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Abstract  27 

 28 

Lentil samples coming from two different countries, i.e. Italy and Canada, were analysed using 29 

untargeted 
1
H NMR fingerprinting in combination with chemometrics in order to build models able 30 

to classify them according to their geographical origin. For such aim, Soft Independent Modelling 31 

of Class Analogy (SIMCA), k-Nearest Neighbor (k-NN), Principal Component Analysis followed 32 

by Linear Discriminant Analysis (PCA-LDA) and Partial Least Squares-Discriminant Analysis 33 

(PLS-DA) were applied to the NMR data and the results were compared. The best combination of 34 

average recognition (100%) and cross-validation prediction abilities (96.7%) was obtained for the 35 

PCA-LDA. All the statistical models were validated both by using a test set and by carrying out a 36 

Monte Carlo Cross Validation: the obtained performances were found to be satisfying for all the 37 

models, with prediction abilities higher than 95% demonstrating the suitability of the developed 38 

methods. Finally, the metabolites that mostly contributed to the lentil discrimination were indicated.  39 

 40 

 41 

 42 
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 45 
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Lentil (Lens culinaris Medik.) is the fourth most important pulse crop in the world after bean 53 

(Phaseolus vulgaris L.), pea (Pisum sativum L.), and chickpea (Cicer arietinum L.). Lentils are 54 

characterised by a high energy value and a high content of complex carbohydrates, proteins, dietary 55 

fibers, vitamins, minerals (de Almeida Costa, da Silva Queiroz-Monici, Pissini Machado Reis, & de 56 

Oliveira, 2006; Wang & Daun, 2006; Wang, Hatcher, Toews, & Gawalko, 2009) even if some anti-57 

nutritional constituents are also present (Thavarajah, Thavarajah, See, & Vandenberg, 2010; Wang 58 

et al., 2009). 59 

FAOSTAT reported that the world production of lentils was about 4.9 million of tons, primarily 60 

coming from Canada, India, Australia and Turkey; in particular, about a quarter of the production is 61 

from India but most of it is consumed in the domestic market, while Canada is the largest export 62 

producer of lentils in the world (FAOSTAT database 2014).  63 

In Italy during the last years the lentil production declined from 14 k tons in the 60’s to 1.9 k tons in 64 

2014
 
due to several causes; therefore, as consequence, Italy annually imports about 29.6 million kg 65 

of lentils, mainly coming from Canada, USA, Turkey and China (Piergiovanni, 2000; Bacchi, 66 

Leone, Mercati, Preiti, Sunseri & Monti, 2010). However, Italian lentils, being cultivated mainly in 67 

specific localities, present unique and characteristic sensory and nutritional properties giving them a 68 

higher value; in fact, many Italian lentils gained international and national marks linked to their 69 

geographical origins, such as “protected geographical indication” (PGI), “traditional agricultural 70 

food products” (PAT) and Slow Food Presidium. Such labels allow to improve the commercial 71 

value of the food products, by guaranteeing a high quality level, and protect their typicality. 72 

Nevertheless, unscrupulous producers, driven by high illicit profits, often sell products that recall 73 

the “Italian Sounding” but are actually obtained blending or substituting the Italian products with 74 

foreign ones having low qualitative levels and commercial values.  75 

Obviously, this kind of problems concerns not only the lentil production but all the traditional foods 76 

from raw materials to finished products. Therefore, it is clear why there is an increasing demand to 77 

have analytical methods able to certify the declared geographical origin of food products, in order to 78 
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protect consumers and honest producers from fraud and unfair competition, respectively; 79 

consequently, during recent years, several food authentication techniques have been proposed (de la 80 

Guardia & Gonzalvez Illueca, 2013). 81 

Among these techniques, the Nuclear Magnetic Resonance (NMR) has been considered a versatile 82 

and useful tool, due to its ability to provide a complete view of food metabolites, providing 83 

qualitative and quantitative information either on major and minor compounds (Mannina, Sobolev, 84 

& Viel, 2012). NMR has been regarded, in combination with multivariate statistical analysis, as a 85 

powerful tool for determining food quality and geographical origin, especially when used as 86 

untargeted method, where the whole spectra are used as fingerprints without assigning particular 87 

resonances to specific metabolites (Baiano, Terracone, Longobardi, Ventrella, Agostiano, & Del 88 

