Editors-in-Chief
F. Esposito, Verona, Italy
F. Schena, Verona, Italy

Editorial Board
M. Bigoni, Milan, Italy
P. Buono, Naples, Italy
E. Cè, Milan, Italy
P.D. Chantler, Morgantown, WV, USA
P. De Feo, Perugia, Italy
G. De Vito, Dublin, Ireland
L. Di Luigi, Rome, Italy
P. Entin, Flagstaff, AZ, USA
C. Fitzgerald, London, ON, Canada
L. Guidetti, MD, Rome, Italy
Md. A. Islam, New York, USA
M. Kellmann, Bochum, Germany
S. Laborde, Koln, Germany
Moh H. Malek, Detroit, MI, USA
G. Merati, Milan, Italy
F. Nakamura, São Paulo, Brazil
M. Olfert, Morgantown, WV, USA
A. Paoli, Padua, Italy
A. Rainoldi, Turin, Italy
C. Robazza, Chieti, Italy
H. Sözen, Ordu, Turkey
M. Venturelli, Verona, Italy

Advisory Board
T. Brutsaert, Syracuse, NY, USA
R.W. Bryner, Morgantown, WV, USA
C. Capelli, Oslo, Norway
A. Concu, Cagliari, Italy
A. Deligiannis, Thessaloniki, Greece
P.E. di Prampero, Udine, Italy
G. Fanò Illic, Chieti-Pescara, Italy
G. Ferretti, Brescia, Italy
T.P. Gavin, West Lafayette, IN, USA
B. Grassi, Udine, Italy
H.-C. Gunga, Berlin, Germany
A. Lenzi, Rome, Italy
M.V. Narici, Nottingham, United Kingdom
A. Palma, Palermo, Italy
R.S. Richardson, Salt Lake City, USA
A. Rütten, Erlangen, Germany
P. Wagner, La Jolla, CA, USA

Springer
Aims and Scope

Sport Sciences for Health is an international, interdisciplinary journal devoted to researchers and practitioners involved in sport and physical activity for health. Areas of interest include sport, physical activities, sports medicine, healthy lifestyles, motor behavior, physical education and adapted physical activity with different methodological approaches such as physiological, clinical, biomechanical, performance, psychological, educational, social and learning perspectives. The journal also deals with the mechanisms through which exercise can prevent or treat chronic degenerative disease contributing to prevention and personalized treatment of specific diseases and health maintenance with a translational perspective. The journal publishes original research, case studies and reviews.

Sport Sciences for Health is the official journal of the Società Italiana delle Scienze Motorie e Sportive (SISMeS), an Italian scientific society that aims to promote, support and disseminate knowledge and innovations in the sciences of sport and physical activity for health and quality of life.

Copyright Information

For Authors
As soon as an article is accepted for publication, authors will be requested to assign copyright of the article (or to grant exclusive publication and dissemination rights) to the publisher (respective the owner if other than Springer). This will ensure the widest possible protection and dissemination of information under copyright laws.

More information about copyright regulations for this journal is available at www.springer.com/11332

For Readers
While the advice and information in this journal is believed to be true and accurate at the date of its publication, neither the authors, the editors, nor the publisher can accept any legal responsibility for any errors or omissions that may have been made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

All articles published in this journal are protected by copyright, which covers the exclusive rights to reproduce and distribute the article (e.g., as offprints), as well as all translation rights. No material published in this journal may be reproduced photographically or stored on microfilm, in electronic data bases, on video disks, etc., without first obtaining written permission from the publisher (respective the copyright owner if other than Springer). The use of general descriptive names, trade names, trademarks, etc., in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.

Springer has partnered with Copyright Clearance Center’s RightsLink service to offer a variety of options for reusing Springer content. For permission to reuse our content please locate the material that you wish to use on link.springer.com or on springerimages.com and click on the permissions link or go to copyright.com and enter the title of the publication that you wish to use. For assistance in placing a permission request, Copyright Clearance Center can be contacted directly via phone: +1-855-239-3415, fax: +1-978-646-8600 or e-mail: info@copyright.com.

