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Abstract

The infiltration process into the soil is generally modeled by the Richards’ partial differential
equation (PDE). In this paper a new approach for modeling the infiltration process through
the interface of two different soils is proposed, where the interface is seen as a discontinuity
surface defined by suitable state variables. Thus, the original 1D Richards’ PDE, enriched
by a particular choice of the boundary conditions, is first approximated by means of a
time semidiscretization, that is by means of the transversal method of lines (TMOL). In
such a way a sequence of discontinuous initial value problems, described by a sequence of
second order differential systems in the space variable, is derived. Then, Filippov theory on
discontinuous dynamical systems may be applied in order to study the relevant dynamics
of the problem. The numerical integration of the semidiscretized differential system will be
performed by using a one-step method, which employs an event driven procedure to locate
the discontinuity surface and to adequately change the vector field.

Keywords: Richards’ equation, event-driven numerical methods, layered soils,
discontinuous differential systems, Filippov theory.

1. Introduction to the physical problem

The infiltration process into the soil is generally modeled by means of Richards’ equation,
an advection-diffusion equation derived by conservation of mass, generalizing Darcy’s law
for saturated flow in porous media.
Referring to a wide bibliography (see [1, 2, 3, 4]), we will consider just the infiltration along
the vertical dimension z, since this process is mainly governed by gravity force. Nevertheless,
the numerical solution for 2D or 3D problems is generally accomplished by Mixed Finite El-
ement methods and Mixed Finite Volume methods, according to classical and recent papers,

∗Corresponding author
Email addresses: marco.berardi@ba.irsa.cnr.it (Marco Berardi), fdifonzo@codearchitects.com

(Fabio Difonzo), michele.vurro@ba.irsa.cnr.it (Michele Vurro), luciano.lopez@uniba.it (Luciano
Lopez)

Preprint submitted to Advances in Water Resources October 3, 2017

Roberto Garrappa
Typewriter
This is the Pre-print of the paper 

M.Berardi, F.Difonzo, M.Vurro, L.Lopez

The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities

Advances in Water Resources 115 (2018), 264-272

DOI: https://doi.org/10.1016/j.advwatres.2017.09.027



see for instance [5, 6, 7, 8, 9, 10].

It is well known that Richards’ equation can be expressed in terms of pressure-head ψ
or in terms of water content θ, where both formulations have advantages and drawbacks.
Loosely speaking, we can think of pressure-head as the internal energy of the fluid due to
the pressure exerted on its container, whereas water content is simply the volume of water
per bulk volume of the medium (see [11]).
Here we will consider the following ψ-based form of the 1D Richards’ equation:

C(ψ)
∂ψ

∂t
=

∂

∂z

[
K(ψ)

(
∂ψ

∂z
− 1

)]
, 0 ≤ t ≤ T, and 0 ≤ z ≤ Z , (1)

being C(ψ), K(ψ) and ψ = ψ(t, z) real valued functions, with C(ψ) the hydraulic capacity
and K(ψ) the hydraulic conductivity.

The function C(ψ) is given in terms of the water retention curve θ(ψ), and is given by:

C(ψ) :=
dθ

dψ
, (2)

where θ(ψ) and K(ψ) are suitable functions defined by the physical characteristics of the
model (see for example [12] ).

Equation (1) is usually enriched with the known value of the solution at initial time
t = 0, that is:

ψ (0, z) := ψ0(z), for every z ∈ [0, Z] , (3)

and boundary conditions at the top and at the bottom of the vertical column [0, Z], that is:

ψ(t, 0) := ψ0(t), (4a)

ψ(t, Z) := ψZ(t), for every t ∈ [0, T ] . (4b)

The study of the infiltration process into a medium, constituted by two (or more) different
layered soils, is an open problem. In particular, the wet front behavior on the interface
between two layers is the most challenging situation, and in recent years some efforts have
been made.