Nobile, 2012; Ferrara et al., 2013; Fiehn, 2001; Longobardi et al., 2012; Longobardi et al., 2013; 89 

Mannina, Patumi, Proietti, Bassi, & Segre, 2001; Vlahov, Del Re, & Simone, 2003). 90 

As far as lentil authenticity is concerned, some studies are reported in literature. In particular, 91 

accessions of lentils from different countries were examined on the basis of some morphological 92 

characters by discriminant analysis and canonical analysis, showing regional grouping, even if 93 

misclassifications of individuals within groups were frequent (Erskine, Adham, & Holly, 1989). 94 

Moreover, the proteome of lentil seeds was used to identify specific markers and discriminate 95 

different plant landraces, through multivariate statistical analyses (Scippa et al., 2010). 96 

In addition, DNA-based methods combined with high resolution melting analysis (Bosmali, 97 

Ganopoulos, Madesis, & Tsaftaris, 2012) were used to identify a particular lentil variety amongst 98 

other Greek varieties or admixtures, reaching a clear discrimination. 99 

However, only few studies on geographical differentiation of lentil samples have been done; in 100 

particular, Diffuse Reflectance Fourier Transform Infrared Spectroscopy combined with 101 

discriminant analysis was proved to be convenient and fast, but the study, involving 27 samples 102 

grouped in two classes, i.e. “Greek” and “imported”, was carried out without performing a 103 

validation procedure, reducing the real applicability of the proposed method (Kouvoutsakis, Mitsi, 104 
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Tarantilis, Polissiou, & Pappas, 2014). Other studies involved stable isotope ratios of δ
13

C, δ
15

N, 105 

whose values may depend on several factors, such as climatic parameters typical of the region 106 

(Zhang, Emeriau, & Martin, 1991); however, the δ
2
H, δ

18
O, δ

34
S ratios are most linked to 107 

geographical origin (Rossmann, Reniero, Moussa, Schmidt, Versini, & Merle, 1999; Stöckigt, 108 

Schmidt, Rossmann, & Christoph, 2005; Ziegler, Osmond, Stichler, & Trimborn, 1976) and were 109 

analysed, in combination with chemometrics, to successfully discriminate geographical origin of 110 

lentils (Longobardi et al., 2015).  111 

To the authors’ knowledge, no study based on “NMR fingerprinting - multivariate statistical 112 

analysis” approach has been reported; thus, in this paper different statistical strategies, i.e. Principal 113 

Component Analysis followed by Linear Discriminant Analysis (PCA-LDA), k-Nearest Neighbor 114 

(k-NN), Partial Least Squares-Discriminant Analysis (PLS-DA), and Soft Independent Modeling of 115 

Class Analogy (SIMCA) were tested on 
1
H NMR data of lentil samples aiming at discriminating 116 

them on the basis of their different geographical origin, i.e. Italy and Canada. 117 

 118 

 119 

2. Materials and methods 120 

 121 

2.1 Sample collection, sample preparation and NMR experiments 122 

Lentil samples of the 2013 crop season were collected (as portions of about 500 g of seeds) from 123 

producers and supermarkets; the total number of samples was 85, subdivided into 43 Canadian (15 124 

macrosperma and 27 microsperma subspecies) and 42 Italian (11 macrosperma and 31 125 

microsperma) samples.  126 

Herein, the sample preparation was carried out according to the procedure reported by Wu, Li, Li, 127 

& Tang (2014) with slight modifications, as reported in the following. After removing the foreign 128 

material, the lentil seeds were finely ground by using the Retsch ZM 200 (Retsch, Haan, Germany) 129 

laboratory mill equipped with 500-μm sieve and stored in sealed bags under vacuum until analysis. 130 
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About 400 mg of lentil flour were extracted with 4 mL of a mixture methanol/water (1:1, v/v) by 131 

mixing on vortex mixer for 10 s; the mixture was kept in an ice-water bath for 10 min. After 132 

centrifugation at 13000 rpm for 15 min, 3 mL of supernatant were transferred into a vial and dried 133 

under a nitrogen stream at 40°C, with the purpose to re-dissolve the dry extract in a smaller liquid 134 

volume constituted by 900 µL of buffer solution (phosphate buffer 50mM and NaN3 1mM, pH 7.2) 135 

and 100 µL of 10 mM sodium salt of 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid (TSP) in D2O. This 136 

step allowed enhancing the signals related not only to major but also to minor lentil compounds. 137 

