spectral-spatial features that110

measure the degree of spatial dependency of each spectral component.

• A contiguity-based algorithm for the unsupervised data segmentation, that

divides the sensed scene into regions, characterized by high spatial depen-

dency over the observed spectrum representation. It exploits contiguity

constraints to speed up the segmentation process and considers spectral-115

spatial features to model spatial dependency of spectral data during the

segmentation process. This segmentation knowledge is used twice in the

methodology: (1) to sample representative pixels for segments whose la-

bels are acquired by querying a human-supervised oracle, so that they can

be used as a training set to learn an accurate supervised classifier under120

small sample conditions, and (2) to post-process the pixel labeling pro-

duced by the learned classifier, so that outlier classifications, which are

5
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potentially wrong, can be removed.

• A two-level spectral-spatial classification pattern. The first-level applies

the learned classifier and uses the spectral-spatial profile to determine125

the classifications pixel-wise. The second-level exploits the image objects

revealed by segmentation to isolate and correct outlier predicted labels.

We note that principal component analysis, segmentation, spatial depen-

dency analysis and object-wise post-processing of predicted labels have already

been explored in the literature. However, to the best of our knowledge, the130

novelty of this study is the specific formulation adopted for these components

(in particular, for segmentation and feature construction), as well as the effec-

tiveness of the combination of these components in a methodology that actually

outperforms the classification performance of several state-of-the-art competi-

tors on various hyperspectral data sets. In particular, this study contributes135

to proving that the proposed formulation of a contiguity-constrained algorithm

for segmentation is an effective means to delineate, in an unsupervised man-

ner, the spectral objects which may help in both the training dataset definition

and outlier classification removal. In general, our methodology gains in accu-

racy compared to various classifiers, which also aid segmentation knowledge140

to yield the final classifications. Another contribution is the use of the geo-

statistics theory in the HSI classification scenario. In addition, the empirical

study proves that the proposed methodology, with features constructed using

local spatial indicators of spectral dependency, achieves competitive represen-

tation ability also compared to recent deep learning models, without requiring145

computational-demanding learning architectures and achieving improvement of

classification performance. It is interesting to note that the proposed method-

ology also outperforms several state-of-the-art methods, such as those adopting

the widely used morphological and extended morphological methods.

The remainder of this paper is organized as follows. In Section 2 preliminary150

concepts are introduced, while in Section 3 the proposed methodology is illus-

trated. Section 4 provides the details of the experiments, which are carried out

6
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in this study, and their results, along with important discussions, are reported.

In particular, the experiments described show the effectiveness of each compo-

nent of the proposed methodology, analyze the sensitivity of the performance155

of the methodology to the set-up of input parameters and compare the perfor-

mance of the performed classification to that of various recent state-of-the-art

spectral-spatial classifiers. Finally, Section 5 summarizes the conclusions.

2. Preliminary concepts

Let D be an HSI dataset, that is, a collection of n pixels. Each pixel is

a region of around a few square meters of the Earth’s surface and a function

of a hyperspectral sensor spatial resolution. It is associated to the spatial co-

ordinates XY in the image, it is characterized by an m-dimensional vector of

spectral bands S = S1, S2, . . . , Sm (spectrum) and it can, in principle, be la-

beled according to an unknown target function, whose range is a finite set of k

distinct labels, i.e. C = C1, C2, . . . , Ck. As pixels are in general equally-space

distributed over a regular grid, an HSI is represented as a matrix. Thus, the spa-

tial coordinate X is associated with the row index, while the spatial coordinate

Y is associated with the column index of the matrix. Every spectral feature Si

is numeric and expresses how much the radiation is reflected, on average, at the

i-th band of the considered spectrum, from the resolution cell of the considered

pixel. Every class Ci represents a distinct theme (i.e. type of Earth’s surface

object). A spatial neighborhood is a set of pixels q surrounding a center pixel p

in the imagery matrix. In the imagery analysis literature, spatial neighborhoods

frequently have a square shape [13], although alternative shapes like a circle or

a cross can also be considered. Let R be a positive, integer-valued radius, the

square neighborhood N(i, R) of a center pixel i is defined as follows:

N(i, R) =

X=+R
⋃

X=−R

Y=+R
⋃

Y=−R

{(xj , yj)|xj = xi +X, yj = yi + Y }, (1)

where (xi, yi) are the spatial coordinates of i.160

7
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Figure 1: Block diagram of SoCRATE (Spectral-spatial COrRelation SegmenTAtion-based

ClassifiEr).

3. Methodology

SoCRATE is a four-stepped methodology for HSI classification (see Figure

1). The first step (see Section 3.1) performs spectral-spatial pre-processing that

applies dimensionality reduction followed by spectral-spatial feature engineer-

ing, in order to deal with the curse of dimensionality and derive an informative165

spectral-spatial profile of the HSI dataset. The second step (see Section 3.2) per-

forms a contiguity-constrained segmentation of the HSI dataset over the newly

engineered spectral-spatial space, in order to separate material objects in an

unsupervised fashion. The segmentation output is subsequently considered to

identify a few representative pixels (e.g. centers of detected objects), whose la-170

bels can be manually acquired, in order to learn an accurate classifier. The third

step (see Section 3.3) learns the classifier from the segmentation-driven training

set, as it is spanned over the spectral-spatial features produced. The learned

classifier is used to predict pixel-wise the unknown labels of the HSI dataset un-

der study. Finally, the fourth step (see Section 3.4) performs a post-processing175

that re-uses the segmentation knowledge, in order to better delineate object

borders via outlier removal. The input parameters are: (1) the number of N

dimensions returned with dimensionality reduction, (2) the similarity threshold

8
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(a) Spectra bands (b) Spectral PCs

Figure 2: Pavia University data (see Section 4.1 for further details): heatmap of the Pearson

correlation matrix of spectral bands (Figure 2(a)) and heatmap of Pearson correlation matrix

of top-fifty Principal Components, expressing a partially orthogonal reduced representation

of the entire spectrum (Figure 2(b)).

ǫ, (3) the number of training samples K and (4) the radius of the square-shaped

neighborhood system R.180

3.1. Spectral-spatial pre-processing

In the pre-processing phase, a vector of spectral-spatial features is built

by reducing the dimensionality of the spectral signature and calculating local

indicators of the spatial dependency of the spectral information. We note that

these spectral-spatial features will be considered in place of the original spectral185

features in all the subsequent steps of this methodology (segmentation, pixel-

wise classification and outlier post-processing).

3.1.1. Dimensionality reduction

Principal Component Analysis (PCA) is one of the most widely used linear

feature extraction techniques, which has been proved to be a powerful HSI190

data reduction strategy [37, 38, 20]. Specifically, PCA seeks to reduce the

dimension of the data and drops the curse of dimensionality by finding a few

orthogonal linear combinations (the Principal Components – PCs) of the original

spectral bands with the largest variance. In HSI analysis, the preference for

the use of PCA for data reduction is also motivated by its ability to derive195

a collinearity-free characterization of the spectrum. The spectral bands are

strongly contemporaneously correlated with each other in the near spectrum,

9
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while the spectral principal components are contemporaneously uncorrelated

with each other. An illustration of this phenomenon can be seen in Figures

2(a) and 2(b). We note that the collinearity phenomenon among near spectral200

bands may not be simply neglected, as it leads to a series of problems, such as

unreliable coefficients and predictions, as well as aggravated data redundancy

and computational complexity [39]. In general, as discussed in [40, 41], PCA is a

mandatory step in improving the learning performance, by removing collinearity,

speeding up the learning process and reducing the data storage requirements.205

There are also valid alternatives to PCA. For example, autoencoders, that

belong to the neural network family, are similar to PCA as they can be used

for finding a low-dimensional representation of input data [42]. They minimize

the same objective function as PCA, but they are more flexible than PCA, due

to the activation function that can introduce non-linearities in the encoding.210

Although autoencoders are really a big class of potentially extremely complex

models, the advantage of PCA is that it is simple and efficient to train in

comparison. Assuming that the linear transformation of PCA fits the spectral

data accurately, it is much better to train PCA than try to select some complex

deep model. In the empirical study (see Section 4.2), we evaluate the viability215

of both PCA and autoencoders in various benchmark HSI scenarios, in order to

confirm empirically the suitability of PCA for the methodology presented.

3.1.2. Spatial dependency indicators

Once the HSI spectrum is transformed into its PCs and the HSI data are

reduced to N top-ranked PCs, new spectral-spatial features are computed by220

borrowing a local indicator of spatial dependency from the geostatistics theory

[43]. In particular, for each selected PC, a spectral-spatial feature is built by

calculating a local indicator of the spatial dependency of the considered PC.

Widely speaking, a local indicator of spatial dependency allows us to represent

spectral information with a spatial regularization, which is introduced with the225

goal of easing the discovery of deviations from global patterns of spatial asso-

ciation, as well as hot spots like local clusters. Specifically the regularization

10
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is applied, in order to reduce the labeling uncertainty due to the possible salt-

and-pepper noise that may appear in the spectral measurements (and again in

their principal components). In particular, the spectral PCs of a center pixel230

are regularized by considering the spectral information from the neighbor pixels.

Neighbors are processed to express the degree to which the spectral PC of the

pixel under consideration is part of a specific contiguous object (see [44] for a

survey). For every PC the local indicator returns one value for each pixel; this

value expresses the degree to which that pixel is part of a cluster (object). We235

note that recovering this kind of information is desirable for accurately achiev-

ing the objectives of both segmentation and classifications (steps 2 and 3 of this

methodology), i.e. distinguishing objects from spectral data and recognizing

the class (material) associated to the detected objects.

Several local indicators of spatial dependency are formulated in the geo-240

statistics literature and commonly used in geophysical data elaboration [45].

The standardized Getis and Ord local GI∗ [46] is considered here. It is a local

indicator of spatial dependency that has gained wide acceptance in clustering

studies already conducted in the geostatistics literature [47, 48, 45]. Let us con-

sider a spectral principal component PC and a center pixel i, then standardized245

Getis and Ord local GI∗(PC, i) is computed as follows:

GI∗(PC, i) =
1

√

√

√

√

√

S2

n−1



n

n
∑

j=1,j 6=i

w(ij)2 −W (i)2









n
∑

j=1,j 6=i

wijPC(j)− PC W (i)



,

(2)

where PC(i) is the value of PC collected at pixel i, PC =

∑

i∈D

PC(i)

cardinality(D) is the

mean of the data measured for PC over the entire dataset, w(ij) is a spatial

(Gaussian or bi-square) weight between the pixels i and j over the neighborhood

structure of the HSI, W (i) =

n
∑

j=1,j 6=i

w(ij) and S2 =

n
∑

j=1

(PC(j)− PC)2

n
. In250

11
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this study w(i, j) is computed as in [45], that is, w(i, j) = 1√
d(i,j)

, if j belongs

to the square-shaped neighborhood of i (i.e. j ∈ N(i, R) according to Formula

1) , 0 otherwise. d(·, ·) is the Euclidean distance computed between the spatial

coordinates XY of the considered pixels. According to the theory reported in

[46] a positive value for GI∗(PC, i) indicates clusters of high values around i,255

while a negative value for GI∗((PC, i) indicates clusters of low values around i.