In [13] it is highlighted that water movement through the interface is possible just where
the water accumulates on it and the pressure grows enough to overcome the capillary forces.
In [13] an approach based on the method of lines is used for simulating water flow, and the
continuity of normal flux and pressure is imposed at the interface. Assuming the threshold
depending on the depth, the mesh is designed so that a node lies in the interface. A fictitious
node is introduced at that point in order to assume the soil properties of the upper soil while
the real node will assume the soil properties of the second one.
In [12] emphasis is posed on the infiltration into very dry soil, and it is highlighted that
the dry condition is the most challenging physical case from the numerical point of view.
Moreover, a water content based algorithm is proposed, and its efficiency is shown in very
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dry soils.
From a mathematical point of view, the problem of handling the discontinuity consists in
choosing conveniently the values for C(ψ) and K(ψ) at the interface, being these values not
well-defined there; in fact, at the interface different hydraulic functions could be applied, ac-
cording to the medium under consideration. Towards this goal, a regularization of hydraulic
conductivity at the interface can be accomplished by means of a geometric average, as in
[1]. It should be stressed that, also in one homogeneous soil, the problem of evaluating flow
variables, i.e. the hydraulic conductivity function, is handled by using inter-nodal hydraulic
conductivity, that is a weighted average of known hydraulic conductivities at two neighbor-
ing nodes of the spatial grid system. In [14] a refinement of this technique is studied, in the
context of layered soils; this led to the concept of inter-layer hydraulic conductivity, and a
comparison of different regularization techniques is presented therein.
Recently, in [15], a water-content formulation is used, both in a vertex-centered approach
and in a cell-centered one. In particular, for the first approach, assuming that water reten-
tion curves are specified, a new composite curve is formed at the interface, expressing the
relation between water content and pressure-head under composite effects of two different
materials at the interface. An arithmetic average is used for computing the conductivity
function at the interface and a correction term is introduced in order to take into account
the soil heterogeneity.
Because of the continuity of flux and mass over the whole integration domain, and partic-
ularly across the surface, the continuity of the pressure head ψ is assumed over the whole
domain.
Therefore, at the interface of two different soils (denoted briefly with 1 and 2), characterized
by different hydraulic capacities, Ci(ψ) for i = 1, 2, and different hydraulic conductivities,
Ki(ψ) for i = 1, 2, we have:

θ1(ψ) 6= θ2(ψ), (5)

where water content functions θ1 and θ2 assume different values at the interface, z = z,
where the pressure value is ψ = ψ(t, z). This justifies the discontinuity of the water content
function at the interface, as claimed in [13, 16, 15], and supports our choice of the ψ-form
of Richards’ equation. Thus, we can assume that the state variable ψ is continuous on the
interface while its derivative ∂ψ

∂z
(the spatial derivative) is discontinuous.

Finally, from the analytical point of view, in [17], a closed-form solution is obtained un-
der the assumption that the capillarity rise assumes the same value at each layer, while, in
the recent work [18], an analytical solution is proposed in general cases of different values for
hydraulic parameters, and for any variation of the saturated hydraulic conductivity vary-
ing with the depth: such an analytical solution is obtained just for Gardner’ s exponential
model, though. Nevertheless, both in [18] and in [19], the saturation condition is imposed
at the bottom.

Thus, one way to model this discontinuous problem is considering the pair of Richards’
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equations:

C1(ψ)
∂ψ

∂t
=

∂

∂z

[
K1(ψ)

(
∂ψ

∂z
− 1

)]
, if z < z, (6a)

C2(ψ)
∂ψ

∂t
=

∂

∂z

[
K2(ψ)

(
∂ψ

∂z
− 1

)]
, if z > z, (6b)

according to the two different soils under investigation, and for a fixed threshold value z.
In real applications, the difficulty often arises to assign a significant value to ψ(t, Z);

therefore, in the present paper, we suppose to replace (4b) with the following condition at
z = 0:

χ0(t) :=

[
∂ψ(t, z)

∂z

]
z=0

, for every t ∈ [0, T ] , (7)

namely, we assume that what happens at the bottom reflects (and is reflected by) the spatial
derivative of ψ at the top.

We have to point out that the replacement of the boundary condition of ψ(t, z) at z = Z
with (7) modifies the nature of our PDE and suggests to consider nonstandard methods for
the semidiscretization of (1). In particular the Transversal Method of Lines (TMOL) will
be used, instead of the more classical Method of Lines (MOL), in order to derive, for each
value of t, an initial value problem described by a second order differential system in the
space variable.

This way, Filippov theory (see [20]) may be applied to treat the discontinuity of (6) in
the space variable (i.e. along z = z̄). This approach represents the main novelty of the
paper. We have to notice that Filippov theory has also been used in the numerical solution
of geosciences and geochemical models but only to treat discontinuities in time (see [21],
[22]).

The plan of the paper is the following: in Section 2 we sketch some basic concepts of
Filippov theory; in Section 3 we semi-discretize Richards’ PDE in time variable by using the
transversal method of lines (TMOL), in order to derive a discontinuous system of second or-
der differential equations in the space variable; in Section 4 we rewrite such a system in terms
of Filippov system; in Section 5, for solving the Filippov discontinuous system, we employ
an event driven method (see [23, 24]) based on a one-step scheme of low order. Particularly,
such a method is a sort of predictor-corrector scheme applied to the semidiscretized sys-
tem: the predictor is the Implicit Euler scheme applied to a Differential Algebraic Equation
(DAE) associated to the semidiscretized system while the corrector performs a correction
of the previous solution. Finally, in Section 6, some numerical simulations are reported in
order to justify our results.