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Journal Website
www.springer.com/11332
Electronic edition: link.springer.com/journal/11332

Subscription Information
Sport Sciences for Health is published 3 times a year. Volume 14 (3 issues) will be published in 2018.
ISSN: 1824-7490 print
ISSN: 1825-1234 electronic

For information on subscription rates please contact Springer Customer Service Center: customerservice@springer.com

The Americas (North, South, Central America and the Caribbean)
Springer Journal Fulfillment
233 Spring Street, New York NY 10013-1578, USA
Tel.: 800-SPRINGER (777-4643); 212-460-1500 (outside North America)

Outside the Americas
Springer Customer Service Center GmbH
Tiergartenstr. 15, 69121 Heidelberg, Germany
Tel.: +49-6221-345-4303

Advertisements
E-mail contact: advertising@springer.com

Disclaimer
Springer publishes advertisements in this journal in reliance upon the responsibility of the advertiser to comply with all legal requirements relating to the marketing and sale of products or services advertised. Springer and the editors are not responsible for claims made in the advertisements published in the journal. The appearance of advertisements in Springer publications does not constitute endorsement, implied or intended, of the product advertised or the claims made for it by the advertiser.

Office of Publication
Springer-Verlag Italia S.r.l.
Via Decembrio 28
20137 Milan, Italy
Registrazione del Tribunale di Milano n. 143 del 25 febbraio 2005
Springer is part of Springer Science+Business Media
X NATIONAL CONGRESS

Research and Education Applied to Movement and Sport Sciences
Messina, 5–7 October 2018

CONGRESS PRESIDENT
Ludovico Magaudda

VICe PRESIDENTS
Daniele Bruschetta - Fabio Trimarchi

SCIENTIFIC COMMITTEE
Antonio Paoli Antonio La Torre Angela di Baldassarre Carlo Baldari
Dario Colella Massimo Lanza Stefania Orrù

HONORARY PRESIDENT
Giuseppe Anastasi

LOCAL SCIENTIFIC COMMITTEE
Debora Di Mauro Igor Papalia
Antonio Bonaiuto Diego Buda Gabriella Epasto Carmine Lazzaro,
Antonino Micali Maria Francesca Panzera Roberto Restuccia Claudia Tarozzo.

ORGANIZING SECRETARIAT
Akesios Group Via Cremonese, 172, Parma

Hosted by the University of Messina
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Title</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcello Faina and Arsenio Veicsteinas Lecture</td>
<td>EXERCISE TRAINING: THE MAINTENANCE OF NEUROMUSCULAR FUNCTION IN THE OLDER INDIVIDUAL</td>
<td>S1</td>
</tr>
<tr>
<td>G. De Vito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invited Lecture</td>
<td>ADIPOSE ORGAN AND PHYSICAL EXERCISE</td>
<td>S1</td>
</tr>
<tr>
<td>S. Cinti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday Oral Session</td>
<td>TRAINING, PERFORMANCE AND EVALUATION METHODS 1</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td>ADAPTED PHYSICAL ACTIVITY</td>
<td>S5</td>
</tr>
<tr>
<td>Saturday Oral Session I</td>
<td>EXERCISE PHYSIOLOGY 1</td>
<td>S8</td>
</tr>
<tr>
<td></td>
<td>TRAINING, PERFORMANCE AND EVALUATION METHODS 2</td>
<td>S10</td>
</tr>
<tr>
<td></td>
<td>PHYSICAL EXERCISE AS PREVENTION AND THERAPY 1</td>
<td>S12</td>
</tr>
<tr>
<td></td>
<td>PHYSICAL EDUCATION AND SPORT PEDAGOGY 1</td>
<td>S14</td>
</tr>
<tr>
<td></td>
<td>EXERCISE PHYSIOLOGY 2</td>
<td>S16</td>
</tr>
<tr>
<td></td>
<td>TRAINING, PERFORMANCE AND EVALUATION METHODS 3</td>
<td>S18</td>
</tr>
<tr>
<td></td>
<td>PHYSICAL EXERCISE AS PREVENTION AND THERAPY 2</td>
<td>S20</td>
</tr>
<tr>
<td></td>
<td>PHYSICAL EDUCATION AND SPORT PEDAGOGY 2</td>
<td>S22</td>
</tr>
<tr>
<td></td>
<td>EXERCISE PHYSIOLOGY 3</td>
<td>S24</td>
</tr>
<tr>
<td></td>
<td>TRAINING, PERFORMANCE AND EVALUATION METHODS 4</td>
<td>S27</td>
</tr>
<tr>
<td></td>
<td>PHYSICAL EXERCISE AS PREVENTION AND THERAPY 3</td>
<td>S29</td>
</tr>
<tr>
<td></td>
<td>PHYSICAL EDUCATION AND SPORT PEDAGOGY 3</td>
<td>S31</td>
</tr>
<tr>
<td>Saturday Poster Session</td>
<td>TRAINING, PERFORMANCE AND EVALUATION METHODS</td>
<td>S34</td>
</tr>
<tr>
<td></td>
<td>ADAPTED PHYSICAL ACTIVITY</td>
<td>S40</td>
</tr>
<tr>
<td></td>
<td>EXERCISE PHYSIOLOGY</td>
<td>S43</td>
</tr>
<tr>
<td></td>
<td>PHYSICAL EXERCISE AS PREVENTION AND THERAPY</td>
<td>S44</td>
</tr>
</tbody>
</table>
Saturday Oral Session II