This theory inspires our understanding that the calculus of this peculiar spatial

dependency indicator can contribute to derive a joint spectral-spatial feature

space that will be especially appropriate for the specific objective of both the

segmentation step (see Section 3.2) and classification step (see Section 3.3). The260

foundation of this intuition will also be empirically evaluated in Section 4.2.

Finally, every new computed joint spectral-spatial feature is scaled into the

range [0, 1] according to the transformation:

ĜI
∗
(PC, i) =

GI∗(PC, i)−min
i∈D

GI∗(PC, i)

max
i∈D

GI∗(PC, i)−min
i∈D

GI∗(PC, i)
. (3)

This transformation is applied to solve the problem of combining features,

whose range, that potentially ranges between −∞ and +∞, may also differ in265

its orders of magnitude.

3.2. Segmentation and training sampling

The segmentation of the HSI dataset is performed in the space of the joint

spectral-spatial features, which are computed as described in Section 3.1. It

aims at discovering the image regions (namely segmentation objects) , where270

the distribution of spectral information is smoothly continuous over space, with

boundaries possibly marked by sharp discontinuities, which can be observed in

the spatial dependency of the spectrum. The segments are used to identify

representative pixels throughout the HSI dataset. The labels of these sampled

pixels are acquired by querying a human-supervised oracle and used to popu-275

late the training set to learn an accurate supervised classifier. The introduction

of this segmentation-stratified sampling is based upon the idea that the un-

12
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known class of a pixel is a spectral response of the pixel itself. In particular,

the expected outcome is that the segmentation objects, although discovered in

an unsupervised manner (i.e. without the label information), reasonably delin-280

eate the distribution of the unknown classes over the space. Hence, sampling

per segment allows the safe acquisition of labels, which are plausibly stratified

among the various unknown classes, without knowing apriori how the classes

are actually distributed throughout the HSI dataset.

The segmentation process is two-stepped. The first step (details in Section285

3.2.1) divides the HSI dataset into micro-objects, in order to reduce the number

of samples for the segmentation and to speed up the entire process. For this

step a contiguity-constrained algorithm is adopted. Procedurally it performs

a region-growing process that grows each segementation region from a seed

pixel by evaluating the similarity of the joint spectral-spatial data at contiguous290

pixels. We note that the region-growing approach is being widely used for

remote sensing applications, as it guarantees the creation of closed regions [49].

It is preferred in this study, as it is a conceptually simple and yet effective

and robust technique for performing segmentation. It performs well also in the

presence of noise and gives very good segmentations, which correspond well295

to the object edges. In particular, it can fit the requirements of learning under

spatial dependency and takes advantage of contiguity constraints between pixels

to reduce the number of possible solutions. It can also force the algorithm to

converge fast onto largely similar areal boundaries as shown in [50, 51].

In this study, the region-growing approach embeds a homogeneity function

that allows us to use the model spatial dependency of spectral data during the

segmentation process. It is controlled by a spectral similarity threshold ǫ (i.e.,

a user-defined threshold, ranging between 0 and 1). The higher the similarity

threshold, the lower the number of discovered micro-objects. The second step

(details in Section 3.2.2) derives the final segmentation objects by resorting to

an agglomerative procedure that aggregates contiguous, similar micro-objects

to form K final objects. This reduces the possible over-segmentation in the

region-growing results by allowing us to control the final number of segments.

13
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We note that both steps use contiguity constraints defined on the basis of a

contiguity relationship between pixels. Let i and j be two pixels of the HSI

dataset (i, j ∈ D) . They are contiguous if and only if j belongs to the square-

shaped neighborhood of i built with radius R = 1 (N(i, 1), defined according to

Formula 1), that is:

contiguous(i, j) iff j ∈ N(i, 1). (4)

Once the segmentation objects are identified, they are used to sample pixels for300

the oracle (details in Section 3.2.2) .

3.2.1. Micro-object discovery

The discovery starts assigning ι = 1, where ι enumerates the computed

micro-objects. The construction of a new micro-object Oι starts with a seed i

that is an HSI pixel still un-assigned to any micro-object. The seed is selected

by exploring the imagery matrix row by row (from left to right and top to

bottom). The pixel i is added to Oι, while Oι is expanded by using i as the seed

of the expansion process. The expanded micro-object Oι is added to the output

structure O. ι is incremented by one and the discovery process is iteratively

repeated until all the pixels are assigned to a micro-object. The expansion of

Oι is driven by a seed pixel i and is recursively defined. First, the contiguity

pixel set E(i) having a seed i is constructed by considering pixels j, which are

contiguous to i according to Formula 4 and still un-assigned to any micro-object.

Formally,

E(i) = {j ∈ D|un− assigned(j) ∧ contiguous(i, j)}. (5)

Then candidate micro-object tempO = Oι ∪ E(i) is built. The average dissim-

ilarity diss(·) is computed on candidate micro-object tempO spanned on the

14
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joint spectral-spatial feature space. Formally,

diss(tempO) =

N
∑

p=1

λ(PCp)

(

max
i∈tempO

ĜI
∗
(PCp, i)− min

i∈tempO
ĜI

∗
(PCp, i)

)

N
∑

p=1

λ(PCp)

,

(6)

where λ(PCp) is the eigenvalue-based rank assigned to PCp during the PCA.

Two cases are distinguished: in the former case, tempO satisfies the dissimilarity

condition (i.e., diss(tempO) ≤ ǫ) and then pixels of E(i) are definitely assigned305

to Oι. In the latter case, tempO does not satisfy the dissimilarity condition

and the addition of each pixel of E(i) to Oι is evaluated pixel-by-pixel. In both

cases pixels newly assigned in Oι are iteratively chosen as seeds to continue the

expansion process. The expansion process stops if no new pixel is added to the

micro-object.310

3.2.2. Agglomerative segmentation

The agglomerative segmentation starts elaborating the object set O as it

is constructed by the micro-object discovery.1 It iteratively merges a pair of

objects which are selected over current O, until the number of objects left in O
is less than or equal to K (i.e. the iterative step stops when the HSI dataset

is segmented into K segmentation objects).2 At each iteration, the objects

(O′
i,O

′
j), which are identified for the merge operation, represent the two objects

of O, which are contiguous across space, whose merge (the object O′
i ∪ O′

j)

achieves the minimum dissimilarity over current O, that is:

(O′
i,O

′
j) = argmin

Oi∈O,Oj∈O,Oi 6=Oj ,contiguous(Oi,Oj)

diss(Oi ∪Oj). (7)

1If the micro-object discovery is excluded, O is naively populated with one micro-object

formed for every pixel in the HSI dataset.
2If O initially collects less than K micro-objects, no iteration of the agglomerative segmen-

tation is actually performed.

15
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Objects Oi and Oj are contiguous across space if and only if a pixel i ∈ O′
i and

a pixel j ∈ O′
j exist, so that the contiguity relationship between i and j (i.e.,

contiguous(i, j)) is verified according to Formula 4.

3.2.3. Segmentation-based sampling315

The sampling procedure is geometrically defined by accounting for the shape

of the segmentation. In this study the shape of a segmentation object O ∈ O is

represented through the Minimum Bounding Rectangle (MBR) that envelopes

the pixels enclosed in O. The center of the MBR is determined, in order to

represent the internal part of the object, while the cardinal point vertices of the320

MBR are determined, in order to represent the boundary of the object. The

pixels to query the oracle are then sampled as the closest to these vertices.

Procedurally, for each segmentation object O ∈ O, the coordinates minX,

maxX, minY and maxY are firstly computed as follows:

minX = min
x

{x|x = xi, i ∈ O} minY = min
y

{y|y = yi, i ∈ O},

maxX = max
x

{x|x = xi, i ∈ O} maxY = max
y

{y|y = yii ∈ O}.
(8)

They are used to determine the coordinates of the center (minX+maxX
2 , minY+maxY

2 ),325

as well as the coordinates of the north-west vertex (minX,maxY ), the south-

east vertex (maxX,minY ), the north-east vertex (maxX,maxY ), the south-

west vertex (minX,minY ), the north vertex (minX+maxX
2 ,maxY ), the south

vertex (minX+maxX
2 ,minY ), the west vertex (minX, minY+maxY

2 ) and the east

vertex (maxX, minY+maxY
2 ) of mbr(O). Then the segmentation objects are330

sorted by their cardinality (the number of pixels they enclose) and repeatedly

explored until K labels are acquired for the oracle. In the first exploration, for

each object O ∈ O, the object pixel closest to the center of mbr(O) is selected

for the oracle. Ideally O contains K objects, so querying the oracle to acquire

the central label of each segmentation object will be sufficient to complete the335

construction of the training set (and acquire K labels). However, there are two

cases where this ideal condition may not be satisfied: (1) O contains less than

K objects (due to the use of high ǫ in the micro-object discovery step) or (2) the

16
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oracle is unable to provide the label for a query pixel. In both cases, the explo-

ration of O is iterated until K labels are acquired or all the pixels are queried.340

Each new exploration of O is driven by one of the cardinal points, so that, for

each segmentation object, the object pixel un-queried before and closest to the

cardinal point vertex under consideration is sampled for the oracle.

3.3. Pixel-wise classification

Let us consider the training set L, that is the set of K pixels, whose labels345

are acquired by querying the oracle (see details in Section 3.2). L is spanned

over the joint spectral-spatial feature space (see details in Section 3.1) and the

class feature. A supervised classifier γ : ĜI
∗
(PC1) × . . . ,×ĜI

∗
(PCN ) 7→ C is

learned from L. This is a pixel-wise classifier, as it allows us to assign a class

to every pixel. This is a spectral-spatial classifier, as it is learned on a feature350

space that synthesizes the spectral information with a spatial regularization.

This classifier can be used to determine pixel-wise the unknown label of any

pixel of an HSI dataset.