2. Background on Filippov theory

The Filippov theory is a well-known tool for dealing with discontinuous systems of ordi-
nary differential equations (ODEs). The mathematical problem to which this theory applies
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is generally expressed by a first order differential system in Rs of the following form:

x′(t) = f(x(t)) =

{
f1(x(t)) when h(x(t)) < 0
f2(x(t)) when h(x(t)) > 0 , t ∈ [0, T ]

(8)

with initial condition x0 = x(0), where x : [0, T ]→ Rs, f : Rs → Rs and h : Rs → R defines
the discontinuity surface:

Σ = {x ∈ Rs| h(x) = 0} . (9)

The manifold Σ splits the phase space in such a way that Rs = R1 ∪ Σ ∪R2, where:

R1 = {x ∈ Rs| h(x) < 0} , R2 = {x ∈ Rs| h(x) > 0} .

We also assume that Σ is smooth, that is the gradient ∇h(x) 6= 0 for all x ∈ Σ.
The vector field f is discontinuous along Σ (that is f1(x) 6= f2(x), x ∈ Σ), with f1 and f2

smooth in the regions R1 ∪ Σ and R2 ∪ Σ, respectively.

∑

x
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∑
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Figure 1: On the left, the crossing behavior; on the right, the sliding behavior. Both figures are depicting
phase space plots.

The pioneering work on this subject is Filippov’s book [20]. In the last decade a great
effort has been devoted to study discontinuous ODEs, either from an theoretical point of
view (see, for example, [25, 26, 27, 28]), or from a computational point of view (see [24]).
Here we just sketch the most important aspects of such a theory; for example, the existence
and uniqueness of solution to the initial value problem (8) is not guaranteed and particular
attention has to be payed when the solution approaches the discontinuity.
We also assume that the trajectory x(t) reaches the discontinuity surface Σ in a finite time
t (called event time) and at a certain state x = x(t) (called event point). Thus, the solution
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behavior can be determined according to some geometrical conditions. If we define:

w1 (x) =∇h> (x) · f1 (x) , (10a)

w2 (x) =∇h> (x) · f2 (x) , (10b)

the solution behavior follows one of these two situations, as represented in Figure 1:

• Crossing. The solution, coming from R1 (resp. R2), crosses Σ at some point x ∈ Σ and
switches to the other vector field f2 (resp. f1). A sufficient and necessary condition
for the crossing is

w1 (x)w2 (x) > 0. (11)

• Sliding. Roughly speaking, in this case the solution trajectory reaching x ∈ Σ will
not leave Σ, and therefore will slide along Σ. A sufficient and necessary condition for
attractive sliding is

w1 (x) > 0 and w2 (x) < 0. (12)

In this case, the solution satisfies a new initial value problem x′ = fF (x), x(0) = x,
where the vector field fF is the sliding Filippov vector field, computed as a suitable
convex combination of f1, f2, that is

fF (x) = (1− α(x))f1(x) + α(x)f2(x) , (13)

where α(x) is the value which guarantees fF (x) to lie on the tangent plane to Σ at x,
that is the value for which (∇h(x))>fF (x) = 0:

α(x) =
(∇h(x))> · f1(x)

(∇h(x))>(f1(x)− f2(x))
. (14)

From a numerical point of view, when a discontinuous system has to be simulated, the ac-
curacy of the numerical method is lost crossing the discontinuity. To overcome this problem
one could regularize the discontinuous vector field obtaining a continuous, but stiff, dynam-
ical system (see [29]) whose solution requires expensive computational methods. Instead, if
the event point x is located accurately, we can restart with the vector field f2 (crossing case)
or fF (sliding attractive case) and no accuracy reduction will occur in the numerical solution
obtained. These numerical procedures are known in literature as event-driven methods or
event location techniques (see [30, 31, 32, 33, 34]).

We now briefly describe an event driven procedure: let us suppose to start with x0 ∈ R1

(i.e. h(x0) < 0). Let xn be the numerical approximation of the solution x(tn) at the generic
instant tn = tn−1 + ∆t (∆t being the time step); what we do in practice is to check the
quantity h(xn) ·h(xn+1): if this product is greater than zero, then xn+1 is in the same region
as xn, and the numerical integration continues using the same vector field (i.e. f1) as in the
previous step; otherwise, if the previous product is less than zero, then xn+1 belongs to a
different region with respect to xn, i.e. R2, and so we need to compute the event point xn̄ on
Σ and select the vector field f2 (when the crossing condition is satisfied), or Filippov sliding
vector field fF (when the sliding condition is satisfied instead).
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3. Semidiscretization in time