After 10 min of centrifugation at 9000 rpm, 600 µL of supernatant were transferred into NMR tubes 138 

(standard 5-mm tubes, Bruker BioSpin GmbH, Rheinstetten, Germany) for NMR measurements. 139 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA). 140 

One-dimensional 
1
H NMR spectra were recorded on a Bruker Avance III 700 MHz NMR 141 

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a cryogen cooled 142 

probe (cryoprobe QCI-
1
H-

19
F/

13
C/

15
N-

2
H 5-mm with Z-gradient coils) using an autosampler 143 

(SampleXpress from Bruker BioSpin GmbH).  144 

The spectra were acquired at 298 K under steady state conditions with non-spinning samples, using 145 

the Bruker 1D noesygppr1d pulse sequence. For each sample, 32 scans of 64 k data points with a 146 

receiver gain of 32 were recorded, applying a 90⁰ pulse with an acquisition time of 2.28 s, a spectral 147 

width of about 20 ppm and a mixing time of 10 ms; during a relaxation delay of 10 s, a 25 Hz CW-148 

based water peak suppression was performed. The offset for water suppression was previously 149 

optimised by applying a saturation power. 150 

Each spectrum was recorded using TOPSPIN 3.1 software (Bruker BioSpin GmbH, Rheinstetten, 151 

Germany) in full automation mode in about 12 min. All NMR spectra were processed using the AU 152 

program apk0.noe, that automatically applied phase correction, baseline correction, and chemical 153 

shift correction referencing NMR spectra with respect to the TSP signal. NMR assignment of signal 154 

of metabolites was done through comparison with literature chemical shift data (Fan, 1996; Wu et 155 

al., 2014). 156 
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 157 

2.2 Bucketing and Chemometrics analysis 158 

For spectra analyses, AMIX 3.8 software (Bruker BioSpin GmbH, Rheinstetten, Germany) was 159 

used. In particular, a “bucketing procedure” was applied to the NMR spectra after scaling all of 160 

them to the total intensity. In detail, the chemical shift axis of each spectrum, in the range 0.50-161 

10.00 ppm (with the exclusion of the spectral region containing the suppressed water signal: 4.94-162 

4.74 ppm), was divided into segments (buckets or bin) of a fixed width of 0.04 ppm converting each 163 

single spectrum into a row of values, i.e. the values assumed by the area subtended by the NMR 164 

intensity for each bucket considered. After that, each single spectrum was merged into a final 165 

matrix called “bucket table” composed by 233 columns (bin) and 85 rows (samples).  166 

Statistical analyses were performed by using Statistica 8.0 (StatSoft Italia srl, Padova, Italy), V-167 

Parvus 2010 (http://www.parvus.unige.it, Genova, Italy) and Classification Toolbox (Ballabio, & 168 

Consonni, 2013) in Matlab (Mathworks Inc., Natick, Massachusetts, USA). First of all, the Kennard 169 

and Stone Duplex algorithm (Casale et al., 2012) was applied in order to generate a subdivision of 170 

the whole dataset (bucket table) into a modeling (63 samples) and a test (22 samples) set; the 171 

modeling set was represented by 31 Italian and 32 Canadian samples, while the test set consited of 172 

11 Italian and 11 Canadian samples. Then the modeling set, after removing outliers, was analysed 173 

by multivariate statistical techniques: in particular, the data were explored by means of the Principal 174 

Component Analysis (PCA) according to the NIPALS alghoritm (Jolliffe, 2002), while the samples 175 

were classified on the basis of their geographical origin carrying out discriminant statistical 176 

techniques, i.e. PCA-LDA, k-NN, PLS-DA (Barker & Rayens, 2003; Fisher, 1936; Oliveri & 177 