MOVEMENT LEARNING AND PSYCHOPHYSIOLOGICAL DEVELOPMENT S54
TRAINING, PERFORMANCE AND EVALUATION METHODS 5 S56
PHYSICAL EXERCISE AS PREVENTION AND THERAPY 4 S58
SPORT BIOMECHANICS AND TECHNOLOGY 1 S60

Sunday Oral Session I

BIOMOLECULAR AND NUTRITIONAL ASPECTS OF EXERCISE AND SPORT 1 S62
MORPHOLOGICAL SCIENCES IN SPORT AND EXERCISES S65
SPORT BIOMECHANICS AND TECHNOLOGY S67
EXERCISE AND SPORT PSYCHOLOGY 1 S69

Sunday Poster Session

PHYSICAL EDUCATION AND SPORT PEDAGOGY S70
MOVEMENT LEARNING AND PSYCHOPHYSIOLOGICAL DEVELOPMENT S75
MORPHOLOGICAL SCIENCES IN SPORT AND EXERCISES S78
BIOMOLECULAR AND NUTRITIONAL ASPECTS OF EXERCISE AND SPORT S79
SPORT BIOMECHANICS AND TECHNOLOGY S83
EXERCISE AND SPORT PSYCHOLOGY S85
POSTURAL APPROACH TO SPORT AND EXERCISE S87
SOCIAL, ECONOMIC AND LEGAL ASPECTS OF SPORT S89

Sunday Oral Session II

BIOMOLECULAR AND NUTRITIONAL ASPECTS OF EXERCISE AND SPORT 2 S90
SPORT BIOMECHANICS AND TECHNOLOGY 3 S93
POSTURAL APPROACH TO SPORT AND EXERCISE S95
EXERCISE AND SPORT PSYCHOLOGY 2 S97

Disclosure Statement

This supplement was not sponsored by outside commercial interests.

Conflict of Interest Statement

Antonio Paoli, Guest Editor, declares that he has no conflict of interest related to the publication of this Supplement.
MARCELLO FAINA AND ARSENIO VEICSTEINAS LECTURE

Exercise training: the maintenance of neuromuscular function in the older individual

G. De Vito

School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland

According to the most recent projections the number of older European citizens (65+ years) will increase from 87 million in 2010 to 148 million in 2060. An augmented life expectancy is the reflection of the many societal successes we experienced in the last 4–5 decades in terms of medical care and improved living conditions. In this context, it is of vital importance to maintain and improve both health and independence in the entire life span. The concept of independence includes the ability to remain mobile and to perform competently the activities of daily living, such as: raising from a chair, climbing stairs or carrying and lifting shopping bags, all actions requiring adequate level of muscle strength, cardio-respiratory fitness and of postural balance and flexibility.