In this paper we wish to study what happens when an infiltrating water flow switches
from one soil to another, according to different thresholds values of depth or head pressure
gradient. Thus it seems natural to first discretize the time derivative operator (rather than
the spatial derivative operator, as in MOL technique) using the transversal method of lines
(TMOL). This approach is not usual when dealing with the Richards’ equation, for which
it is standard to first discretize the second order spatial derivative, and then integrate the
resulting differential system with respect to the time variable (see, for example, [4, 13]).
Let {t0, . . . , tNT

} be a uniform partition of the time interval [0, T ] obtained by using the
constant stepsize ∆t. For any n = 1, . . . , NT consider the following set of equations:

d

dz

[
K (ψn)

(
dψn

dz
− 1

)]
= C (ψn)Dt(ψ

n), n = 1, . . . , NT , (15)

where ψn = ψn(z) denotes the approximation of the exact solution at (tn, z) for 0 ≤ z ≤ Z,
and

Dt(ψ
n) =

ψn − ψn−1

∆t
, (16)

even if any discrete time differential operator could be used.

4. Discontinuous models: Filippov formulation

For every n = 1, . . . , NT , let us define the following functions from [0, Z] to R:

xn(z) = z, yn(z) = ψn(z), sn(z) = (yn(z))′ ,

where the derivative of yn(z) is taken with respect to z.
From (15), it follows that

(sn)′ =
C(yn)

K(yn)
Dt(y

n)− K ′(yn)

K(yn)
(sn − 1)sn,

while (xn)′ = 1 and (yn)′ = sn. Thus, we get the following differential system:xnyn
sn

′ =
 1

sn
C(yn)
K(yn)

Dt(y
n)− K′(yn)

K(yn)
(sn − 1)sn

 , (17)

for each n = 1, . . . , NT , and on the spatial interval [0, Z].
Next, we will analyze (17) when the dynamics faces a discontinuity surface.
More specifically, two different scenarios will be considered, according to the choice of

the function h which defines the discontinuity surface:

• if the discontinuity occurs along xn, then we take

h(xn, yn, sn) := xn − z̃, (18)
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• if the discontinuity occurs along sn, then we take

h(xn, yn, sn) := sn − ψ̃′, (19)

where z̃ and ψ̃′ are reference real values for the height and the pressure gradient, respectively.
For instance, the first choice - i.e., the threshold depending on the depth - refers to

the classical papers on this subject (e.g., see [13, 16]), whereas the second choice links the
trespass into the second soil with a threshold value of the pressure gradient.

Let the discontinuity surface

Σn := {(xn, yn, sn) ∈ R3 : h(xn, yn, sn) = 0},

which splits R3 into two regions:

R1 := {(xn, yn, sn) ∈ R3 : h(xn, yn, sn) < 0}, R2 := {(xn, yn, sn) ∈ R3 : h(xn, yn, sn) > 0}.

We now define the vector fields f1 and f2 in the smooth regions R1 and R2 of the
discontinuous system, that is:

fni (xn, yn, sn) :=


1
sn

Ci(y
n)

Ki(yn)
Dt(y

n)− K ′i(y
n)

Ki(yn)
(sn − 1)sn

 , i = 1, 2, (20)

where the functions Ci, Ki for i = 1, 2, define the Richards’ equation in the two different
soils.

Thus, (17) may be written in the Filippov form as:xnyn
sn

′ = {fn1 (xn, yn, sn), x ∈ R1,

fn2 (xn, yn, sn), x ∈ R2,
(21)

with initial conditions given by

xn(0) = 0, yn(0) = ψ0(tn), sn(0) = χ0(tn) . (22)

4.1. Discontinuity in z

This setting provides a contact of two layered soils at the line h(xn) = xn − z̃ = 0, so
that (21) becomes a Filippov differential system with a discontinuity surface Σn defined by
(18). Since ∇h(xn) = [1 0 0]>, we have

w1 = ∇h(xn)>fn1 (xn, yn, sn) = 1,

w2 = ∇h(xn)>fn2 (xn, yn, sn) = 1,

thus, from (11) the state variable xn can only undergo a crossing phenomenon along the
spatial direction.

Remark 1. We notice that no particular difficulty arises if the value z̃ depends on time t.
In fact, in this case h(xn) := xn − z̃n, and again w1 = w2 = 1.
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4.2. Discontinuity in ∂ψ
∂z

We now suppose that h is defined as in (19), that is h(sn) := sn − ψ̃. This means that
the presence of a discontinuity is detected by some rapid variation of the state variable from
one point of the depth mesh to the following one. We point out that, in the context of
Filippov systems, this would be equivalent to a time-stepping approach (see, for example,
[35]) versus a event-driven one. As a matter of fact, in the classical time-stepping approaches
the occurrence of a discontinuity is detected just by examining the behavior of the step-size
control procedure. Similarly, the occurrence of a different soil in the spatial integration can
be investigated just by rapid variation – beyond a certain threshold – in ∂ψ

∂z
.