Technical remarks. The inductive Support Vector Machine (SVM) with the

Gaussian kernel [52] is selected as the base algorithm to learn the pixel-wise355

classifier. This choice is motivated by several studies reported in the literature

(e.g. [13, 31, 53, 16, 17]), which show that inductive SVMs with a Gaussian

kernel are applied to hyperspectral image classification with great success, out-

performing several other inductive classifiers. In particular, experiments in [16]

prove that the Gaussian kernel is better than the Linear kernel in the consid-360

ered scenario. As the SVM is defined in the literature for binary classification

problems, the “one-against-all” strategy is used, in order to adapt the binary

classifier to the multi-class problem. Previous investigations [16, 17] have also

shown that the accuracy of SVMs, learned in the hyperspectral scenarios, varies

significantly with γ, while it is approximately stable with C. Based upon this365

observation, SVMs are learned with parameter C = 64, while parameter γ is

optimally selected according to a grid-search method and a three-fold cross vali-

dation (3-CV) of the labeled set. Specifically, the grid search is used, in order to

17
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find the value of γ that yields the best average 3-CV OA on the configurations

with γ ranging among 2−4, 2−3, 2−2, 2−1, 1, 21, 22, 23, 24 and 25.370

3.4. Object-wise post-processing

This pixel-wise classification can be subsequently refined, in order to remove

possible outlier classifications. The outlier removal is object-wise, as it uses the

texture introduced by the discovered segmentation and forces the assignment

of the predominant class in the segmentation object to each pixel in the object375

under consideration. Procedurally, let us consider a segmentation object O ∈ O,

then the class C(O) is the most frequent label associated to a pixel of O. This

class is forcefully assigned to each pixel in O, if the class entropy measured over

the collection of pixel-wise labels acquired/predicted in O is greater than 0.5.

This entropy-based condition is imposed to apply the object-wise refinement380

only to the outliers, which emerge in those objects where there is a class that is

actually predominant with respect to the others.

4. Experimental evaluation and discussion

SoCRATE, whose implementation is publicly available,3 is written in Java.

The Java implementation of SVM, included in the 3.6 WEKA toolkit, is used.385

Three benchmark hyperspectral images (see Subsection 4.1) are considered, in

order to validate its effectiveness in terms of accuracy and efficiency. The ac-

curacy performance is evaluated with Overall Accuracy (OA), Average Accu-

racy (AA) and Cohen’s kappa coefficient (κ) [54].4 These accuracy metrics are

computed on the testing ground-truth samples, which are overlooked when the390

supervised classifier is learned. The efficiency performance is evaluated with

the computation time (TIME), spent in seconds completing the learning process

3http://www.di.uniba.it/~appice/software/SoCRATE/index.htm
4Overall Accuracy measures the percentage of correctly classified samples. Average Accu-

racy measures the average percentage of correctly classified samples for an individual class.

Cohen’s kappa coefficient measures the percentage agreement corrected by the level of agree-

ment that could be expected by chance alone.

18
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on ReCaS cloud, CPU 1:8 @ 2Ghz 2,16.0 GB RAM, running Ubuntu 14.04.4

(GNULinux 3.13.0-39-generic x86–64). The presentation of the results is or-

ganized as follows. Initially the effectiveness of the pre-processing (PCA and395

spatial dependency analysis), post-processing (outlier removal via object-wise

classification) and segmentation components is evaluated. To this purpose the

performance of SoCRATE is compared to that of its baselines which are de-

rived without using the PCA, the spatial dependency analysis, the segmenta-

tion knowledge and/or the object-wise classification (see Subsection 4.2). Sub-400

sequently, the sensitivity of the performance of SoCRATE is evaluated along the

parameter configuration – the number of principal components, the size of the

neighborhood, the segmentation similarity threshold and the base classification

algorithm (see Subsection 4.3). Finally, a brief discussion of recent evaluation re-

sults, reported in the hyperspectral image classification literature, is illustrated405

(see Subsection 4.4).

4.1. Hyperspectral datasets

Three well-known publicly available real hyperspectral datasets, namely In-

dian Pines, Pavia University and Salinas Valley,5 are used in this experimental

study. These three datasets have different spatial resolutions and they were410

also acquired from different types of land cover (agriculture and urban ar-

eas), using two different sensors (AVIRIS and ROSIS). Therefore, the three

datasets are selected for the present study to demonstrate the general appli-

cability of the proposed approach. These datasets are also considered in the

majority of recent, relevant studies on hyperspectral image classification (e.g.415

[17, 22, 23, 24, 20, 55, 25, 26]).

4.1.1. Indian Pines

This dataset was obtained by the Airborne Visible Infrared Imaging Spec-

trometer (AVIRIS) sensor over the Indian Pines region, in Northwestern Indiana,

5http://www.grss-ieee.org/community/technical-committees/data-fusion/
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Table 1: Details of the class ground-truth for Indian Pines (columns 1-2), Pavia University

(columns 3-4) and Salinas Valley (columns 5-6) datasets.

Indian Pines Pavia University Salinas Valley

Class name Pixels Class name Pixels Class name Pixels

Alfalfa 46 Asphalt 6631 Brocoli green weeds 1 2009

Corn-notill 1428 Meadows 18649 Brocoli green weeds 2 3726

Corn-mintill 830 Gravel 2099 Fallow 1976

Corn 237 Trees 3064 Fallow rough plow 1394

Grass-pasture 483 Painted metal sheets 1345 Fallow smooth 2678

Grass-trees 730 Bare Soil 5029 Stubble 3959

Grass-pasture-mowed 28 Bitumen 1330 Celery 3579

Hay-windrowed 478 Self-Blocking Bricks 3682 Grapes untrained 11271

Oats 20 Shadows 947 Soil vinyard develop 6203

Soybean-notill 972 - - Corn weeds 3278

Soybean-mintill 2455 - - Lettuce romaine 4wk 1068

Soybean-clean 593 - - Lettuce romaine 5wk 1927

Wheat 205 - - Lettuce romaine 6wk 916

Woods 1265 - - Lettuce romaine 7wk 1070

Building-Grass-Trees 386 - - Vineyard untrained 7268

Stone-Steel-Towers 93 - - Vineyard vertical trellis 1807

Unknown 10776 Unknown 164624 Unknown 56975

Total 21025 Total 207400 Total 111104

(a) Indian Pines (b) Pavia University (c) Salinas Valley

Figure 3: The ground-truth map (with known classes) of Indian Pines (Figure 3(a)), Pavia

University (Figure 3(b)) and Salinas Valley (Figure 3(c)) datasets.

in 1992. The dataset covers mostly an agricultural area. It consists of 145×145420

pixels with 20 m spatial resolution and 224 spectral bands in the 0.4–2.5 µm

wavelength range . The number of bands is reduced to 200 by removing wa-

20
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ter absorption bands ([104–108], [150–163], 220). The dataset contains 10249

labeled pixels, which are classified in 16 mutually exclusive land-cover classes.

A description of the dataset is reported in Table 1, while a map of the land-425

cover is shown in Figure 3(a). As reported in [13], this dataset represents a

very challenging land-cover classification scenario, in which the primary crops

of the area (mainly corn and soybeans) were very early in their growth cycle,

with only about 5% canopy cover. Discriminating among the major crops under

these circumstances can be a very difficult task. This scenario is also made more430

complex by the imbalanced number of available labeled pixels per class.

4.1.2. Pavia University

This dataset was obtained by the Reflective Optics System Imaging Spec-

trometer (ROSIS) sensor during a flight campaign over the Engineering School

at the University of Pavia in 2003. The dataset covers an urban area with some435

buildings and large meadows. It comprises 610×340 pixels with a spatial resolu-

tion of 1.3 m and reflectance information of 103 spectral bands in the 0.43–0.86

µm wavelength range . The dataset contains 42776 labeled pixels, which belong

to 9 different urban-cover classes. A description of the dataset is reported in

Table 1, while a map of the ground-truth urban-cover classes is shown in Figure440

3(b).

4.1.3. Salinas Valley

This dataset was acquired by AVIRIS over Salinas Valley, Southern Cali-

fornia, in 1998. The dataset covers mostly an agricultural area. It contains

512× 217 pixels with 20 m spatial resolution and 224 spectral bands in the 0.4–445

2.5 µm wavelength range. As with the Indian Pines scene, the number of bands

is reduced to 200 by removing water absorption bands. The dataset contains

54129 labeled pixels, which belong to 16 different classes, including vegetables,

bare soils and vineyard fields. A description of the dataset is reported in Table

1, while a map of the ground-truth land-cover classes is shown in Figure 3(c).450
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4.2. Comparative analysis

The three datasets described in Subsection 4.1 are considered. The dimen-

sionality reduction is run with the number of dimensions N = 50, the spectral-

spatial dependency analysis is run with radius R = 7, the segmentation is run

with the similarity threshold ǫ = 0.05. The accuracy and efficiency of the evalu-455

ated learning methodology is analyzed with the training sample size K ranging

between 1% and 5% of the ground-truth sample size.

4.2.1. Pre-processing analysis

We start by evaluating the performance of the proposed methodology with

respect to the two steps of the pre-processing phase, specifically the dimensional-460

ity reduction and the spatial dependency analysis. To this purpose, we compare

SoCRATE to different baseline configurations, namely SoCRATE-GI, SoCRATE-

PCA, SoCRATE-AUTO+GI, SoCRATE-AUTO and SoCRATE-NONE (see details

in Table 2). SoCRATE performs the PCA, in order to reduce the dimension-

ality of the spectral data and computes the local Getis and Ord indicator of465

the extracted principal components to derive the spatial information. Baselines

SoCRATE-AUTO+GI and SoCRATE-AUTO replace the PCA with an autoen-

coder. The input size of the autoencoder is the spectral signature size, while

the output size is 50 (as for the PCA). The autoencoder considered for this study

includes 2 hidden layers with RELU as the activation function. The optimizer470

ADAM is adopted with MSE as the loss. The fitting procedure is iterated on

Table 2: Compared pre-processing configurations of SoCRATE. They are defined along the di-

mensionality reduction (principal component analysis – PCA, Autoencoder or No dimension-

ality reduction – NONE) and the spatial dependency analysis (Local Getis and Ord Indicator

– GI or No spatial dependency analysis – NONE).

Configuration Dimensionality reduction (N = 50) Spatial dependency analysis (R = 7)

SocRATE PCA GI

SoCRATE-GI NONE GI

SoCRATE-PCA PCA NONE

SoCRATE-AUTO+GI Autoencoder GI

SoCRATE-AUTO Autoencoder None

SoCRATE-NONE NONE NONE
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Table 3: Time spent in seconds computing the dimensionality reduction (DR TIME) via PCA

or autoencoder, as well as accuracy performance (OA, AA and k) of classification done with

both dimensionality reduction techniques considered, N = 50, R = 7 and ǫ = 0.03. The

training sample size is equal to 5% of the ground-truth sample size. The autoencoder is run

with three different layer architectures, that is, 256× 128, 512× 256 and 1024× 512.

Dataset/DR Metric PCA
Autoencoder

256 × 128 512 × 256 1024 × 512

Indian Pines

DR TIME 48.061 46.955 97.954 326.827

OA .9818 .9579 .9474 .9634

AA .9793 .9606 .9376 .9453

k .9792 .9520 .9401 .9582

Pavia University

DR TIME 260.699 378.444 862.679 2999.018

OA .9984 .9986 .9990 .9951

AA .9971 .9606 .9981 .9935

k .9979 .9520 .9987 .9935

Salinas Valley

DR TIME401.280 568.826 1058.663 1778.336

OA .9994 .9982 .9810 .9928

AA .9993 .9990 .9915 .9971

k .9993 .9980 .9787 .9920

100 epochs. Three two-layer architectures, namely, 256 × 128, 512 × 256 and

1024 × 512, are evaluated. For each experiment, the autoencoder architecture

that maximizes the OA of the object-wise classification is finally considered for

the subsequent comparative analysis.475

Setting-up apriori the architecture of the autoencoder is neither computation-

free nor negligible as a problem, since the quality of the features, that changes

with the architecture, may impact on the accuracy of the entire classification

process. These considerations are supported by the results illustrated in Table 3.