Aging unfortunately, is associated with a generalized deterioration of physiological function including a progressive decline in skeletal muscle mass and muscular strength and power which progressively translate into functional impairment, increased rate of disability and dependency. It is now unanimously recognized that the practice of regular physical exercise is one of the most powerful forms of non-pharmacological therapeutic and preventive intervention. Progressive Resistance training (PRT) is presently recommended as an essential component of a broad-spectrum fitness program and has been clearly shown effective for both strength and power enhancement in older individuals. However, PRT may not be optimal for all functional outcomes and, more importantly, may not represent the first choice of exercise for the over 65’s, especially women, who may prefer other kind of activities. Indeed, previous investigations have reported that multicomponent training (MCT) focusing on neuromuscular coordination and combining endurance and muscle strength training components could be similarly effective in reducing the development and progression of chronic diseases and disabling conditions.

In this presentation, therefore, I will illustrate the results of some studies conducted in the last 20 years which adopted either PRT or MCT. In addition, the importance of a proper nutritional support will be discussed underlying the importance of maintaining an adequate protein intake for the older individuals regularly engaged in exercise training. I will also briefly present the results concerning the effects of PRT on markers of muscle atrophy/hypertrophy and heat shock response (HSR) in healthy older participants of both genders.

INVITED LECTURE

Adipose organ and physical exercise

S. Cinti

Università Politecnica delle Marche

Most of white and brown adipocytes, in spite of their different functions: storing energy and thermogenesis, are contained together in a true organ formed by subcutaneous and visceral depots. The reason for this mixture resides in the fact that adipocytes have plastic properties allowing them to convert each other: under chronic cold exposure white convert into brown to support the need for thermogenesis and under obesogenic diet brown convert into white to satisfy the need for energy storing.

The white-brown transdifferentiation (WAT browning) is of medical interest because the browning is associated with obesity resistance and drugs inducing the browning curb obesity and related disorders.

Type 2 diabetes is the most common disorder associated to visceral obesity. Macrophages infiltrating the obese adipose organ are responsible for the low-grade chronic inflammation dealing to insulin resistance and T2 diabetes. Macrophages form characteristic histopathology figures: crown like structures (CLS) due to the need of removal debris deriving from the death of adipocytes. Death of adipocytes is related to their hypertrophy up to the critical death size. Visceral adipocytes have a smaller critical death size, thus offering an explanation for the higher inflammation and morbidity of visceral fat. Physical exercise induces size reduction and mitochondrial biogenesis in adipocytes of white adipocyte. This well-known observation can
175 SB P
Effects of electro-stimulation during resistance training on maximum strength levels: a 4-week pilot study

S. Dell’Anna1, F. Nieddu1, L. Correale1, E. Codrons1, E. Ricagno1, G.D. Jonghi Lavarini1, G. Liberali1, C.A. Naldini1, M. Vandoni1

1Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, Pavia, Italy

Purpose: Electro-stimulation (EMS) is a technique used to produce a physiological muscular contraction similar to voluntary contraction. Several studies demonstrated positive effects of EMS in strength development. Resistance training (RT) is the standard protocol to enhance strength. It’s not clear if EMS may be useful in association with resistance training to increase strength. The purpose of this study is to evaluate the effects of EMS in training for maximum strength on Smith Machine Back Squat (BS) and Barbell Bench Press (BP).

Methods: Twenty healthy participants (12 M, 8 F) without RT experience were assigned to an experimental group (E) or a control group (C). Both groups practiced a 4-week (2 times/week) resistance training protocol preceded by 2-week of familiarization, in addition group E wore and EMS device (Miha Bodytech) during each session. Baseline physical activity levels were calculated using IPAQ questionnaire. RT protocol consisted of 7 sets (3–5 repetition, 80–90% of 1RM, rest between sets was 3 min) for each session of training for the entire protocol. Before and after RT protocol each subject performed 1RM, rest between sets was 3 min for both BP and BS. A time (pre, post) x group (E, C) two-way repeated measures ANOVA was used (p < .05).

Results: Physical activity levels were similar in both groups. EMS group showed significant improvements in BS (+ 12.4%; p < .05) and BP (+ 10.09%; p < .05) compared to pre testing. The same effect was observed in C group, BS (+ 9.4%; p < .05) and BP (+ 8.29%; p < .05). No significant difference was found between group E and C.

Conclusions: We verified similar improvements in both groups (E and C) for maximum strength. Although we cannot affirm that EMS gives superior advantage instead of traditional training, we observed better enhancement in maximum strength in group E.