Since ∇h(sn)> = [0 0 1], on the discontinuity surface sn − ψ̃′ = 0 we have:

w1(yn) = ∇h(sn)>fn1 (xn, yn, sn) =
C1(yn)

K1(yn)

[
Dt(y

n)− Γ1(yn)(ψ̃′ − 1)ψ̃′
]
, (23a)

w2(yn) = ∇h(sn)>fn2 (xn, yn, sn) =
C2(yn)

K2(yn)

[
Dt(y

n)− Γ2(yn)(ψ̃′ − 1)ψ̃′
]
, (23b)

where

Γi(y
n) :=

K ′i(y
n)

Ci(yn)
, i = 1, 2. (24)

The crossing case is similar to the one where the discontinuity refers to xn, while the sliding
case apparently has never been treated so far.
Then, from (12), if the pressure gradient increases as z decreases, a sliding phenomenon
occurs if and only if

w1(yn) > 0 and w2(yn) < 0. (25)

Proposition 1. Let us assume that the dynamics is governed by (21). Then a sliding motion
on sn − ψ̃ = 0 occurs, if and only if

Γ1(yn)(ψ̃′ − 1)ψ̃′ < Dt(y
n) < Γ2(yn)(ψ̃′ − 1)ψ̃′. (26)

Proof. If sliding motion occurs, then (25) holds, thus the claim will follow as we prove that
Ci(y

n) > 0, Ki(y
n) > 0, for i = 1, 2, on sn − ψ̃ = 0. Since Ci is defined as in (2) while

the usual form of θ will be the one in (40a), then Ci(y
n) > 0, for i = 1, 2, on sn − ψ̃ = 0.

Further, since the form of K is the one in (40b), then Ki(y
n) > 0, i = 1, 2, on sn − ψ̃ = 0.

Viceversa, if (26) holds, then

Dt(y
n)− Γ1(yn)(ψ̃′ − 1)ψ̃′ > 0,

Dt(y
n)− Γ2(yn)(ψ̃′ − 1)ψ̃′ < 0.

Hence, by using positivity of Ci, Ki, for i = 1, 2, on sn − ψ̃ = 0, then (25) follows.

From (26), it follows that during the sliding motion on sn − ψ̃ = 0 it is necessary that

K ′1(yn)

C1(yn)
(ψ̃′ − 1)ψ̃′ <

K ′2(yn)

C2(yn)
(ψ̃′ − 1)ψ̃′, (27)

which represents a condition depending just on the characteristic properties of hydraulic
conductivity and hydraulic capacity of the two soils and on the threshold value for s.
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5. Discretization in space

The full discretization of the Richards’ equation is usually obtained by a discretization
of the spatial domain by using finite difference or finite element methods, followed by the
discretization of the time variable by implicit methods as the Implicit Euler (IE) scheme (see
[36, 37, 38]). Due to the stiff and nonlinear nature of the Richards’ equation, computational
difficulties arise in the nonlinear systems we need to solve at each time step. In literature,
solving such nonlinear systems is often performed by using the Picard iteration, or more
effective techniques as the modified Picard iteration or the L-scheme, in order to have more
rapid convergence to the solutions (see [36, 37, 38]).

We have to notice that the substitution of boundary condition (4), at z = Z, with the
initial condition (7), at z = 0, leads to significant changes in the numerical methods for the
full discretization of our problem.

In fact, here we will first discretize with respect to the time variable and then with
respect to the space variable by using an implicit scheme. Because of the occurrence of the
discontinuities, the space discretization of the ODE system will be obtained by means of an
event driven procedure of low order of accuracy; particularly, starting with the set of initial
conditions in (22) we will integrate (21) in region R1 (where z ≤ z̃, C = C1 and K = K1)
until reaching the discontinuity surface; then, depending on the crossing or sliding condition,
we will adequately change the vector field and continue the numerical integration.

In this section, we will consider just the case of discontinuity in z, that is the crossing
case, because the sliding case may be treated in a similar way by using Filippov vector field
(13) during the sliding mode.

