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Abstract 18 

Fresh vegetables and their ready-to-eat (RTE) salads have become increasingly recognized as 19 

potential vehicles for foodborne diseases. The EU Reg. 1441/2007 establishes microbiological 20 

criteria for bacterial pathogens for products placed on the market during their shelf-life (i.e. 21 

Salmonella spp., Listeria monocytogenes) for pre-cut fruits and vegetables (RTE) whilst it does not 22 

address the problem of contamination by enteric viruses.  23 

In this study we investigated the contamination by hepatitis A virus (HAV), hepatitis E virus (HEV) 24 

and norovirus (NoV) in 911 ready-to-eat vegetable samples taken from products at retail in Apulia 25 

and in Lombardia.  26 

The vegetable samples were tested using validated real-time PCR (RT-qPCR) assays, ISO 27 

standardized virological methods and ISO culturing methods for bacteriological analysis.  28 

The total prevalence of HAV and HEV was 1.9% (18/911) and 0.6% (6/911), respectively. None of 29 

the samples analyzed in this study was positive for NoV, Salmonella spp. or Listeria 30 

monocytogenes. The detection of HAV and HEV in RTE salads highlights a risk to consumers and 31 

the need to improve production hygiene. 32 

Appropriate implementation of hygiene procedures is required at all the steps of the RTE vegetable 33 

production chain and this should include monitoring of emerging viral pathogens.  34 
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1. Introduction  36 

Leafy green vegetables and their ready-to-eat (RTE) salads are important components of the current 37 

human diets but are accompanied by new food safety threats since they are eaten raw and usually 38 

without any further washing/decontamination procedures (Little and Gillespie, 2008). Apart from 39 

psychrotrophic pathogens and spoilage microorganisms, RTE vegetables can be contaminated with 40 

a number of human pathogens, including parasites, bacteria and viruses. 41 

In Italy, the prevalence of bacterial pathogens in leafy green vegetables has been estimated between 42 

3.7 for fresh and 1.8% for RTE products (Losio et al., 2015). Numerous foodborne virus outbreaks 43 

have been linked to the consumption of fresh produce, mostly attributable to enteric viruses such as 44 

norovirus (NoV), hepatitis A virus (HAV), hepatitis E virus (HEV), rotavirus (RV) and astrovirus 45 

(AstV) (European Food Safety Authority & European Centre for Disease Prevention and Control, 46 

2013; Chiapponi et al., 2014; Collier et al., 2014; European Food Safety Authority, 2014; Kokkinos 47 

et al., 2012; Terio et al., 2015; Wheeler et al., 2005). 48 

Enteric viruses may contaminate vegetables, during cultivation before harvest or post-harvest. 49 

During pre-harvest cultivation, there are various routes of contamination, which usually include 50 

application of organic wastes as fertilizer, contamination of water used for irrigation with faecal 51 

material, contact with inadequately-treated sewage or sewage-polluted water. In addition, direct 52 

contamination by livestock, wild animals and birds should be considered (Heaton and Jones, 2008).  53 

Water is the main critical vehicle of contamination in the farm-to-fork continuum. Spraying, 54 

washing or immersion of fruits and vegetables in water are common practices during post-harvest 55 

processing (Gandhi et al., 2010). Moreover, minimal processing may induce cross-contamination of 56 

clean produce during cutting, washing and packaging (López-Velasco et al., 2010). In addition, 57 

much emphasis has also been placed on the role of workers during collection, processing, storage, 58 

distribution or final preparation (European Food Safety Authority BIOHAZ Panel, 2014; Koopmans 59 

and Duizer, 2004; Rzezutka and Cook, 2004). 60 
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Currently, the European legislation on the safety of pre-cut (ready-to-eat) fruit and vegetables 61 

requires the assessment of Salmonella spp. and Listeria monocytogenes contamination at the end of 62 

the production chain (at retail). In addition, the Escherichia coli count is required during the 63 

manufacturing processes (Commission Regulation (EC) No. 1441/2007).  The regulations do not 64 

take into consideration the risks deriving from food contamination by enteric or emerging viral 65 

pathogens, although there is a growing attention and interest for this important risk, as evidenced by 66 

recent NoV and HAV outbreaks in Europe (European Centre for Disease Prevention and Control 67 

and the European Food Safety Authority, 2014; Müller et al., 2016). Limited data exist in the 68 

literature on the prevalence of foodborne viruses in RTE vegetables. In Italy, a study on RTE at 69 

retail has been reported recently, revealing a very low rate (< 0.1%) of NoV contamination (Losio 70 

et al., 2015). The purpose of this study was to investigate the presence of enteric viruses (HAV, 71 