Downey, 2012), and also the class-modelling technique SIMCA (Wold & Sjöström, 1977). The 178 

suitability of a classification model coming from the discriminant techniques was evaluated by 179 

considering its recognition ability, i.e. its ability to correctly classify the samples used for the 180 

building of the model, and its cross-validation (CV) prediction ability, i.e. its ability to correctly 181 

classify samples of a test set generated in a V-fold cross validation (with V equal to 10). As regards 182 
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the model obtained by SIMCA, its suitability was evaluated by considering its sensitivity (the 183 

percentage of samples correctly accepted by a class model) and its specificity (the percentage of 184 

samples correctly rejected by a class model). Finally, the models were validated by using the test set 185 

and a Monte Carlo Cross-Validation (MCCV) procedure. The MCCV procedure computes many 186 

models, each time creating a different evaluation set by random selection (each sample may fall 187 

many times, or even no times at all, in the evaluation set). In particular, a MCCV based on 1000 188 

runs and involving a 20% of left-out samples in the evaluation sets was applied on the whole dataset 189 

(excluding outliers). 190 

 191 

 192 

 193 

3. Results and discussion 194 

 195 

In Figure 1 a typical 
1
H NMR spectrum of a lentil extract is reported showing several signals, 196 

corresponding to many metabolites and in the following the main ones are commented. In 197 

particular, the triplet and the doublet observable at 0.93 ppm and 1.00 ppm can be assigned to the 198 

isoleucine methyl groups; the doublets at 0.96 and 0.94 ppm can be attributed to the methyl groups 199 

of leucine; at 0.98 and 1.01 ppm it is possible to notice the doublets attributed to the valine 200 

diastereotopic methyl groups; the lactate methyl group is responsible of the 1.33 ppm doublet, while 201 

the doublet at 1.48 ppm comes from the alanine methyl group; the multiplets at 1.56 ppm are due to 202 

γ-methylene protons of citrulline; the singlet at 1.92 ppm are due to the methyl group of acetate; the 203 

multiplets at 2.05, 2.12 and 2.34 ppm are due to protons of glutamate; the malate residue protons 204 

generate the 2.37 and 2.66 ppm double doublets and the 4.29 ppm double doublet; the doublets at 205 

2.56 and 2.68 ppm are due to the methylene protons of citrate; the doublets observable at 2.68 and 206 

2.81 ppm are attributable to the two aspartate diastereotopic methylene protons; the doublets of 207 

doublets at about 3.06 and 3.18 ppm, along with the doublets at about 6.90 and 7.18 ppm can be 208 
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attributed to protons of tyrosine residue; the 3.2 and 3.22 ppm singlets can be assigned to choline 209 

and choline phosphate methyl groups, respectively; the singlet at 4.42 ppm, the triplet at 8.08 ppm, 210 

the multiplet at 8.82 ppm and the singlet at 9.11 ppm are attributed to protons of trigonelline; 211 

glucose is responsible for the intense signals in the 4.15–3.35 ppm range, for the 4.65 ppm doublet 212 

(ß anomer C1H) and for the 5.21 ppm doublet (α anomer C1H); the doublet at 4.59 ppm (C1H in ß 213 

anomer) and the doublet at 5.24 ppm (C1H in α anomer) are attributable to galactose; the doublet at 214 

5.41 ppm are due to C1H of the glucose in sucrose; the doublet at 5.43 ppm are due to C1H of the 215 

glucose in raffinose family oligosaccharides (RFOs); the doublets at 5.92, 5.90 and 7.88 ppm are 216 

attributed to protons of uridine residue; the singlets at 8.25 and 8.35 ppm are due to C2H and C8H 217 

of inosine; the doublet at about 6.13 ppm, along with the singlets at 8.27 and 8.6 ppm are attributed 218 

to protons of inosine-5'-monophosphate residue; the singlet at 6.52 are due to protons of fumarate; 219 

the doublet at 7.72 is due to C4H of tryptophan; the doublet at about 7.33 ppm, along with the 220 

triplets at 7.37 and 7.43 ppm are attributed to protons of phenilalanine residue; the singlet at 8.46 221 

ppm is due to protons of formate. 222 

Subsequently, with the purpose to find if any anomalous sample was observable inside the space of 223 

a single class of origin, i.e. inside the single Italian or the single Canadian class, the data of the 224 

modelling set were processed by considering each class separately in a specific PCA model; the 225 

relevant influence plots were obtained and commented. In particular, Figure 2 represents the 226 

influence plots of the PCA models for the Italian (6 PCs explaining 78.0% of the total variance, 227 