Let zk+1 = zk + ∆z, for k = 0, . . . , KZ − 1, be a uniform partition of the spatial interval
[0, Z] with spatial step ∆z. Let ynk := yn(zk) and snk := sn(zk): then the Implicit Euler (IE)
scheme reads as:

ynk+1 =ynk + ∆z snk+1; (28a)

snk+1 =snk + ∆z

[
C1(ynk+1)

K1(ynk+1)
Dt(y

n
k+1)−

K ′1(ynk+1)

K1(ynk+1)
(snk+1 − 1)snk+1

]
; (28b)

for k = 0, . . . , K̃Z − 1, and zK̃Z
= z̃; from (28b) we get

K1(ynk+1)snk+1 = K1(ynk+1)snk + ∆z
[
C1(ynk+1)Dt(y

n
k+1)−K ′1(ynk+1)(snk+1 − 1)snk+1

]
. (29)

We point out that is not necessary to integrate xn, being equal to z. Once the value z̃ is
reached, we restart with (yn

K̃Z
, sn

K̃Z
) by integrating (21) in region R2, where C1 and K1 are

replaced by C2 and K2 respectively, for any k = K̃Z , . . . , KZ − 1.
However, we have to notice that in real situations the functions C1 and K1 assume

positive and very small values; in particular K1 is much smaller that C1 and the function
σ(y) = C1(y)

K1(y)
in (29) is often unbounded (see for instance (40)). Thus the numerical solution

of the nonlinear system (28) by the standard or modified Picard method is not effective (as
our numerical simulations have shown) and an alternative procedure is necessary.
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Here, using the fact that K1 is positive and small, we suggest a sort of predictor-corrector
method based on the IE scheme, where the predictor is the scheme derived by IE setting
K1 = 0 in (29). The numerical solution obtained this way will be corrected by the IE scheme.
That is, we first solve the nonlinear system:

0 = ynk+1 − ynk −∆z snk+1; (30a)

0 =
[
C1(ynk+1)Dt(y

n
k+1)−K ′1(ynk+1)(snk+1 − 1)snk+1

]
; (30b)

in order to determine a solution (ynk+1, s
n
k+1), which is the predictor. We notice that the

previous nonlinear system does not suffer of the possible unboundedness of σ(y).
The nonlinear system in (30) may be solved by a Newton or Picard type method within

a tolerance TOL. Define the following function from R2 to R:

F (ynk+1, s
n
k+1) := C1(ynk+1)Dt(y

n
k+1)−K ′1(ynk+1)(snk+1 − 1)snk+1 , (31)

which is Lf -Lipschitz because of the smoothness of C1 and K1. Thus we can suppose that
when we stop the iterations of the numerical procedure to solve (30) its right hand side is
of order TOL.

Being K1 very small, we are going to choose TOL of the same order (or less) of K1, so

to have
∣∣F (ynk+1,s

n
k+1)

K1(yk+1)

∣∣ bounded. Then, once (ynk+1, s
n
k+1) has been found, we correct just snk+1

by using the value of F (ynk+1, s
n
k+1), that is we will assume:

snk+1 = snk + ∆z
F (ynk+1, s

n
k+1)

K1(yk+1)
. (32)

5.1. How to solve the nonlinear system (30).

Now, let us define the Courant-Fischer-Lewy number:

γ :=
∆t

∆z2
, (33)

recall that Dt(y
n
k+1) =

ynk+1−y
n−1
k+1

∆t
and set wnk+1 = ynk+1 − ynk .

Thus, replacing (30a) in (30b), we derive:

0 =
[
C1(ynk+1)− γ K ′1(ynk+1)(wnk+1 −∆z)

]
wnk+1 + C1(ynk+1)(ynk − yn−1

k+1 ), (34)

which is a nonlinear algebraic equation that can be solved by an iterative procedure.

Set wnk+1,m := ynk+1,m − ynk , with ynk+1,0 known, and define the following modified Picard
iteration:

0 =
(
C1(ynk+1,m)− γ K ′1(ynk+1,m)(wnk+1,m −∆z)

)
wnk+1,m+1 + C1(ynk+1,m)(ynk − yn−1

k+1 ),

from which we derive

wnk+1,m+1 =
yn−1
k+1 − ynk[

1− γK
′
1(ynk+1,m)

C1(ynk+1,m)
(wnk+1,m −∆z)

] , m ≥ 0 . (35)

Thus, if the sequence
{
wnk+1,m

}
converges to wnk+1 for m → ∞, then we assume ynk+1 =

wnk+1 + ynk .
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5.2. Convergence of iterations

Proposition 2. Let us consider the scheme (30). Let us suppose that |∆yn0 | and |∆sn0 | are
bounded quantities for each n. Then, there exists a constant M > 0 independent on k, n
such that

|∆ynk | ≤M,

where ∆ynk := yn−1
k−1 − ynk , for any n = 1, . . . , NT , k = 0, . . . , KZ.