They represent the computation time (in secs) spent computing either the PCA480

or the autoencoder, as well as the accuracy (OA, AA and k) of the object-wise

classifications yielded when the features computed by either the PCA or the

autoencoder are considered for the spatial dependency analysis. These results

confirm that computing the autoencoder is less efficient than deriving the prin-

cipal components. In addition, the more complex the architecture, the higher485

the computation cost of the autoeconder. In any case, the final classification

accuracy depends on the architecture of the autoencoder, while the architec-
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ture with the best performance may change in each experiment.6 On the other

hand, the final classification accuracy achieved with the principal components

is always comparable to the best accuracy achieved with the autoencoder. This490

reveals that the linear transformation is commonly sufficient to accurately fit

the hypespectral data. This motivated our decision to consider the principal

components. To complete the comparative study, we also consider baselines

SoCRATE-GI and SoCRATE-NONE, which do not use any dimensionality reduc-

tion technique, while baselines SoCRATE-PCA, SoCRATE-AUTO and SoCRATE-495

NONE do not perform the spatial dependency analysis. For the six configura-

tions, we evaluate the accuracy of the object-wise classification achieved after

the segmentation-aided post-processing.

Table 4 reports the classification performance (OA, AA, k and TIME) achieved

with training sample size equal to 5% of the ground-truth sample size. In addi-500

tion, Figures 6(a)-6(c), Figures 6(d)-6(f) and Figures 6(g)-6(i) show the change

in OA, AA and TIME with the training sample size growing from 1% to 5%.

The collected results confirm that the dimensionality reduction, coupled with

the spatial dependency analysis, actually contributes to a gain in both accuracy

and efficiency. SoCRATE and SoCRATE-AUTO+GI always achieve the highest505

accuracy in this comparative study. As anticipated in the preliminary analysis of

the autoeconder, SoCRATE (with principal components) commonly outperforms

SoCRATE-AUTO+GI (with an autoencoder) in Indian Pines and Salinas Valley,

while SoCRATE-AUTO+GI is slightly more accurate (but still less efficient) than

SoCRATE in Pavia University. This consideration is valid independently of the510

training sample size evaluated. The accuracy performance is motivated by the

fact that the principal components (as well as the autoencoder features) reduce

data dimensionality and derive a collinearity-free characterization of the correla-

tion in the spectral signature, while the collinearity phenomenon, if overlooked,

6Due to limited, the results of this analysis are only reported for the experiments run with

training sample size equal to 5% of the ground-truth sample size. In any case, the reported

considerations are independent of the training sample size.
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may lead to a series of problems, such as unreliable predictions, that aggravate515

data redundancy and computational complexity [56].

On the other hand, the spatial dependency information introduces a spa-

tial smoothing of the spectral signature (see the heatmaps in Figures 4(a)-4(j)),

which can correct potential spurious inference [57]. In any case, the spatial

dependency analysis contributes more than the PCA (or autoencoder) to the520

observed gain in accuracy. This is confirmed by the observation that both

the PCA and the autoencoder, separated from the spatial dependency anal-

ysis (SoCRATE-PCA and SoCRATE-AUTO), even achieve the lowest accuracy

in this comparative analysis, while the spatial dependency analysis, separated

from both types of dimensionality reduction (SoCRATE-GI), still achieves the525

runner-up accuracy (after SoCRATE and SoCRATE-AUTO+GI). We also note

that, although the principal components coupled with the spatial dependency

analysis (SoCRATE) generally outperform the autoencoder coupled with the spa-

tial dependency analysis (SoCRATE-AUTO+GI), the autoencoder, separated by

the spatial dependency analysis (SoCRATE-AUTO), outperforms the PCA, sep-530

arated by the spatial dependency analysis (SoCRATE-AUTO). This empirically

proves that the proposed spatial smoothing, performed with the local indica-

tor computation, is especially effective coupled with the linear transformation

introduced by the principal components, as proposed in this study.

Coherent conclusions can also be drawn from the analysis of the efficiency535

performance. In fact, coupling the dimensionality reduction (both PCA and

autoencoder) with the spatial dependency analysis (SoCRATE and SoCRATE-

AUTO+GI) makes the computation faster, although the autoencoder is slower

than the PCA. On the other hand, neglecting both these analysis components

– dimensionality reduction and spatial dependency analysis (SoCRATE-NONE)540

– makes the computation slower. A more detailed interpretation of this per-

formance can be derived by analyzing how the computation time is progressing

on the learning process. Figures 5(a)-5(c) show the progress report of the cu-

mulative computation time in each step of the learning process (dimensionality

reduction, spatial dependency analysis, scaling, segmentation and classification)545
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for the compared configurations. The majority of the computation time is spent

performing the segmentation. This also explains the observation that the com-

putation time spent completing the learning process commonly decreases as the

training sample size increases (see Figure 6(g)-6(g)). In fact, the training sample

size defines the segmentation granularity, so that the smaller the training sam-550

ple size, the finer-grained the segmentation output and, consequently, the longer

the time spent completing the segmentation step and then the entire learning

process. On the other hand, the spatial smoothing of the spectral information

(performed by SoCRATE, SoCRATE-GI and SoCRATE-AUTO+GI), thanks to a

reduction of possible spectral noise, actually diminishes the time spent comput-555

ing the segmentation of the dataset and, consequently, makes the entire learning

process faster. Finally, there is a computational cost for performing the dimen-

sionality reduction. However, in both SoCRATE and SoCRATE-AUTO+GI, this

cost is regained when the spectral variables make way for their principal compo-

nents (or autoencoder features) in the subsequent steps of the learning process.560

All the previous considerations contribute to assessing that all the learning com-

ponents of the pre-processing of the defined methodology actually characterize

the effectiveness of SoCRATE, expressed in terms of both accuracy and efficiency.

4.2.2. Post-processing analysis

We proceed by investigating the benefit of the object-wise refinement applied565

to the pixel-wise classifications during the post-processing step. For this inves-

tigation P-SoCRATE denotes the performance of the pixel-wise classifier with-

out any object-wise refinement. Table 5 reports the classification performance

achieved with training sample size equal to 5% of the ground-truth sample size.

In addition, Figures 7(a)-7(c), Figures 7(d)-7(f) and Figures 7(g)-7(i) show the570

change in OA, AA and ∆TIME according to the training sample size. ∆TIME

denotes the time spent performing the object-wise refinement after the pixel-

wise classifications have been determined (i.e. the difference in TIME between

SoCRATE and P-SoCRATE).

These results show that the time spent refining the pixel-wise classifications575
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Table 4: Performance (OA, AA, k and TIME) of SoCRATE, SoCRATE-GI, SoCRATE-PCA,

SoCRATE-AUTO+GI, SoCRATE-AUTO and SoCRATE-None with N = 50, R = 7, ǫ = 0.03 for

the three datasets. The training sample size is equal to 5% of the ground-truth sample size.

Dataset Configuration OA AA κ TIME(secs)

Indian Pines

SoCRATE .9818 .9793 .9792 474.694

SoCRATE-GI .9564 .9172 .9502 957.969

SoCRATE-PCA .5390 .5071 .4872 2580.045

SoCRATE-AUTO+GI .9634 .9453 .9582 717.944

SoCRATE-AUTO .6191 .5542 .5721 2416.036

SoCRATE-NONE .6302 .5621 .5881 4048.111

Pavia University

SoCRATE .9984 .9971 .9979 5928.607

SoCRATE-GI .9753 .9592 .9667 11891.068

SoCRATE-PCA .7192 .6623 .6306 20579.616

SoCRATE-AUTO+GI .9990 .9981 .9987 16656.222

SoCRATE-AUTO .9068 .8348 .8736 70461.307

SoCRATE-NONE .9021 .8157 .8680 74405.708

Salinas Valley

SoCRATE .9994 .9993 .9993 608.847

SoCRATE-GI .9957 .9972 .9952 434.175

SoCRATE-PCA .8653 .8690 .8502 3868.436

SoCRATE-AUTO+GI .9982 .9990 .9980 824.780

SoCRATE-AUTO .9109 .9506 .9007 1171.230

SoCRATE-NONE .9317 .9576 .9241 6393.436

with the segmentation-aided information is negligible (see ∆TIME). On the other

hand, the use of the object-wise refinement improves the accuracy of the initial

pixel-wise classification, although the strength of this gain in accuracy increases

as the training sample size diminishes (see, for example, the maps in Figures

8 per class for Indian Pines). This phenomenon can be easily explained by580

observing that the accuracy of the pixel-wise classifier naturally increases with

the size of the labeled training sample. Therefore, starting from more accurate

pixel-wise classifiers makes the request of exploiting object-aided information

less substantial, in order to correct fictional spurious pixel-wise classifications.

This consideration is also confirmed by analyzing the accuracy (true positive585

rate - recall) computed per class.

The recall results are reported in Table 6 for P-SoCRATE and SoCRATE,

Indian Pines dataset, with both 1% and 5% of ground-truth samples selected

during the segmentation-aided training phase. Once again these results high-
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Indian Pines

(a) PC1 (b) GI PC1 (c) AE1 (d) GI AE1

Pavia University

(e) PC1 (f) GI PC1 (g) AE1 (h) GI AE1

Salinas Valley

(i) PC1 (j) GI PC1 (k) AE1 (l) GI AE1

Figure 4: Heatmaps of PC1 (Figures 4(a),4(e) and 4(i)), GI PC1 (Figures 4(b),4(f) and

4(j)), AE1 (Figures 4(c),4(g) and 4(k)), GI AE1 (Figures 4(d),4(h) and 4(l)), for Indian

Pines, Pavia University and Salinas Valley datasets.

light the benefit of the object-wise refinement when the training sample size is590

equal to only 1% of the ground-truth sample size. In this case, the object-wise

refinement outperforms (or performs equally to) the pixel-wise classification for

each class. On the other hand, the object-wise refinement slightly worsens the

classifications for six out of sixteen land-cover classes (“Alfaalfa”, “Corn-notill”,

“Corn-mintill”,“Grass pasture”, “Soybean-notill” and “Stone-Steel-Towers”),595

when the training sample size is equal to 5% of the ground-truth sample size. It

outperforms (or performs equally to) the pixel-wise classification of the pixels in

the remaining land cover classes. We note that two groups of worsened classifi-
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(a) Indian Pines (b) Pavia University (c) Salinas Valley

Figure 5: Progress report of the cumulative computation time (axis Y) with the steps of the

learning process (axis X - DR denotes the dimensionality reduction (PCA or autoencoder),

GI denotes the spectral-spatial analysis, Scale denotes the scaling step, Segm denotes the

segmentation and Class denotes the classification) performed by the compared configura-

tions (SoCRATE, SoCRATE-GI, SoCRATE-PCA, SoCRATE-AUTO+GI, SoCRATE-AUTO and

SoCRATE-NoPCAGI) for Indian Pines, Pavia University and Salinas Valley datasets.