HEV and NoV) in RTE vegetables available for sale in Italy.  72 

 73 

2. Materials and Methods 74 

2.1 Sampling 75 

A total of 911 samples of bagged ready-to-eat vegetables belonging to different brands and 76 

purchased from supermarkets in Apulia and Lombardy regions, Italy, were collected during 2014-77 

2015. They included 619 mixed salads, 53 carrot (Daucus carota subsp. sativus), 40 valerian 78 

(Valeriana officinalis), 104 rocket (Eruca vesicaria), 10 spinach (Spinacia oleracea), 18 Iceberg 79 

(Lactuca sativa) and 67 Romaine lettuce (Lactuca sativa L var. longifolia). All samples were 80 

labelled as “Pre-washed and ready-to-eat”. All samples were obtained in their original packaging 81 

and analysed before the expiration date (up to 8 days). Samples were transported to the laboratory 82 

in refrigerated boxes (< 8°C) and analysed on the day of purchase. 83 

 84 

 2.2 Isolation of Salmonella spp. and Listeria monocytogenes  85 



6 

 

Vegetable samples were subjected to isolation of the pathogenic foodborne microorganisms 86 

Salmonella spp. and Listeria monocytogenes, using EN/ISO 6579 and EN/ISO 11290-1, 87 

respectively.  88 

 89 

2.3 Virus concentration and nucleic acid extraction 90 

Viral RNA was extracted following the ISO/TS 15216-2:2013 method for NoV and HAV detection 91 

in foodstuffs. In brief, 25g of each sample were cut into small pieces and homogenized with TGBE 92 

buffer pH 9.5 (100 mM Tris–HCl, 50 mM glycine, 1% beef extract) and 10 μl of process control 93 

virus material (Mengovirus). The eluate was concentrated with 5X PEG/NaCl solution (50% (w/v) 94 

PEG 8000, 1.5 M NaCl) and the viral nucleic acids were extracted and purified using commercial 95 

kits (NucliSENS miniMAG kit, bioMérieux) according to the manufacturer’s instructions.  96 

 97 

2.4 Reverse transcriptase-polymerase chain reaction 98 

Reverse transcription of viral RNA was performed using High-Capacity cDNA Reverse 99 

transcription Kit (Applied Biosystems, Italy), containing 10X RT Buffer II, 5 mM MgCl2, 1 mM 100 

dNTPs, 2.5 μM random hexamers, 20 U RNAse inhibitor and 50 U Reverse transcriptase according 101 

to the manufacturer’s instructions.  The reaction conditions were 42°C for 30 min and 99°C for 5 102 

min. The obtained cDNA was used for specific real-time PCR (RT-qPCR) for each target virus: 103 

HAV, HEV, NoV GI and NoV GII. 104 

The RT-qPCR reactions were performed in duplicate. All tests included negative controls for virus 105 

and for an internal amplification control (IAC). 106 

 107 

2.5 Hepatitis A virus qPCR  108 

This assay was performed using the primers and conditions described in the ISO/TS 15216-2:2013 109 

method with the inclusion of an internal amplification control (IAC). The reaction contained 1X 110 

iTaq
TM

 Universal Probes Supermix (Bio-Rad), 0.5 μM primer HAV68, 0.9 μM primer HAV240; 111 
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0.25 μM probe HAV150 (-) (FAM labelled) (Costafreda et al., 2006), 50 nM IAC probe (VIC 112 

labelled) and 300 copies of IAC (Martinez-Martinez et al., 2011). 20 μl of cDNA was added to 113 

make a final reaction volume of 50 μl. The thermocycling conditions were 5 min at 95°C, followed 114 

by 45 cycles of 15 s at 95°C and 1 min at 60°C and 1 min at 65°C.  115 

 116 

2.6 Hepatitis E virus qPCR 117 

This assay used the primers and conditions described by Jothikumar et al. (2006) with the inclusion 118 

of an internal amplification control (IAC). The reaction contained 1X iTaq
TM

 Universal Probes 119 

Supermix (Bio-Rad), 0.25 μM for each primer (JVHEVF and JVHEVR), 0.1 μM probe JVHEV-P 120 