176 SB P
Cervical spinal kinematic analysis in young rowers at rowing ergometer during different frequency

V. Giustino1,2, D. Zangla1,4, G. Messina1,2, K. Feka5, F. Fischetti6, A. Iovane7, A. Palma3,7

1Department of Psychological, Pedagogical and Educational Sciences, Posturology and Biomechanics Laboratory Research Unit, University of Palermo, Palermo, Italy; 2Posturalab Italia Research Institute, Palermo, Italy; 3Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy; 4Italian Rowing Federation (FIC), Rome, Italy; 5University of Palermo, Palermo, Italy; 6Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy; 7Regional Sports School of CONI Sicilia, Sicily, Italy

Purpose: Several authors have been investigating the lumbar spinal kinematic that represents the most frequent injured anatomical region in rowers. While, only few studies have examined the cervical column. Furthermore, it is known that, during a competition, compensatory movements may affect negatively performance. The aim of this study was to evaluate if there are any differences in flexion (F) and extension (E) of the head movements in rowers during two different frequency tests.

Methods: Twelve young rowers (male = 5; female = 7; age: 13 ± 0.85 years; height: 156.42 ± 8.53 cm; weight: 51.37 ± 11.17 kg), with 2–3 years of rowing experience, were enrolled in the study. F and E head movements were recorded while subjects were performing a sequence of 10 strokes at the frequency of 20 strokes/min (T0) and during a separate sequence of 10 strokes at the frequency of 30 strokes/min (T1) using rowing ergometer (Concept 2® Mod. C; Indoor Rowing Srl; Morlupo, Roma, Italia). Cervical Range of Motion (ROM) on the sagittal plane was measured with the Moover® accelerometer and the freeStep® related software (Sensor Medica®, Guidonia Montecelio, Roma, Italia). Parameters were considered as: the average flexion (Av-F), the average extension (Av-E) and the average total angle of flexion–extension (Tot-Fe). Statistical analyses were performed using Statistica Software 12 (StatSoft®, TIBCO® Software Inc, Palo Alto, CA, USA). A paired t-test was used to compare differences between T0 and T1. The p-value was considered to be statistically significant at p < 0.05.

Results: Comparison between T0 to T1 showed no significant difference for all considered parameters. However, we found an increase of the amplitude angle in Av-E movement (+ 22.28%) and Tot-Fe (+ 10.47%), while in the other hand, a decrease of the Av-F movement (− 12.18%). According to technical indications of the Italian Rowing Federation, changes greater/less than 25% on F and E head movements, changing the frequency, may affect negatively the performance. When calculating the percentage between participants, only 2 of them showed a greater ROM (− 25 to + 25%).

Conclusions: Our results indicated that young rowers showed changes on F-E ROM in relationship with higher stroke frequency and this may influence sports performance. Further studies are needed in order to clarify the relationship between head movements and performance, as well as to examine the implications of cervical spine injuries.

References
Leo Ng, Campbell A, Burnett A, Smith A, O’Sullivan P (2015) Spinal kinematics of adolescent male rowers with back pain in comparison
Author index