Figure 2a) and the Canadian (6 PCs explaining 73.3% of the total variance, Figure 2b) classes, 228 

respectively. As observable, all the samples coming from a specific class fit in the relevant model 229 

(i.e. stay inside the space delimited by the two straight lines defining the model confidence limits at 230 

a level of 95%)  with the exception of two outliers, one for Italy and one for Canada, that therefore 231 

were excluded from data in the further statistical treatments. 232 

In order to get general indications about the capacity of the NMR variables to discriminate lentil 233 

samples on the basis of their different places of production, the new training set (30 Italian and 31 234 
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Canadian samples) was subjected to PCA. By plotting the sample scores in a PC1 vs. PC2 graph 235 

(Figure 3), overlapping regions were observed, obtaining only a modest visual clustering of the 236 

objects on the basis of the geographical origin (PC1 and PC2 explained respectively 32.6% and 237 

21.7% of the total variance). No significant separation was evidenced even when observing the 238 

score plots of the remaining PCs. These findings highlighted the necessity to process the data by 239 

using supervised techniques, as commented in the following. 240 

As first approach, SIMCA, a class-modelling technique, was used to classify the lentil samples 241 

coming from the two different geographical origins. From a general point of view, the class-242 

modelling techniques aim at looking for similarities occurring among samples of the same class and 243 

model each category separately from the other ones, building them like defined space areas in the 244 

hyper-space of the model at a specified confidence level. Therefore, an object could be assigned to 245 

more than one class if it lies in an overlapping region, or it is even possible that a sample is assigned 246 

to none of the modeled classes, as long as it does not fit in any of the class spaces. This last feature 247 

could be particularly useful for the aims of this work, since it would be possible to know if a real 248 

sample comes from Italy, Canada or even from another different and not specified geographical 249 

origin.  250 

The optimal complexity of the model, i.e. the number of PCs to be used to describe the class 251 

variability, was chosen on the basis of a CV procedure (V=10). In particular, the geometric average 252 

between sensitivity and specificity in CV was selected as an optimality criterion, so that the number 253 

of PCs was chosen as the one corresponding to the highest value of this figure of merit. In such a 254 

way, the optimal complexity of the model resulted to be in 5 PCs for each class of geographical 255 

origin at a confidence level of 95%. The SIMCA results are visualized by the Coomans plot in 256 

Figure 4: as showed, 5 Italian and 4 Canadian samples resulted to be out of the relevant SIMCA 257 

model boundaries, represented by the vertical and horizontal lines, respectively, thus demonstrating 258 

moderate sensitivities for both classes; in fact, the SIMCA model showed 85.7% mean sensitivity, 259 

since 25 Italian samples over a total of 30 were accepted by the relevant class model, with a specific 260 
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sensitivity of 83.3%, while 27 Canadian samples over 31 were correctly accepted by the Canadian 261 

class model, with a specific sensitivity of 87.1%. Moreover, not satisfying results were obtained 262 

with regard to specificity; indeed, even if the mean specificity was 80.3% and all the Italian samples 263 

except one were not accepted by the Canadian model, resulting in a 96.7% model specificity, eleven 264 

Canadian objects over a total of 31 were incorrectly identified as Italians, resulting in a low Italian 265 

class specificity (64.5%). This latter result makes the SIMCA approach not suitable for the main 266 

aim of this work: indeed, it is not capable to satisfactorily indicate if Canadian samples are 267 

fraudulently sold as Italian ones, which is the most common fraud regarding Italian lentils. 268 

Taking into account all reported above, it was considered advantageous to test other statistical 269 

analyses, such as discriminant techniques, which are more suitable for classification aims (Berrueta, 270 

Alonso-Salces, & Héberger, 2007). As a consequence, the classification techniques k-NN, LDA and 271 