Table 5: Performance (OA, AA, k, TIME and ∆TIME) of both SoCRATE and P-SoCRATE with

N = 50, R = 7 and ǫ = 0.03 for the three datasets. The training sample size is equal to 5%

of the ground-truth sample size.

Dataset Configuration OA AA κ TIME(secs) ∆TIME

Indian Pines
SoCRATE .9818 .9793 .9792 474.518

.176
P-SoCRATE .9816 .9780 .9790 474.694

Pavia University
SoCRATE .9984 .9971 .9979 5928.607

.431
P-SoCRATE .9982 .9968 .9976 5928.176

Salinas Valley
SoCRATE .9994 .9993 .9993 608.584

.246
P-SoCRATE .9994 .9994 .9993 570.270

cations concern pixels of minority classes (“Alfaalfa” and “Stone-Steel-Towers”).

They contribute to the calculation of the final average accuracy, independently600

of the class cardinality. This analysis confirms that, also in this particular case,

the object-wise refinement may yield an overall advantage. However, it also

suggests the need for further investigation to improve the object-wise set-up in

the presence of minority classes.
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(a) Indian Pines (b) Pavia University (c) Salinas Valley

(d) Indian Pines (e) Pavia University (f) Salinas Valley

(g) Indian Pines (h) Pavia University (i) Salinas Valley

Figure 6: OA (axis Y - Figures 6(a)-6(c)), AA (axis Y - Figures 6(d)-6(f)) and TIME (axis Y -

Figures 6(g)-6(i)) of SoCRATE, SoCRATE-GI, SoCRATE-PCA, SoCRATE-AUTO+GI, SoCRATE-

AUTO and SoCRATE-NoPCAGI, run with N = 50, R = 7, ǫ = 0.03 and training sample size

(axis X) ranging among 1%, 2%, 3%, 4% and 5% of the ground-truth sample size for the three

datasets.

4.2.3. Training sample selection605

We investigate how the use of the segmentation-aided information actually

conditions the training sample set definition. In the absence of segmentation

information and without any prior knowledge of the ground-truth class distribu-

tion, the training pixels should be randomly selected across the image dataset.

So, we repeat the random sampling procedure on ten trials and compare the610

average performance achieved by the pixel-wise classifiers, learned from the ran-
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(a) Indian Pines (b) Pavia University (c) Salinas Valley

(d) Indian Pines (e) Pavia University (f) Salinas Valley

(g) Indian Pines (h) Pavia University (i) Salinas Valley

Figure 7: OA (axis Y - Figures 7(a)-7(c)), AA (axis Y - Figures 7(d)-7(f)) and ∆TIME (axis

Y - Figures 7(g)-7(i)) of both SoCRATE and P-SoCRATE, run with N = 50, R = 7, ǫ = 0.03

and training sample size (axis X) ranging among 1%, 2%, 3%, 4% and 5% of the ground-truth

sample size for the three datasets.

dom training sample sets, to the performance of both the pixel-wise classifier

(P-SoCRATE) and the object-wise refinement (P-SoCRATE), which account for

the segmentation-aided information in the selection of the training samples.

We note that, as the object-wise refinement is unavailable without the knowl-615

edge embedded in the segmentation output, the performance of the pixel-wise

classifier is the only option that can be considered with the random sampling

procedure.
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(a) P-SoCRATE (b) SoCRATE

Figure 8: Pixel-wise classification map (P- SoCRATE - Figure 8(a)) and object-wise classifi-

cation map (SoCRATE - Figure 8(b)) for the Indian Pines dataset, with training sample size

equal to 1% of the ground-truth size.

Table 6: Number of training samples (#Tr) automatically selected using the segmentation-

stratified sampling procedure; true positive rate (recall) per class of both SoCRATE and P-

SoCRATE, with N= 50, R = 7, ǫ = 0.03 for Indian Pines. Training size =1% (columns 2-4)

and 5% (columns 5-7). The highest accuracy is in bold.

Class #Tr P-SoCRATE SoCRATE #Tr P-SoCRATE SoCRATE

Training size 1% 5%

Alfaalfa 2 1.00 1.00 4 .952 .928

Corn-notill 14 .848 .860 76 .978 .975

Corn-mintill 6 .507 .529 34 .948 .944

Corn 2 .782 .782 13 1.0 1.0

Grass-pasture 7 .829 .831 27 .993 .991

Grass-trees 10 .844 .847 38 .966 .968

Grass-pasture-mowed 1 .851 .851 2 .961 .961

Hay-windrowed 9 .950 .961 36 1.00 1.00

Oats 0 .000 .000 2 .944 1.00

Soybean-notill 8 .677 .692 44 .984 .983

Soybean-mintill 16 .871 .888 92 .983 .986

Soybean-clean 7 .726 .781 44 .961 .967

Wheat 1 .504 .504 9 1.00 1.00

Woods 14 .984 .992 62 .990 1.00

Building-Grass-Trees 4 .801 .853 23 .997 .997

Stone-Steel-Towers 2 .945 .945 7 .976 .965

AA 103 .757 .770 513 .978 .979

This experiment is performed with the baseline parameter configuration

(N = 50, R = 7, ǫ = 0.03). The accuracy results, reported in Table 7, show that620

the object information available with segmentation significantly contributes to

optimally selecting the training samples which actually increase the level of ac-

curacy of the pixel-wise classifier. The only exception occurs with Salinas Valley
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when only 1% of ground-truth data is selected to populate the training sam-

ple set. Although the segmentation-based sampling still yields the higher AA by625

augmenting the number of correct classifications for the minority classes, the OA

of the pixel-wise classifier learned with random sampling is slightly greater than

the OA of the pixel-wise classifier learned with segmentation-aided sampling.

In any case, also in this isolated scenario, the post-processing procedure allows

us to correct the spurious classifications by contributing to restoring the supe-630

riority of the performance of classification achieved with segmentation. This

confirms that the use of the segmentation information yields twin advantages in

the presented methodology: it contributes to the selection of appropriate pixels

for training sample sets, aiding accurate learning, and it helps in the correction

of spurious pixel-wise misclassifications that are more frequent, as the classifiers635

are learned from the smaller training sample sets.

Further considerations are derived from a qualitative analysis of the pix-

els identified by the segmentation-stratified sampling. Table 6 (columns 2 and

5) reports the class distribution of the pixels sampled per segments in Indian

Pines when 1% and 5% of the pixels are selected for the training set. Seg-640

mentation knowledge is sufficient to select also pixels that belong to several

minority classes for the training set even when a very small training set (i.e.

1% of the ground-truth) is considered. In this extreme configuration, only the

minority class “Oat” will not have any samples for the training, while the class

“Wheat” will have only one sample, which is not sufficient to avoid under-fitting,645

as proved by the small recall (see Table 6). Instead the minority classes “Al-

faalfa”, “Grass-pasture-mowed” and “Stone-Steel” are sufficiently represented

also in the very small training set, reducing the risk of a serious under-fitting of

the training classifier for these classes. On the other hand, the training classifier

learned using the very small training set unexpectedly suffers from under-fitting650

with classes “Corn-mintill” and “Soybean-notill”. These classes cannot be prop-

erly considered minority classes as they theoretically have a sufficient number

of ground-truth samples in the HSI dataset (830 for ‘Corn-mintill” and 972

for “Soybean-notill”). However, the segmentation-stratified sampling identifies

33



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

a small number of training samples for them (6 for “Corn-mintill” and 8 for655

“Soybean-notill” ). As pointed out in [13], corn and soybean are very challeng-

ing land-cover classes to discriminate as they are very early in their growth cycle.

This suggests that an under-segmentation phenomenon occurs during the ag-

glomerative merging phase of the segmentation, when this is performed in the

configuration requested to populate the very small training set. This under-660

segmentation reasonably fails in the correct identification of the segments that

correctly delineate these crop objects and, consequently, in the selection of a

sufficient number of samples, in order to learn an accurate classifier also for

these challenging classes. This analysis paves the way for future investigations,

in order to improve the performance of both the segmentation and the entire665

classification methodology, when the learning is done under very small sample

conditions and in the presence of a very challenging task.

To conclude this study of the training sample selection, we note that ad-

ditional empirical evidence of the effectiveness of the segmentation-stratified

training sample selection is also yielded by the analysis of the performance670

of several state-of-the-art spectral-spatial competitors, reported in Section 4.4.

In fact, according to the author guidelines, the accuracy performance of these

competitors is commonly evaluated considering training sets that are ideally

constructed by selecting pixels per class (using the ground-truth knowledge).

Our analysis highlights that SoCRATE, even without using the ground-truth675

on the class distribution to select the training set, generally outperforms these

competitors.

4.2.4. Final remarks

We conclude this analysis by summarizing the conclusions drawn from the

study on the actual gain in accuracy yielded by the spectral-spatial feature con-680

struction and the segmentation knowledge processing in the proposed method-

ology. Table 8 collects the results of OA and AA with training sample size equal

to 5% of the ground-truth sample size. The results show that the configura-

tion with both components (Spectral-spatial - Training+Post) effectively con-
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Table 7: Random sampling vs Segmentation-aided sampling. The learning process is per-

formed with N = 50, R = 7 and ǫ = 0.03. The random sampling is repeated on 10 trials. The

training sample size ranges between 1% and 5% of the ground-truth sample size for the three

datasets.