(labelled with FAM), 50 nM IAC probe (labelled with VIC) and 300 copies of IAC (Martinez-121 

Martinez et al., 2011). 20 μl of cDNA was added to make a final reaction volume of 50 μl. The 122 

thermocycling conditions were 10 min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min at 123 

60°C. 124 

 125 

2.7 Norovirus GI and GII qPCR 126 

This assay was performed using the primers and conditions described in the ISO/TS 15216-2:2013 127 

method with the inclusion of an internal amplification control (IAC).  The reaction was carried out 128 

using 1X iTaq
TM

 Universal Probes Supermix (Bio-Rad), 250nM probe (labelled with FAM), 500nM 129 

forward primer and 900nM reverse primer, 50nM IAC probe (labelled with VIC) and 300 copies of 130 

IAC (Martinez-Martinez et al., 2011).  131 

Primers targeted the ORF2 region; for NoV GI: forward primer QNIF4, reverse primer NV1LCR 132 

and probe NV1LCpr were employed; for NoV GII, forward primer QNIF2d, reverse primer 133 

COG2R and probe QNIFS were used (da Silva et al., 2007; Kageyama et al., 2003; Loisy et al., 134 

2005; Svraka et al., 2007). 135 

20 μl of cDNA was added to make a final reaction volume of 50 μl. The thermocycling conditions 136 

were 5 min at 95°C, followed by 45 cycles of 15 s at 95°C and 1 min at 60°C and 1 min at 65°C.  137 
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 138 

2.8 Extraction efficiency 139 

For each sample, two aliquots of 5μl nucleic acid (NA) extract were added to adjacent wells of a 140 

96-well optical reaction plate and made up to 25μl with Mengovirus-specific TaqMan reaction mix. 141 

A dilution series prepared from the Mengovirus process control material was also tested. The 142 

percentage extraction efficiency for each sample was determined by comparing the Ct values for the 143 

sample NA extract with those for the Mengovirus dilution series. Any sample with an extraction 144 

efficiency of <1% was subjected to retesting, in a first instance by re-extracting the viral RNA from 145 

stored homogenate, then by testing the stored RTE salads. Results for any sample providing three 146 

extraction efficiency results of <1% were considered invalid.  147 

 148 

3. RESULTS 149 

 150 

3.1. Isolation of Salmonella spp. and Listeria monocytogenes  151 

The pathogenic foodborne microorganisms Salmonella spp. and L. monocytogenes, were not 152 

detected in any RTE salads.  153 

 154 

3.2 Detection of foodborne viruses by RT-qPCR  155 

The mean viral extraction efficiency of the process was > 1% for each sample. 156 

The results obtained from virological analysis of 911 RTE vegetable samples are summarized in 157 

Table 1.  158 

HAV and HEV were detected in 2.6% of the tested samples (24/911): HAV was the most prevalent 159 

pathogenic enteric virus, detected in 1.9% of samples (18/911), and followed by HEV in 0.6% of 160 

samples (6/911). 161 

In detail, 14 of the HAV positive samples were mixed salad samples (2.3% of mixed salad 162 

samples), 1 valerian (2.5% of valerian samples) and 3 rocket samples (1.9% of rocket samples). 163 
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Two mixed salad samples resulted HEV positive (0.3 % of mixed salad samples), 2 rocket samples 164 

(1.9%) and 2 spinach samples (20%). None of the samples analysed in this study tested positive for 165 