Proof. Instead of (30) we consider:

ynk+1 = ynk + ∆z snk+1; (36a)

εsnk+1 = εsnk + ∆z F (ynk+1, s
n
k+1); (36b)

where F (ynk+1, s
n
k+1) is the smooth function in (31) and where ε is positive and small so that

the second equation of (36) is a perturbation of order ε of (30b).
Now, by using ∆ynk := yn−1

k−1 − ynk , and ∆snk := sn−1
k−1 − snk , we derive:{

∆ynk = ∆ynk−1 + ∆z ·∆snk .
ε∆snk = ε∆snk−1 + ∆z · (F (yn−1

k+1 , s
n−1
k+1)− F (ynk , s

n
k)) ,

(37)

and from the second equation of (37) it follows that

|∆snk | ≤
|∆snk−1|+ ∆z(ε) Lf |∆ynk |

1−∆z(ε) Lf
(38)

where ∆z(ε) = ∆z/ε, 1−∆z(ε)Lf > 0 and ∆z is sufficiently small.
Using (38) into the first of (37) we derive

|∆ynk | ≤ |∆ynk−1|+ ∆z
|∆snk−1|+ ∆z(ε) Lf |∆ynk |

1−∆z(ε) Lf

from which

|∆ynk | ≤
1

1− ∆z ∆z(ε)
1−∆z(ε)Lf

[
|∆ynk−1|+

∆z

1−∆z(ε)Lf
|∆snk−1|

]
By recursion on k, we finally get:

|∆ynk | ≤ cy(∆z, Lf , k, ε)|∆yn0 |+ cs(∆z, Lf , k, ε)|∆sn0 |,

for a fixed n, where cy, cs are constants depending on ∆z, Lf , k and ε that can be uniformly
bounded with respect to k by some values cy, cs, in order to have:

|∆ynk | ≤ cy|∆yn0 |+ cs|∆sn0 |.

Finally, from the boundedness of |∆yn0 | and |∆sn0 | and using induction on n , we get |∆ynk | ≤
M, ∀k, n.
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We then prove the following.

Theorem 1. There exists c > 0 such that, if γ in (33) belongs to (0, c), then the sequence{
wnk+1,m

}
converges, as m→∞, to a unique limit wnk+1.

Proof. In order to prove the claim, we set

G(ξ) :=
∆ynk

1− γf(ξ)
,

where

f(ξ) :=
K ′1(ξ + ynk )

C1(ξ + ynk )
(ξ −∆z),

and we prove that
|G′(ξ)| < 1, ξ ∈ R.

We observe that:

|G′(ξ)| = γ

∣∣∣∣ ∆ynk
(1− γf(ξ))2

f ′(ξ)

∣∣∣∣ ,
and then, from Proposition 2 it follows that:

|G′(ξ)| ≤ γ
M

(1− γf(ξ))2
‖f‖,

where, for any function g ∈ C 1, we defined ‖g‖ := ‖g‖2 + ‖g′‖2. Therefore, if the right-hand
side of the equation above is strictly less than one, we obtain that

{
wnk+1,m

}
converges to

wnk+1, and also that this limit is unique. Then, we have convergence if:

γ
M

(1− γf(ξ))2
‖f‖ < 1,

that is, if and only if
‖f‖2γ2 − (M + 2)‖f‖γ + 1 > 0 .

We observe that M+2−
√
M2+4M

2‖f‖ > 0, thus the last inequality holds if and only if

0 < γ <
M + 2−

√
M2 + 4M

2‖f‖
or γ >

M + 2 +
√
M2 + 4M

2‖f‖
. (39)

The second inequality imposes a lower bound for γ which has no numerical or physical
meaning. Hence, setting c := M+2−

√
M2+4M

2‖f‖ concludes the proof.
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6. Results

For the simulations reported in this section, the water retention curve and the unsatu-
rated hydraulic conductivity are defined here by means of Van Genutchen model reported
in [12], i.e.

θ (ψ) = θr +
θS − θr

(1 + |αψ|n)
m , being m = 1− 1

n
; (40a)

K(ψ) = KS

[
1

1 + |αψ|n
]m

2
[
1−

(
1− 1

1 + |αψ|n
)m]2

, (40b)

with the usual meaning for the parameters θS, θr, KS, that are -respectively- the saturated
water content, the residual water content, the saturated hydraulic conductivity, whereas α, n
are fitting parameters.