Dataset Training size
Random (avg±stdev) P-SoCRATE SoCRATE

OA AA OA AA OA AA

Indian Pines

1% .7278±.0096 .5874±.0373 .8130 .7579 .8286 .7701

2% .8460±.0125 .7508±.0212 .9177 .8786 .9223 .8854

3% .8953±.0123 .8186±.0264 .9502 .9442 .9542 .9443

4% .9257±.0085 .8466±.0376 .9659 .9690 .9682 .9684

5% .9407±.0056 .9017±.0338 .9816 .9780 .9818 .9793

Pavia University

1% .9191±.0088 .8377±.0223 .9249 .8955 .9344 .9023

2% .9529±.0058 .9017±.0199 .9772 .9664 .9807 .9688

3% .9709±.0023 .9357±.0079 .9932 .9888 .9943 .9908

4% .9783±.0037 .9531±.0086 .9967 .9953 .9970 .9956

5% .9834±.0014 .9639±.0035 .9982 .9968 .9984 .9971

Salinas Valley

1% .9769±.0048 .9748±.0060 .9690 .9765 .9864 .9894

2% .9891±.0020 .9894±.0021 .9939 .9941 .9970 .9968

3% .9944±.9E-5 .9928±.0010 .9992 .9988 .9991 .9987

4% .9970±.4E-5 .9956±.0010 .9996 .9995 .9994 .9993

5% .9969±.6E-5 .9956±.0013 .9994 .9994 .9994 .9993

tribute to a gain in accuracy with respect to the baseline, that eliminates both685

the feature construction and the contiguity-constrained segmentation (Spec-

tral+NoSegm). In any case, the spectral-spatial feature construction clearly

introduces more effectiveness in the methodology (see results of Spectral vs

Spectral-spatial), while the segmentation introduces an improvement only if it

is computed over the spectral-spatial features. This is a consequence of the fact690

that the proposed segmentation procedure, decoupled from the spatial smooth-

ing of the spectral information, introduced with the local indicator computation,

may suffer in the presence of possible spectral noise. Therefore, the segmenta-

tion patterns, learned without the spatial smoothing, fail to identify the optimal

training sample set for learning the classifier (Spectral-NoSegm vs Spectral-695

Training), although they still help to correct a few spurious classifications in

the post-processing phase ( Spectral-Training vs Spectral-Training+Post).

35



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Table 8: Performance (OA and AA) of configurations of SoCRATE generated along the feature

construction (spectral – no feature construction, spectral-spatial - feature construction with

PCA and GI) and the segmentation knowledge processing (NoSegm – random training set

sampling and no outlier post processing, Training – segmentation-aided training set sampling

and no outlier post processing, Training+Post – segmentation-aided set sampling and no

outlier post processing).

Feature / Segmentation dataset Metric NoSegm Training Training+Post

Indian Pines

OA
Spectral .6672 .6087 .6302

Spectral-spatial .9407 .9816 .9818

AA
Spectral .5762 .5460 .5621

Spectral-spatial .9017 .9780 .9793

Pavia University

OA
Spectral .9237 .8795 .9021

Spectral-spatial .9834 .9982 .9984

AA
Spectral .8878 .8027 .9021

Spectral-spatial .9639 .9968 .9971

Salinas Valley

OA
Spectral .9199 .9235 .9317

Spectral-spatial .9969 .9994 .9994

AA
Spectral .9549 .9235 .9576

Spectral-spatial .9956 .9994 .9993

4.3. Sensitivity analysis

For this analysis we consider the Indian Pines data set that, according to

considerations formulated by Plaza et al. [13], is a very challenging classification700

problem. We perform a sensitivity analysis of the performance of SoCRATE

along the number of principal components (with N = 10, 25, 50 (baseline) and

100), the size of the spatial neighborhood (with R = 1, 3, 5, 7 (baseline), 10 and

15), the segmentation similarity threshold (with ǫ = 0.0, 0.03 (baseline), 0.05

and 0.1) and the base classification learner (J48, Naive Bayes - NB, Random705

Forests - RF, Logistic Regression - LR and Support Vector Machine - SVM

(baseline))7. We analyze the change of OA, AA and TIME on the training

sample size, ranging between 1% and 5% of the ground-truth sample size.

7The Java implementation of J48, NB, RF, LOG and SVM, included in the 3.6 WEKA

toolkit

36



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

N , R and ǫ. For this study we consider SVM as the base classification learner

of SoCRATE. Initially we vary N among 10, 25, 50 (baseline) and 100, while we710

run SoCRATE with baselines R = 7 and ǫ = 0.03. The computed metrics are

reported in Figures 9(a) (OA), 9(b) (AA) and 9(c) (TIME). We note that the

dimensionality reduction contributes to improving the efficiency of the entire

learning process - the lower the number of principal components, the lower

the computation time spent completing the learning process. According to the715

considerations already reported in Section 4.2, this gain in efficiency is due to the

fact that processing the principal components speeds up the segmentation and

classification steps by recovering the computational time spent performing the

PCA. On the other hand, the accuracy increases with the number of principal

components, although the gain in accuracy is approximately stable after at720

least 50 principal components have been saved. Even though we observe that

10 PCs explain 99% variance of the HSI dataset, this experiment shows that

the consideration of a higher number of PCs in the proposed methodology may

increase not only the complexity of the model but also the classification accuracy.

This gain in accuracy is particularly notable with the smaller training sets.725

Therefore, N = 50 is considered a reasonable realization of the trade-off between

efficiency and accuracy. Then we vary ǫ among 0.0, 0.01, 0.03, 0.05 and 0.1, while

we run SoCRATE with baselines R = 7 and N = 50. The computed metrics are

reported in Figures 9(d) (OA), 9(e) (AA) and 9(f) (TIME). These results show

that the segmentation similarity threshold has an important impact on the730

efficiency - the higher the segmentation threshold, the lower the computation

time. However, the segmentation threshold has only a slight impact on the

accuracy. In any case, independently of the training sample size, the metrics

measuring the accuracy are approximately stable with ǫ ≥ .03. Finally, we

vary R among 1, 3, 5, 7, 10 and 15, while we run SoCRATE with baselines735

N = 50 and ǫ = 0.03. The computed metrics are reported in Figures 9(g)

(OA), 9(h) (AA) and 9(i) (TIME). Both the efficiency and accuracy generally

improve with R, that is, the augmented consideration of the smoothing effect

in the representation of the spectral-spatial information contributes to speeding
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(a) R=7, ǫ = 0.03 (b) R=7, ǫ = 0.03 (c) R=7, ǫ = 0.03

(d) R=7, N = 50 (e) R=7, N = 50 (f) R=7, N = 50

(g) N = 50, ǫ = 0.03 (h) N = 50, ǫ = 0.03 (i) N = 50, ǫ = 0.03

Figure 9: Sensitivity of OA, AA and TIME of SoCRATE to N with fixed R = 7 and ǫ = 0.03

(Figures 9(a), 9(b) and 9(c)). Sensitivity to ǫ with R = 7 and N = 50 (Figures 9(d), 9(e) and

9(f)). Sensitivity to R with N = 50 and ǫ = 0.03 (Figures 9(g), 9(h) and 9(i)). The training

sample size ranges among 1%, 2%, 3%, 4% and 5% of the ground-truth sample size of the

Indian Pines dataset.

up the learning process and generally improves the accuracy. However, there740

are configurations where the accuracy slightly decreases after the peak between

R = 7 and R = 10. Once again R = 7 can produce the trade-off between

efficiency and accuracy.

Base classification learner. We consider the baseline parameter configuration

(N = 50, R = 7 and ǫ = 0.03) and evaluate the change in the performance745

of SoCRATE to the selection of the base classification learner. The computed

metrics are reported in Figures 10(a) (OA), 10(b) (AA) and 10(c) (TIME). These
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(a) N = 50, R = 7, ǫ = 0.03 (b) N = 50, R = 7, ǫ = 0.03 (c) N = 50, R = 7, ǫ = 0.03

Figure 10: Sensitivity of OA - Figure 10(a), AA - Figure 10(b) and TIME - Figure 10(c) of

SoCRATE to the selection of the base learner. SoCRATE is run with the baseline parameter

configuration N = 50, R = 7, ǫ = 0.03 and the training sample size ranging among 1%, 2%,

3%, 4% and 5% of the ground-truth sample size of the Indian Pines dataset.

results show that SoCRATE with SVM outperforms SoCRATE with J48, NB, RF

and LOG. In any case, the higher accuracy observed is achieved at the expense

of a higher computational cost. The analysis also reveals that LOG and RF can750

be considered valuable options for the hyperspectral classification methodology

presented here. Both are slightly less accurate than SVM, but their computation

is faster. This final consideration is not surprising as LOG has already been used

as the base classification learner of the spectral-spatial iterative methodology

presented in [58], while RF has been used as the base classification learner755

of both the spectral-spatial ensemble methodology described in [20] and the

spectral-spatial segmented stacked autoencoder illustrated in [55].

4.4. Comparison with state-of-the-art competitors

Hyperspectral classification has received a great deal of attention in the re-

cent literature. In this section various recent competitive spectral-spatial clas-760

sification methods [17, 22, 23, 24, 20, 55, 25, 26, 15, 32, 30, 59, 60, 61] are

considered (see a short description in Table 9). These competitors have been

evaluated on Indian Pines, Pavia University and Salinas Valley in the refer-

enced studies. The optimal accuracy performance described in the literature

for each competitor is reported in Table 10. We note that each competitor has765

been evaluated starting with a specific number of training samples selected per
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class, except for [32], where an active learning strategy is developed, in order

to acquire the labels. In general, the training sample sets of these state-of-the

art experiments have been populated by accounting for the prior information

available in the ground-truth.770

For each competitor and for every experimental configuration considered by

the competitor, the accuracy performance of SoCRATE is here evaluated by con-

sidering the training sample size equal to the total number of training samples

already used to evaluate the competitor. However, according to the method-

ology presented in this paper, SoCRATE selects the samples that will populate775

the training sample set by accounting for the segmentation information, while

neglecting the ground-truth that is properly used in the evaluation phase (i.e.

to compute the accuracy of the classification of the testing pixels). This analysis

is an additional empirical proof of the effectiveness of the entire methodology

proposed here.780

SoCRATE achieves a better performance (highlighted in Table 10 for the

various configurations of the three datasets) compared to all the other com-

petitors tested in this study. In particular, SoCRATE outperforms the perfor-

mance of various deep learning architectures (e.g. [22, 23, 24, 25, 26, 59]),

multi-view iterative collective inference methodologies [17], segmentation-aided785

classifiers [55, 32, 30], multi-profile-aware ensembles [20, 17], as well as spectral-

spatial classifiers with the widely used extended morphological profile - EMP

[15, 60, 61]. There are only four configuration settings where one of the competi-

tors outperforms SoCRATE. Specifically, SoCRATE loses average accuracy (.886

vs .907) when processing a very small training set of Indian Pines (i.e. 240 pix-790

els), although it still gains overall accuracy in this configuration compared to

the ensemble with the extended multiextinction profiles [20] (.938 vs .881). This

accuracy performance means that SoCRATE fails in the correct classification of

a few minority class pixels, while it improves the accuracy of the classifications

yielded for pixels in the remaining majority classes compared to its competi-795

tor. In any case, this competitor can be fully outperformed if we change the

baseline parameter set-up and run SoCRATE with a segmentation threshold
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ǫ = 0.05 (instead of 0.03). In this configuration SoCRATE achieves OA=.935

and AA= .914. A similar accuracy performance is observed with a competitor

deploying deep learning on multi-grained networks [26]. This competitor is also800

evaluated with a very small training set of Indian Pines (i.e. 304 pixels). In

this configuration SoCRATE loses average accuracy (.934 vs .954) by failing in

the classification of a few minority class pixels, but it gains overall accuracy

(.947 vs .906) by correctly classifying pixels belonging to the majority classes.