NoV.  166 

 167 

4. DISCUSSION 168 

Over the years, foodborne NoV and HAV outbreaks have mainly been linked to shellfish 169 

consumption in the EU although more recently other matrices such as leafy vegetables and frozen 170 

red fruits (Chiapponi et al., 2014; Severi et al., 2015; Terio et al., 2015) have been associated with 171 

these infections. Foodborne transmission of HEV has been increasingly reported in sporadic cases 172 

and small outbreaks associated with the consumption of raw or uncooked boar or deer meat, of liver 173 

and liver sausages (Colson et al., 2010; Di Bartolo et al., 2015; Guillois et al., 2015), although HEV 174 

has also been detected in fresh produce (Kokkinos et al., 2012).  175 

In this study, Salmonella spp. and L. monocytogenes were not detected in RTE salads. Our findings 176 

are in general agreement with another investigation performed in Italy in which a low prevalence 177 

(0.3-0.5%) of contamination by Salmonella spp. and L. monocytogenes was reported (Losio et al., 178 

2015). 179 

On the opposite, in our study the virological investigations detected the presence of HAV and HEV 180 

in 1.9% and 0.6% of the analysed samples, respectively. To our knowledge, this is the first report 181 

documenting the presence of HAV and HEV in RTE salads in Italy. One limitation of this study 182 

was the inability to determine the viability of the viruses detected in the samples; indeed, although 183 

the laboratory-adapted HAV strains can grow on foetal rhesus monkey kidney cells (Kingsley and 184 

Richards, 2001), wild-type HAV strains are unable to replicate in vitro. Likewise, there is no 185 

specific cell culture line for laboratory cultivation of HEV and cultivation of human NoV is 186 

fastidious (Ettayebi et al., 2016; Jones et al., 2015). On the other hand, the fact that RT-PCR 187 

methods can detect inactivated viruses may not be a critical factor for RTE vegetables risk 188 
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assessment since a small number of viable virus particles are sufficient to cause illness (Fiore, 2004; 189 

US Food and Drug Administration, 2012).   190 

Whether the virus detected in RTE salads is viable or not, the presence of viral acid nucleic 191 

revealed by the molecular assays represents a clear index of contamination and potential risk for 192 

consumers considering that RTE salads do not undergo any treatment able to guarantee the virus 193 

inactivation. Moreover, this contamination represents an unacceptable risk that food handlers have 194 

to evaluate in the risk assessment plan (EC regulation N° 178/2002).  195 

This study indicates that attention should be paid to enteric viruses and emerging viral pathogens in 196 

order to guarantee safety of RTE vegetables. Indeed, screening for enteric viruses, which are not 197 

correlated to the presence of E. coli and Salmonella spp. (Ethelberg et al., 2010; Fong and Lipp, 198 

2005; Krog et al., 2014; Westrell et al., 2010), is crucial when assessing the health risks related with 199 

RTE salads, as already pointed out by the EU Regulation 1235/2012 for frozen strawberry. 200 

For this reason, with a few exceptions in HACCP plans food businesses usually establish bacteria as 201 

a food safety hazard, whilst viruses are not considered as hazards. In addition, the measures taken to 202 

reduce the growth of, or eliminate bacteria, do not necessarily lead to a decrease in virus 203 

prevalence. On some occasions, these measures may even preserve viral particles, as is the case of 204 

refrigeration (Croci et al., 2002; Fiore, 2004).  205 

Most of the available literature regarding the use of sanitizers during RTE production, such as 206 

chlorine, has concluded that washing with water or with disinfectant solutions reduces the natural 207 

microbial populations on the surface of the product by only 2 to 3 log units (Allende et al., 2007; 208 

Beuchat et al., 2004; Gómez-López et al., 2007; Gonzalez et al., 2004; Inatsu et al., 2005; Selma et 209 

al., 2008; Ukuku et al., 2005) and it has been reported that current industrial sanitizing treatments 210 

do not guarantee the total elimination of pathogens when present (Abadias et al., 2008; Beuchat,  211 

1996; Parish et al., 2003; Pérez-Rodríguez et al., 2011; Posada-Izquierdo et al., 2014).   212 

Studies on the efficacy of disinfectants for inactivating viruses show that viruses are relatively 213 

resistant to chlorine decontamination (Seymour and Appleton, 2001), that viruses are generally 214 
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more resistant than bacteria (Allwood et al., 2004), that virus sensitivity to disinfectants may vary 215 

widely between different virus species (Fraisse et al., 2011) and that sanitizing agents or 216 

disinfection techniques must be evaluated, usually on a case-by-case basis (Gil et al., 2009). 217 