(a) (b)

Figure 2: Water content profiles at different time points: the discontinuous behavior of θ is evident at the
threshold. The dynamics is faster in the upper soil, according to the greater permeability – corresponding
to a greater velocity of water– in fine sands than in clay loams. The left plot is obtained by the new TMOL
approach. In the right plot: the profile obtained by MOL

The different soil characteristics will be defined according to a different choice of param-
eters in (40). For both simulations, let us assume that for the upper soil the value of ψ
at the top is identically equal to −12, and the starting profile corresponding to (3) on the
vertical column is the vector[

ψ0 (z0) ψ0 (z1) . . . ψ0 (zKZ
)
]>

=
[
−12 −100 . . . −100

]>
. (41)
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Figure 3: The sliding behavior is here evident, over the threshold ψ̃′ = −1.1, between ψ ≈ −22.59 and
ψ ≈ −12.96. In the lower plot, a magnification of this phenomenon. Each colored line represents one time
instant, in which sliding occurs.

These conditions correspond to a situation quite close to saturation at the top of the
column, and initially pretty dry in the subsoil.

In the first numerical simulation, the threshold is assumed to depend on depth, and a
pair of Richards’ equations is considered, as in (6), where Ci, Ki, for i = 1, 2 depend on
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different soil characteristics, according to the choice of the hydraulic functions and to the
choice of the parameters therein appearing.
In order to perform this simulation, we settled realistic initial and boundary conditions
defined in (3), (4a) and (7).

Since the ψ-based form has been solved, a matrix of states has been produced for ψ, and
therefore it is transformed into a matrix of states θ, according to the definition of the water
retention curve; of course, the state θ is discontinuous on Σ, according to (5).

In particular, as in [12], let us set the following choice, respectively for the upper and
the lower soil:

Berino loamy fine sand θr = 0.0286, θS = 0.3658, α = 0.0280, n = 2.2390, KS = 541.0
cm/d

Glendale clay loam θr = 0.1060, θS = 0.4686, α = 0.0104, n = 1.3954, KS = 13.1 cm/d.

The ψ-based form of Richards’ equation has been used in all of the simulations; neverthe-
less, in Figure 2 the water content dynamics for the first minutes is represented. In spite of
the continuity of the pressure head, by plotting the water content profiles, the discontinuous
behavior of θ at z = 30 cm is evident in Figure 2. The numerical method described in (30)
and (32) has been performed to obtain the plot in Figure 2(a). For this method, the value
of γ in (24) is settled to 0.4, with a time step worth 0.7. In Figure 2(b), a similar behavior is
obtained by a classical MOL approach by integrating the same system forward in time by a
semi-implicit method with low order of accuracy, with γ = 0.048, and with time-step equal
to 0.045. Such a fine numerical approximation is needed for obtaining results comparable
with the TMOL approach, and in spite of this, a crooked profile is showed mostly in the
last times. Moreover, a harmonic average is used for choosing the hydraulic function at the
interface.

In the second simulation (see Figure 3), a sliding behavior is observed, with a threshold
depending on the spatial derivative of the pressure-head. In order to obtain the sliding
mode, the upper soil is chosen as the Glendale clay loam described in [12]; for the lower soil,
we have chosen an artificial soil, starting from the aforementioned Berino fine sand, but with
a saturated hydraulic conductivity 100 times greater than the corresponding reference value
in [12]. A threshold is defined for the spatial derivative of ∂ψ

∂z
: in our case, it is ψ̃′ = −1.1,

as can be seen in Figure 3. The initial state profile is the same as (41), and the states at the
top are equally spaced in time between −120 and −12. The occurrence of sliding is detected
by the fulfillment of condition (12). When sliding occurs, the Filippov vector field (13) is
integrated by an explicit method, with a spatial integration much finer than the one used
in the remaining numerical simulation. Once the sliding behavior is detected, a projection
is needed onto the discontinuity surface (as, for example, in [24]), so that the numerical
solution reflects the predicted sliding behavior.
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7. Conclusions and future work

This paper deals with a new mathematical interpretation for the physical problem of the
water infiltration into two layered soils, based on the Filippov theory for the treatment of
discontinuities in ordinary differential systems. This work needs a peculiar discretization for
the time derivative and the numerical solution of the corresponding ODEs system according
to the spatial derivative. Here, the accurate detection of the discontinuity contributes to the
stability of the numerical method.

In a future work, a challenge would be to study the Filippov approach for solving the
2D Richards’ equation in multi-layered soils, because of the difficulty to express the discon-
tinuity surface as depending on the state variable. Moreover, the study of mass balance
errors of the proposed technique, as well as a hydro-geological interpretation of the sliding
phenomenon, will be object of future research.

Future studies can follow very different branches. For instance, a time-lapse test can be
accomplished, and a data assimilation approach (e.g, see [39, 40]) can be used for dynamically
assimilating the data with the model (Richards’ equation). Moreover, this type of approach
could be of interest for modeling also fracture problems (see, for example, [41, 42]), or any
type of preferential flows, occurring, for instance, in heterogeneous and structured soils,
where a dual continuum approach is used, as in [43, 44].
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