The convolutional neural network with diverse region-based inputs and feature805

learning [25] achieves higher overall accuracy than SoCRATE only in one out of

the five configurations tested for Pavia University (i.e. when only 450 pixels are

selected for training). On the other hand, SoCRATE outperforms this specific

competitor in all remaining configurations of Pavia University and all tested

configurations for Indian Pines and Salinas Valley. Finally, we note that the810

competitor deploying segmentation combined with active and iterative learning

[32] outperforms SoCRATE in Pavia University, although the same competitor

still performs worse than SoCRATE in Indian Pines. While SoCRATE exploits

the geometric shape of the segments, in order to identify all pixels whose labels

are acquired from the oracle, the active learner in [32] derives an estimate of815

the reliability of predictions across segments, in order to identify iteratively the

pixels to query the oracle. Interestingly this solution, that allows the competitor

to gain in accuracy with few labels acquired in Pavia University, has difficulty

classifying Indian Pines under the same conditions. Probably, the presence of an

imbalanced number of pixels per class in Indian Pines compromises the reliabil-820

ity estimation, thus weakening the active learning. In any case, this result paves

the way for further investigation of active learning applied to the methodology

described in this study.

In general, the combination of PCA and spatial dependency analysis, de-

scribed in this paper, engineers features as accurately as complex deep learning825

architectures, without suffering from the high computational costs of deep neu-

ral networks. This is an interesting milestone achieved in this study, considering

that nowadays deep learning represents one the most prominent frontiers of re-

41



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Table 9: State-of-the-art compared competitors: spectral-spatial competitor reference (column

1) and description (column 2).

Competitor Description

[17](2017) Multi-view collective inference, semi-supervised learning, frequency and morphological profiles,

[22](2018) Convolutional neural networks, spectral-spatial feature learning

[23](2018) End-to-end residual network

[24](2018) ConvDeconv network, unsupervised, spectral-spatial feature learning

[20](2018) Random Forest ensembles, extended multiextinction profile

[55](2018) Segmented stacked autoencoder, segmentation-based mutual information

[25](2018) Convolutional neural networks, diverse region-based inputs, feature learning

[26](2017) Deep learning, multi-grained network

[15](2014) Spectral-spatial classification, extended morphological profiles

[32](2016) Segmentation, active learning, semi-supervised learning

[30](2010) Segmentation, multiple spectral-spatial classification

[59] (2017) Autoencoder, deep learning, self-taught learning

[60] (2016) Multi-kernel learning, extended morphological profiles

[61] (2015) Extreme earning machine, extended morphological profiles

cent research in machine learning and remote sensing. In addition, it elegantly

selects the training pixels without requiring prior information on ground-truth830

class distribution. In any case, further investigation is advocated, in order to

avoid possibly incorrect classifications that may still arise in the presence of

minority classes with very small training sets.

5. Conclusion

A new methodology for spectral-spatial classification of HS data is described.835

The use of a local indicator of spatial dependency of HS bands for segmentation-

aided classification is proposed for the first time. The local indicators are ex-

tracted from the principal components of the spectral bands. In particular,

this study also promotes the computation of a local indicator of spatial depen-

dency to incorporate a spatial regularization of the spectral information in the840

segmentation and classification approach, which was not investigated earlier.

There are several reasons for using PCA, local indicators of spatial depen-

dency and segmentation in this study. Firstly, PCA contributes to dealing with

the curse of dimensionality, handling collinearity at near spectral bands, re-
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Table 10: Comparison with the recent state-of-the-art hyperspectral classification competitors

(details in Table 9). The set-up includes the competitor reference, the dataset (IP - Indian

Pines, IP8 - Indian Pines, where the smallest eight classes are discarded, while the eight largest

classes are selected, PU - Pavia University and SV - Salinas Valley) and the training sample

size. A star (*) is reported if the competitor outperforms SoCRATE.

Set-up Competitor SoCRATE Set-up Competitor SoCRATE

OA AA OA AA OA AA OA AA

[17]

IP 513 .961 .898 .981 .979

[22]

IP 2715 .975 .985 .999 .998

PU 2139 .985 .958 .998 .997 PU 2250 .996 .996 .998 .998

SV 2707 .994 .997 .999 .999 SV 4800 .983 .993 .999 .998

[23]

IP 3080 .991 .989 .998 .998

[24]

IP 695 .857 .922 .988 .988

PU 8562 .997 .996 .999 .999 PU 3921 .873 .843 .999 .999

[20]

IP 695 .922 .946 .988 .988

[55]

IP 1021 .966 .974 .995 .997

IP 240 .881 .907∗ .938 .886 IP 2042 .982 .986 .997 .997

PU 3912 .963 .979 .999 .999 PU 2138 .966 .962 .998 .997

PU 2139 .910 .932 .998 .997 PU 4276 .974 .970 .999 .999

[25]

IP8 400 .887 - .976 .973

[25]

PU 1350 .992 - .995 .992

IP8 800 .949 - .993 .995 PU 1800 .995 - .997 .995

IP8 1200 .974 - .997 .998 SV 800 .934 - .973 .985

IP8 1600 .985 - .997 .998 SV 1600 .955 - .999 .998

PU 450 .969∗ - .947 .921 SV 2400 .973 - .999 .999

PU 900 .986 - .984 .973 SV 3200 .983 - .999 .999

[26] IP 304 .906 .954∗ .947 .934 [15] PU 3921 .988 .990 .999 .999

[32]
IP 250 .827 .859 .929 .876

[30]
IP 695 .923 .942 .988 .988

PU 250 .922∗ .926∗ .869 .876 PU 3921 .979 .985 .999 .999

[59]

IP 513 .966 .945 .981 .979

[60]

IP13 509 .764 - .984 .988

PU 2139 .995 .990 .998 .997 IP13 1017 .825 - .995 .995

SV 2707 .983 .985 .999 .999 PU 440 .921 - .946 .920

[61]
IP 695 .928 .950 .988 .988 PU 1318 .951 - .995 .992

PU 3850 .996 .996 .999 .999 SV 542 .883 - .986 .989

SV 1624 .912 - .999 .998

ducing the computation time for the segmentation and classification, as well as845

improving the accuracy for the classification. Secondly, local indicators of depen-

dency extract the most apt representative spectral-spatial features by smoothing

the spectral variability at near locations and holding them in discriminating tex-

tures with high spectral values from textures with low spectral values. These

features have proved to be the most effective component in improving the per-850

formance of the proposed methodology. Thirdly, segmentation is a reasonable

means for delineating in an unsupervised manner (i.e. without the label informa-
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tion) the distribution of the unknown classes over the imagery scene. Contiguity

constraints are used to converge fast on largely similar areal boundaries. The

segmentation knowledge helps in the label acquisition for the classification and855

in the outlier removal performed in the post-classification.

The experiments are performed on three widely used HS datasets, consid-

ering only 1%, 2%, 3%, 4% and 5% of the labeled samples from each dataset.

They prove that every component of the methodology contributes to the gain

in classification accuracy. These experiments investigate the sensitivity of the860

performance to the set-up of input parameters. The results also reveal that

the proposed methodology is able to provide high accuracy for most of the

land cover classes, even if few labels are acquired for the classification. Fi-

nally, the entire methodology achieves competitive accuracy compared to re-

cent state-of-the-art models (including deep learning models), without requiring865

computational-demanding learning architectures and achieving improvement of

classification performance. In fact, with the encouraging performance of the

proposed methodology, precise land use land cover (or cropping pattern) maps

can be prepared.

Some directions for further work are still to be explored. Appropriate post-870

classification mechanisms can be considered, in order to improve the outlier

removal for the classification of minority classes. New parallel computation

mechanisms can be investigated as an alternative to computation architecture

for spectral-spatial feature engineering and segmentation. Finally, segmenta-

tion can be integrated into iterative active learning mechanisms for the label875

acquisition step. This improves the selection of training samples, limiting the

risk of under-fitting the training classifier also in the presence of spectral-close

land-cover classes, which may be particularly difficult to discriminate.

Acknowledgment

The authors wish to thank Lynn Rudd for her help in reading the manuscript,880

Nicola Di Mauro for his useful discussion on agglomeration segmentation and

44



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

for providing the Python code to run AutoEncoding and ReCaS-Bari resource

team for providing the infrastructure to run the experimental study.

References

[1] F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing885

images with support vector machines, IEEE Transactions on Geoscience

and Remote Sensing 42 (8) (2004) 1778–1790.

[2] L. He, J. Li, C. Liu, S. Li, Recent advances on spectral-spatial hyperspectral

image classification: An overview and new guidelines, IEEE Transactions

on Geoscience and Remote Sensing 56 (3) (2018) 1579–1597.890

[3] G. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE

Transactions on Information Theory 14 (1) (1968) 55–63.

[4] B. Pan, Z. Shi, X. Xu, Multi-objective based sparse representation classifier

for hyperspectral imagery using limited samples, IEEE Transactions on

Geoscience and Remote Sensing PP (2018) 1–11.895

[5] L. Bruzzone, M. Chi, M. Marconcini, Semisupervised support vector

machines for classification of hyperspectral remote sensing images, in:

C. Chang (Ed.), Hyperspectral Data Exploitation: Theory and Applica-

tions, Wiley Online Library, 2007, pp. 275–311.

[6] S. B. Serpico, L. Bruzzone, A new search algorithm for feature selection in900

hyperspectral remote sensing images, IEEE Trans. Geoscience and Remote

Sensing 39 (7) (2001) 1360–1367.

[7] S. Patra, P. Modi, L. Bruzzone, Hyperspectral band selection based on

rough set, IEEE Trans. Geoscience and Remote Sensing 53 (10) (2015)

5495–5503.905

[8] F. Feng, W. Li, Q. Du, B. Zhang, Dimensionality reduction of hyperspectral

image with graph-based discriminant analysis considering spectral similar-

ity, Remote Sensing 9 (4) (2017) 323.

45



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[9] H. Pu, Z. Chen, B. Wang, G. Jiang, A novel spatial-spectral similarity

measure for dimensionality reduction and classification of hyperspectral910

imagery, IEEE Trans. Geoscience and Remote Sensing 52 (11) (2014) 7008–

7022.

[10] D. Akbari, Improving spectral–spatial classification of hyperspectral im-

agery using spectral dimensionality reduction based on weighted genetic

algorithm, Journal of the Indian Society of Remote Sensing 45 (6) (2017)915

927–937.

[11] J. Cao, B. Wang, Embedding learning on spectralspatial graph for semisu-

pervised hyperspectral image classification, IEEE Geoscience and Remote

Sensing Letters 14 (10) (2017) 1805–1809.

[12] H. Gao, S. Lin, Y. Yang, C. Li, M. Yang, Convolution neural network920

based on two-dimensional spectrum for hyperspectral image classification,

Journal of Sensors 2018 (2018) 13.