Numbers after authors’ name refer to sequential numbers of abstracts

A
Abate Daga F. S27, S40, S57
Acri G. S75
Adami P.E. S5
Adamo V. S51
Adascalitei S. S55
Alberti G. S24
Alesi D. S60
Alesi M. S22, S73, S80
Alfieri A. S80, S82
Algeri M. S48
Alkhatib M. S53
Allegretti M. S92
Amatori S. S40, S87, S88, S92
Amicone M. S13, S96
Anastasi G. S56
Annibalini G. S43, S47, S88
Annino G. S49, S77
Antonioni A. S79
Arcigli A. S23
Avancini A. S50
Aversa A. S21, S22
B
Bacchi E. S41
Bagnasco M. S92
Baldari C. S3, S14, S16, S21, S22, S23, S81
Baldelli G. S47
Ballatore A. S74
Banci L. S94
Barbagallo M. S49
Barbarisi E. S43, S47, S88
Barone G. S95
Barone R. S36, S78
Basile G. S20
Basile G. A. S56
Basile G.C. S56
Basile M. S73
Bataglia G. S22, S49, S58, S80, S88
Bataglia M.A. S7
Battaglini M. S45
Bazzucchi I. S8
Bellafiore M. S22, S51, S58, S80, S88
Bellomo M. S19
Belluzzi E. S65
Belot S. S29
Ben-Soussan T.D. S60
Benedetti M.G. S95
Bensi R. S40
Berattoni L. S28, S40, S57
Berger D.J. S75
Bernardi M. S5
Bertini S. S20, S56
Biancalana V. S33, S88
Bianco A. S19, S58, S73, S88, S89, S90, S91
Biggio M. S55
Biasini V. S23, S33, S38
Birritteri G. S36
Bisconti A.V. S16, S17, S67
Bisio A. S52, S55
Bivi R. S42
Boca S. S86, S89
Boccia G. S11, S18, S26, S28, S39, S59, S74
Bonaiuto A. S12, S44, S59
Bonato M. S10, S68
Bonavita S. S85
Bondi D. S21, S54, S61
Bonifazi M. S6
Bono V. S50
Bontempi M. S60
Bonzano L. S7, S55
Bordini A. S49
Borghi S. S69
Borghini G. S15, S32
Borrelli M. S5, S38
Borriello G. S30
Bortolan L. S17, S25, S61, S95
Bortoli L. S14
Borzelli D. S75
Bosco G. S25, S68
Bove M. S6, S7, S44, S52, S55
Brandi G. S47
Bravi R. S76
Briquetto G. S7, S55
Brightwell C.R. S62
Briguglio F. S82
Brunengo A. S34
Bruno E. S47, S48
Brusa J. S49, S51
Bruschetta D. S20, S59
Brustio P.R. S11, S18, S26, S28, S29, S39, S74
Buda D. S20, S77
Buia I. S7, S41
Buonopane G. S50, S63, S64, S80, S81, S82
Buonomo A. S27, S31
Burini D. S78
Buscemi A. S19, S70
Buttacchio G. S26, S39

C
Cacciola A. S20, S56
Cafaro D. S50
Calabrese M. S26, S39
Cali G. S43, S92
Calvalle A. R. S40, S87, S92
Calcagno G. S27, S31
Caldivi A. S59
Campafell E. S10
Campi F. S10
Campieli M. S35
Campolati M. S35
Canepa A. S19
Caporalini A. S86
Caporossi D. S79
Capparelli G. S43, S88
Cappello F. S36, S66, S78
Capranaica L. S19, S34, S79
Capriotti A. S36
Capuano R. S85
Carazzai N. S83
Cardinale U. S60
Carfora V. S85
Carlin C. S30
Canale A. S46, S67
Carraro A. S6, S32
Carrozza M.A. S12
Casale R. S26, S39
Casali F. S76
Casali F. S76
Casolo A. S17
Casolo F. S4, S24, S37
Casalini P.A. S23
Castelli L. S37, S43, S47, S48
Catalano L. S27
Cataldo A. S19
Caterino M. S82
Cattaneo S. S40
Cau A. S37, S47, S48
Cavarras S. S97
Cavedon V. S12, S42, S93
Cei E. S2, S5, S16, S17, S25, S27, S38, S48, S53, S90, S94
Centorbi M. S27
Ceresa A. S19
Cerri M. S37
Cesari C. S30
Cesqui B. S54
Cevase S. S17
Chiordi G. S30
Ciacci C. S34
Cibelli G. S44
Cimino E. S67
Cinque P. S68
Cirella A. S45
Cittadino A. S56
Coco M. S19, S31, S69, S70
Codevallia R. S4, S24, S37
Codrons E. S84
Cogliati M. S54, S75
Cohen E.J. S76
Colleda D. S32, S71
Colò A.L. S24
Conconi F. S58
Concu A. S4
Condello G. S34
Contarelli S. S43, S88
Corapi L. S40
Coratalla G. S2, S5, S16, S17, S27, S37, S38, S53, S67, S90, S94
Coratella B. S25
Corbi A. S35
Cordellat A. S4
Coriani R. S57
Corradetti J. S4, S24, S37, S46, S67, S84
Corsello G. S51
Coser A. S83
Cristofoli M. S42
Croce L. S43
Cudicio A. S54, S75
Curatolo P.G. S5
Curi o G. S89