PLS-DA were applied and their results were summarised in Table 1.  272 

For k-NN, different k values were tested evaluating for each of them the prediction error rate in 273 

cross-validation (V=10); the smallest k value achieving the lowest error was 5 and therefore was 274 

selected as the optimal one. In detail, the recognition (classification) and the CV prediction ability 275 

were both 95.1%. This means that k-NN correctly classified and predicted 30 Canadian samples out 276 

of 31 and 28 Italian samples out of 30.  277 

As a second discriminant technique, herein LDA was applied; preliminarily, a variable reduction 278 

was adopted in order to make the number of variables lower than the (n-g)/3 value (with n 279 

representing the number of samples, and g standing for the number of groups), so avoiding 280 

overfitting risks, as reported (Berrueta et al., 2007; Defernez & Kemsley, 1997).  281 

In this work, the number of variables was reduced by applying PCA and selecting the first 20 PCs, 282 

so leading to a final PCA-LDA model. The value for the recognition (classification) ability was 283 

100% and the value for the CV prediction ability was 96.7%, i.e. it correctly predicted 28/30 Italian 284 

samples and 31/31 Canadian samples.  285 
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As last supervised discriminant technique, here PLS-DA was applied: this particular technique has 286 

the advantage to process large data set, even when the sample number exceeds the number of 287 

variables. By implementing a 10-fold cross-validation, it was found that 5 latent variables 288 

guaranteed the optimal model complexity, leading to a 98.4% average recognition rate: more in 289 

detail, the totality of the Canadian samples were correctly classified, and only one over 30 Italian 290 

samples was not correctly assigned. The average CV prediction rate gained a value of 96.7%: the 291 

CV prediction abilities for the single Canadian and Italian categories were found to be 93.3% and 292 

100%, respectively. 293 

Nevertheless, it is well-established that the use of an external validation procedure is highly 294 

recommended to evaluate the reliability of a model in the prediction of unknown samples. 295 

Therefore, the models employed herein were validated and compared calculating the prediction 296 

abilities obtained both on the test set (soft validation) and by a Monte Carlo Cross-Validation 297 

(MCCV, hard validation). In soft validation, for PLS-DA the prediction abilities were found to be 298 

100.0% for Canada and 90.9% for Italy, corresponding to an average prediction rate equal to 95.4%. 299 

Regarding the Italian category, only 1 over a total of 11 samples was misclassified. For k-NN and 300 

PCA-LDA, the resulting prediction abilities were 100.0% both for Italy and Canada.  301 

The hard validation procedure evidenced a prediction ability of 95.3% for both PLS-DA and PCA-302 

LDA, and of 95.2% for k-NN. These findings evidence that the topic of the discrimination of the 303 

lentil geographical origin is well addressed by the use of NMR data in combination with supervised 304 

statistical techniques. 305 

With the purpose to get information about the metabolites responsible for the geographical 306 

discrimination, a combination of univariate and multivariate analysis was used (Wang et al., 2014; 307 

Cuevas, Moreno-Rojas, Arroyo, Daza, & Ruiz-Moreno, 2016). In particular, the potential 308 

discriminant metabolites were identified as the ones having both PLS-DA variable importance in 309 

the projection values (VIP) higher than 1 (supervised multivariate critrerion) and statistically 310 

different means on the basis of the geographical origin (t-test as univariate criterion, p ≤ 0.01).  311 
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PLS-DA was used for the multivariate part of such criterion, since it was directly referable to the 312 

original variables and consequently to the metabolites; k-NN, in fact, does not provide any explicit 313 

classification rule based on the data patterns, and the PCA-LDA model was built by using PCs, and 314 

therefore resulted more difficult to directly relate to the original NMR variables for the relevant 315 

comments. 316 

According to the adopted dual criterion, it was highlighted that the most contributing buckets were 317 

in the regions containing signals of isoleucine, alanine, citrulline, acetate, malate, citrate, aspartate, 318 

choline, choline phosphate, galactose, glucose in sucrose and in RFOs and other unidentified 319 

compounds; consequently, such metabolites can be considered important for the discrimination of 320 

the geographical origin of lentils. In particular, the mean values of  isoleucine, alanine, citrulline, 321 

acetate, choline, choline phosphate, galactose were higher in Italian lentils than in Canadian ones; 322 