[13] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone,

G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Mar-

concini, J. C. Tilton, G. Trianni, Recent advances in techniques for hyper-925

spectral image processing, Remote Sensing of Environment 113(1) (2009)

110 – 122.

[14] J. Benediktsson, M. Pesaresi, K. Amason, Classification and feature ex-

traction for remote sensing images from urban areas based on morphologi-

cal transformations, IEEE Transactions on eoscience and Remote Sensing930

41 (9) (2003) 1940–1949.

[15] P. Quesada-Barriuso, F. Argello, D. B. Heras, Spectralspatial classification

of hyperspectral images using wavelets and extended morphological pro-

files, IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing 7 (4) (2014) 1177–1185.935

46



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[16] A. Appice, P. Guccione, D. Malerba, Transductive hyperspectral image

classification: toward integrating spectral and relational features via an

iterative ensemble system, Machine Learning 103 (3) (2016) 343–375.

[17] A. Appice, P. Guccione, D. Malerba, A novel spectral-spatial co-training

algorithm for the transductive classification of hyperspectral imagery data,940

Pattern Recognition 63 (2017) 229–245.

[18] Y. Tarabalka, M. Fauvel, J. Chanussot, J. Benediktsson, Svm- and mrf-

based method for accurate classification of hyperspectral images, Geo-

science and Remote Sensing Letters, IEEE 7 (4) (2010) 736–740.

[19] Y. Y. Tang, Y. Lu, H. Yuan, Hyperspectral image classification based on945

three-dimensional scattering wavelet transform, IEEE Transactions on Geo-

science and Remote Sensing 53 (5) (2015) 2467–2480.

[20] J. Xia, P. Ghamisi, N. Yokoya, A. Iwasaki, Random forest ensembles

and extended multiextinction profiles for hyperspectral image classifica-

tion, IEEE Transactions on Geoscience and Remote Sensing 56 (1) (2018)950

202–216.

[21] X. Xu, Z. Shi, B. Pan, l0-based sparse hyperspectral unmixing using spec-

tral information and a multi-objectives formulation, ISPRS Journal of Pho-

togrammetry and Remote Sensing 141 (2018) 46 – 58.

[22] Q. Gao, S. Lim, X. Jia, Hyperspectral image classification using convo-955

lutional neural networks and multiple feature learning, Remote Sensing

10 (2).

[23] Z. Zhong, J. Li, Z. Luo, M. Chapman, Spectral-spatial residual network for

hyperspectral image classification: A 3-d deep learning framework, IEEE

Transactions on Geoscience and Remote Sensing 56 (2) (2018) 847–858.960

[24] L. Mou, P. Ghamisi, X. X. Zhu, Unsupervised spectral-spatial feature learn-

ing via deep residual conv-deconv network for hyperspectral image classifi-

47



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

cation, IEEE Transactions on Geoscience and Remote Sensing 56 (1) (2018)

391–406.

[25] M. Zhang, W. Li, Q. Du, Diverse region-based cnn for hyperspectral image965

classification, IEEE Transactions on Image Processing 27 (6) (2018) 2623–

2634.

[26] B. Pan, Z. Shi, X. Xu, Mugnet: Deep learning for hyperspectral image

classification using limited samples, ISPRS Journal of Photogrammetry

and Remote Sensing.970

[27] B. Pan, Z. Shi, X. Xu, R-VCANet: A new deep-learning-based hyper-

spectral image classification method, IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing 10 (5) (2017) 1975–1986.

[28] L. Wang, C. Shi, C. Diao, W. Ji, D. Yin, A survey of methods incorpo-

rating spatial information in image classification and spectral unmixing,975

International Journal of Remote Sensing 37 (16) (2016) 3870–3910.

[29] Y. Tarabalka, J. Chanussot, J. Benediktsson, Segmentation and classifi-

cation of hyperspectral images using watershed transformation, Pattern

Recognition 43 (7) (2010) 2367 – 2379.

[30] Y. Tarabalka, J. A. Benediktsson, J. Chanussot, J. C. Tilton, Multiple980

spectralspatial classification approach for hyperspectral data, IEEE Trans-

actions on Geoscience and Remote Sensing 48 (11) (2010) 4122–4132.

[31] M. Fauvel, Y. Tarabalka, J. Benediktsson, J. Chanussot, J. Tilton, Ad-

vances in spectral-spatial classification of hyperspectral images, Proceed-

ings of the IEEE 101 (3) (2013) 652–675.985

[32] Z. Zhang, E. Pasolli, M. M. Crawford, J. C. Tilton, An active learning

framework for hyperspectral image classification using hierarchical segmen-

tation, IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing 9 (2) (2016) 640–654.

48



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[33] W. Li, S. Prasad, J. E. Fowler, Hyperspectral image classification using990

gaussian mixture models and markov random fields, IEEE Geoscience and

Remote Sensing Letters 11 (1) (2014) 153–157.

[34] J. Li, J. Bioucas-Dias, A. Plaza, Spectral-spatial classification of hyper-

spectral data using loopy belief propagation and active learning, IEEE

Transactions on Geoscience and Remote Sensing 51 (2) (2013) 844–856.995

[35] G. Zhang, X. Jia, J. Hu, Superpixel-based graphical model for remote sens-

ing image mapping, IEEE Transactions on Geoscience and Remote Sensing

53 (11) (2015) 5861–5871.

[36] M. Golipour, H. Ghassemian, F. Mirzapour, Integrating hierarchical seg-

mentation maps with mrf prior for classification of hyperspectral images1000

in a bayesian framework, IEEE Transactions on Geoscience and Remote

Sensing 54 (2) (2016) 805–816.

[37] G. Licciardi, P. R. Marpu, J. Chanussot, J. A. Benediktsson, Linear ver-

sus nonlinear pca for the classification of hyperspectral data based on the

extended morphological profiles, IEEE Geoscience and Remote Sensing Let-1005

ters 9 (3) (2012) 447–451.

[38] K. Makantasis, K. Karantzalos, A. Doulamis, N. Doulamis, Deep supervised

learning for hyperspectral data classification through convolutional neural

networks, in: 2015 IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), 2015, pp. 4959–4962.1010

[39] T. Howley, M. G. Madden, M.-L. OConnell, A. G. Ryder, The effect of

principal component analysis on machine learning accuracy with high-

dimensional spectral data, Knowledge-Based Systems 19 (5) (2006) 363

– 370, aI 2005 SI.

[40] S. Pravilovic, M. Bilancia, A. Appice, D. Malerba, Using multiple time1015

series analysis for geosensor data forecasting, Inf. Sci. 380 (2017) 31–52.

49



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[41] S. Pravilovic, A. Appice, D. Malerba, Leveraging correlation across space

and time to interpolate geophysical data via cokriging, International Jour-

nal of Geographical Information Science 32 (1) (2018) 191–212.

[42] D. Charte, F. Charte, S. Garca, M. J. del Jesus, F. Herrera, A practical1020

tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models,

software and guidelines, Information Fusion 44 (2018) 78 – 96.

[43] A. Getis, A history of the concept of spatial autocorrelation: A geographer’s

perspective, Geographical Analysis 40 (3) (2008) 297–309.

[44] B. Boots, Local measures of spatial association, Ecoscience 9 (2) (2002)1025

168–176.

[45] A. Appice, D. Malerba, Leveraging the power of local spatial autocorre-

lation in geophysical interpolative clustering, Data Min. Knowl. Discov.

28 (5-6) (2014) 1266–1313.

[46] A. Getis, J. K. Ord, The analysis of spatial association by use of distance1030

statistics, Geographical Analysis 24 (3) (1992) 189–206.

[47] Z. A. Holden, J. S. Evans, Using fuzzy c-means and local autocorrelation

to cluster satellite-inferred burn severity classes, International Journal of

Wildland Fire 19 (7) (2010) 853–860.

[48] A. Appice, S. Pravilovic, D. Malerba, A. Lanza, Enhancing regression mod-1035

els with spatio-temporal indicator additions, in: M. Baldoni, C. Baroglio,

G. Boella, R. Micalizio (Eds.), Proceedings of AI*IA 2013: Advances in

Artificial Intelligence - XIIIth International Conference of the Italian Asso-

ciation for Artificial Intelligence, Vol. 8249 of Lecture Notes in Computer

Science, Springer, 2013, pp. 433–444.1040

[49] Y. Gao, J. F. Mas, N. Kerle, J. A. N. Pacheco, Optimal region growing

segmentation and its effect on classification accuracy, International Journal

of Remote Sensing 32 (13) (2011) 3747–3763.

50



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[50] A. Appice, P. Guccione, D. Malerba, A. Ciampi, Dealing with temporal and

spatial correlations to classify outliers in geophysical data streams, Inf. Sci.1045

285 (2014) 162–180.

[51] A. Appice, A. Ciampi, D. Malerba, Summarizing numeric spatial data

streams by trend cluster discovery, Data Min. Knowl. Discov. 29 (1) (2015)

84–136.

[52] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3)1050

(1995) 273–297.

[53] C. Chen, W. Li, H. Su, K. Liu, Spectral-spatial classification of hyperspec-

tral image based on kernel extreme learning machine, Remote Sensing 6 (6)

(2014) 5795–5814.

[54] J. A. Richards, Remote Sensing Digital Image Analysis: An Introduction,1055

2nd Edition, Springer-Verlag New York, Inc., 1993.

[55] S. Paul, D. N. Kumar, Spectral-spatial classification of hyperspectral data

with mutual information based segmented stacked autoencoder approach,

ISPRS Journal of Photogrammetry and Remote Sensing 138 (2018) 265 –

280.1060

[56] Y. Chen, J. Quan, W. Zhan, Z. Guo, Enhanced statistical estimation of air

temperature incorporating nighttime light data, Remote Sensing 8 (656)

(2016) 1–23.

[57] L. Anselin, Y. W. Kim, I. Syabri, Web-based analytical tools for the ex-

ploration of spatial data, Journal of Geographical Systems 6 (2) (2004)1065

197–218.

[58] P. Guccione, L. Mascolo, A. Appice, Iterative hyperspectral image clas-

sification using spectral-spatial relational features, IEEE Transactions on

Geoscience and Remote Sensing 53 (7) (2015) 3615–3627.

51



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

[59] R. Kemker, C. Kanan, Self-taught feature learning for hyperspectral image1070

classification, IEEE Transactions on Geoscience and Remote Sensing 55 (5)

(2017) 2693–2705.

[60] Y. Gu, T. Liu, X. Jia, J. A. Benediktsson, J. Chanussot, Nonlinear multi-

ple kernel learning with multiple-structure-element extended morphological

profiles for hyperspectral image classification, IEEE Transactions on Geo-1075

science and Remote Sensing 54 (6) (2016) 3235–3247.

[61] F. Arguello, D. B. Heras, ELM-based spectral-spatial classification of hy-

perspectral images using extended morphological profiles and composite

feature mappings, International Journal of Remote Sensing 36 (2015) 645–

664.1080

52