In our study, NoV was not detected in any of the 911 RTE samples analysed. The results of our 218 

investigation are comparable with data reported in a previous Italian study in which NoV was 219 

detected in 1/1372 (< 0.1%) fresh leafy samples but not in 1160 RTE vegetable samples (Losio et 220 

al., 2015). Although in these relatively small-scale studies the rate of NoV contamination was low, 221 

the impact of NoV contamination in fresh and RTE vegetables has been clearly outlined by the 222 

2013 report of the European Food Safety Authority (European Food Safety Authority & European 223 

Centre for Disease Prevention and Control, 2013) that noted an increase in the number of NoV 224 

outbreaks caused by consumption of vegetables in Europe in 2011. The settings that were most 225 

often reported were restaurants, households, schools and kindergartens and canteen or workplace 226 

catering and residential institutions, and many NoV outbreaks were traced to food that was handled 227 

by one infected worker during food preparation (European Food Safety Authority & European 228 

Centre for Disease Prevention and Control, 2011). 229 

Viral contamination may occur in several times and points of the production chain. As viruses are 230 

not able to replicate extracellulary, their presence can only be accounted for by pre-harvesting 231 

contaminations of vegetables or by post-harvesting re-contaminations by food handlers (Berger et 232 

al., 2010; Heaton and Jones, 2008; Koopmans et al., 2002; Wu et al., 2005). Several factors, chiefly, 233 

the epidemiological patterns of viral infections (i.e. seasonal fluctuations in their prevalence, 234 

incubation times, duration of virus shedding after the clinical signs) should also be considered and 235 

could explain, at least in part, our findings. 236 

The samples that tested positive for HAV and HEV were mixed salads, valerian, rocket and 237 

spinach. Mixed salads, valerian and rocket are characterized by a production process that requires 238 

strong manipulation during collection, whilst spinaches pose difficulties for washing of their leaves. 239 
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Water quality used for agricultural irrigation and the hands of the workers in the field affects the 240 

microbiological characteristics of products and therefore may pose a risk to consumer health.   241 

Appropriate implementation of food-safety management systems including Good Agricultural 242 

Practices (GAP), Good Hygiene Practices (GHP) and Good Manufacturing Practices (GMP) should 243 

be the primary objective of operators producing RTE salads. Compliance with hygiene 244 

requirements, in particular hand hygiene, is an absolute necessity for food handlers at all stages of 245 

the vegetable production and supply chain to reduce the risks of foodborne virus contamination. 246 

It is possible that the results of our and of other studies were biased by the sampling procedure. The 247 

EU regulations do not provide indications for the virological risks and the sampling plan adopted in 248 

our study was based on similar literature (Losio et al., 2015; Serracca et al., 2012). Indeed, the need 249 

for adequate sampling plans for virological investigations in food matrices has arisen in recent years 250 

along with the understanding of the risks posed by viruses in food products (Perez-Rodriguez et al., 251 

2014). Evaluation of the microbiological contamination status can be useful to define risk-based 252 

planning for official controls, while implementation of the management practices and knowledge of 253 

the prevalence of foodborne viruses in RTE vegetables represent a contribution for assessing 254 

consumer exposure. 255 

 256 

 257 

 258 

  259 

 260 

 261 

 262 

 263 

 264 

 265 
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Table 1 1 

Summary of virological results (no. of positive samples) obtained, for Ready-to-Eat vegetables, 2 

using the reference ISO method, in Italy. 3 

Type of samples  Total no. 

911 

Positive for  

HAV 

Positive for 

HEV 

Positive for 

NoV 

Mixed salads  619 14 2 0 

Carrot Daucus carota 

subsp. sativus 

53 0 0 0 

Valerian Valeriana 

officinalis 

40 1 0 0 

Rocket Eruca vesicaria 104 3 2 0 

Spinach Spinacia oleracea 10 0 2 0 

Iceberg lettuce Lactuca sativa 18 0 0 0 

Romaine Lettuce Lactuca sativa L 

var. longifolia 

67 0 0 0 
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