on the contrary the means of malate, citrate, aspartate, glucose in sucrose and in RFOs resulted to be 323 

higher in Canadian samples than in Italian lentils. However, for all indicated compounds, the data 324 

distributions around the mean values of the two origins overlapped, consequently no specific single 325 

markers were found confirming the need to employ supervised multivariate methods for origin 326 

discrimination. 327 

By comparing the results here obtained with the results gained in a previous work regarding the use 328 

of IRMS for the same aim (Longobardi et al., 2015), it can be noticed that both techniques are valid 329 

and show a vocation for this kind of studies and applications. The choice of one of them should take 330 

into account a balance of advantages and drawbacks of each technique. In particular, although NMR 331 

is a more expensive technique (both considering the purchase and the maintenance of the 332 

instrumentation) and it needs highly specialized operators, it shows high repeatability and therefore 333 

it does not need replicates; moreover, NMR could provide qualitative and quantitative information 334 

about the metabolites contained in the analysed sample. On the other hand, even if IRMS cannot 335 

give an extensive description regarding the analytes but only bulk information, and even if it needs 336 

replicates, it is cheaper and easier to be performed. 337 
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 338 

 339 

4. Conclusions 340 

 341 

This work contributed to highlight the advantages of applying 
1
H NMR fingerprinting as 342 

instrumental technique, and k-NN, PCA-LDA and PLS-DA as statistical techniques, in the 343 

classification of the geographical origin of lentil samples. 344 

In particular, the PCA-LDA model allowed obtaining the best performances with a recognition 345 

ability of 100%, a CV prediction ability of 96.7%, and external prediction rates of 100% and 95.3% 346 

on the test set and by a MCCV procedure, respectively. Moreover, very good results were obtained 347 

also with k-NN and PLS-DA discriminant models highlighting that the NMR data contained enough 348 

information to build adequate models. In addition, a pattern of metabolites which mostly 349 

contributed to the lentil discrimination based on their geographical origin was identified.  350 

In conclusion, it can be stated that although the proposed NMR method could be considered 351 

expensive and it requires highly specialized operators, it is capable to give high prediction abilities 352 

and repeatability if used to solve geographical origin issues of lentils, offering in addition the 353 

possibility to obtain information about sample metabolites. This work open up possibilities to 354 

extend the results here obtained to different lentil crop seasons, even using a higher number of 355 

samples. A further improvement in the lentil authenticity topic could regard studying relationships 356 

occurring between lentil chemical composition and detailed pedoclimatic parameters by using NMR 357 

data.  358 

 359 
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Figure captions 488 

 489 

Figure 1. One-dimensional 
1
H NMR spectrum of a lentil sample, obtained with selective 490 

suppression of the water signal. 491 

 492 
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Figure 2. Influence plots obtained for the Italian PCA model (a) and for the Canadian PCA model 493 

(b) at a confidence level of 95%. Geographical origins  494 

 495 

Figure 3. PC1 vs. PC2 scatter plot for lentil samples. Geographical origins  496 

 497 

Figure 4. Coomans plot for the Italian and Canadian SIMCA models with a confidence interval 498 

equal to 95%. Geographical origins  499 
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Table 1 

Recognition and prediction abilities for the k-NN, PCA-LDA and PLS-DA models classifying 

lentils according to their geographical origin. 

Classification technique Model performance (%) 

 

k-NN 

  

Recognition ability (modelling) 95.1 

Prediction ability (CV 10) 95.1 

Prediction ability (test set) 100 

Prediction ability (MCCV) 95.2 

 

PCA-LDA 

 

Recognition ability (modelling) 100 

Prediction ability (CV 10) 96.7 

Prediction ability (test set) 100 

Prediction ability (MCCV) 95.3 

 

PLS-DA 

 

Recognition ability (modelling) 98.3 

Prediction ability (CV 10) 96.7 

Prediction ability (test set) 95.4 

Prediction ability (MCCV) 95.2 
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Highlights  

 

Geographic origin of lentils was discriminated by 
1
H NMR fingerprint and chemometrics 

 
 

1
H NMR was used in an untargeted approach 

 

 

Different supervised methods were tested 

 

External validation procedures were applied on the supervised models 

 

LDA gave 100% classification and test set prediction performances 
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