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Abstract. In this paper, we derive energy estimates and L1 − L1 esti-
mates, for the solution to the Cauchy problem for the doubly dissipative
wave equation{

utt −∆u+ ut −∆ut = 0, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x).

The solution is influenced both by the diffusion phenomenon created
by the damping term ut, and by the smoothing effect brought by the
damping term −∆ut. Thanks to these two effects, we are able to obtain
linear estimates which may be effectively applied to find global solutions
in any space dimension n ≥ 1, to the problems with power nonlinear-
ities |u|p, |ut|p and |∇u|p, in the supercritical cases, by only assuming
small data in the energy space, and with L1 regularity. We also derive
optimal energy estimates and L1 −L1 estimates, for the solution to the
semilinear problems.
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1. Introduction

In this paper, we derive energy estimates and L1 − L1 estimates, for the
solution to the Cauchy problem for the wave equation with frictional and
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viscoelastic damping,{
utt −∆u+ ut −∆ut = 0, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x),
(1.1)

then we apply these estimates to the semilinear problems with power nonlin-
earities |u|p, |ut|p and |∇u|p. We find global existence of small data solutions
to these semilinear problems, in any space dimension n ≥ 1, for supercritical
powers, and we derive energy estimates and L1 − L1 estimates.

The profile of the solution to (1.1) has been recently studied in [9], in
the L2 setting, by assuming data in the energy space, and in weighted L1

spaces. The solution to (1.1) has many interesting properties, which allow us
to employ techniques and obtain results which are new, if compared with the
corresponding result for the wave equation with only frictional damping ut,
or with only viscoelastic damping −∆ut.

The fact that there are two damping terms gives great benefits to the
solution to (1.1). On the one hand, the solution to (1.1) inherits the same
decay properties of the solution to the problem for the wave equation with
only frictional damping ut (see, in particular, [11]), which are sharp, thanks
to the diffusion phenomenon (see [7] and, later, [6, 10, 14]). On the other
hand, it has the same regularity of the solution to the problem for the wave
equation with only viscoelastic damping −∆ut, in particular, a smoothing
effect appears for the time derivatives of the solution (see, in particular,
[15]). In other words, the low-frequencies profile of the solution is modified
by the presence of the damping ut, and the high-frequencies profile of the
solution is modified by the presence of the damping −∆ut.

Thanks to the first property, one may effectively use sharp estimates
for (1.1) to prove the global existence of small data solutions to the problem
with power nonlinearity |u|p, in the supercritical case p > 1+ 2/n, as it hap-
pens for the wave equation with only frictional damping (see, in particular,
[16]). Thanks to the second property, one may obtain well-posedness results
in Lq spaces, L1 − L1 estimates for the solution, and a smoothing effect for
the time derivatives of the solution. We mention that only partial results
are known for the wave equation with only viscoelastic damping and power
nonlinearity |u|p (see [4]).

As a consequence of these properties combined together, we may obtain
global existence to the problem with different power nonlinearities, in the su-
percritical case, in any space dimension n ≥ 1, by only assuming small data in
the energy space, with additional L1 regularity. The corresponding result for
the wave equation with only frictional damping and power nonlinearity |u|p,
only works in space dimensions n = 1, 2 (see [8]) and it can be extended only
up to space dimension n = 5, using Lp −Lq estimates [12]. The extension to
any space dimension n ≥ 1 requires stronger assumptions on the data (see,
in particular, [16]).

In this paper, we show how these bounds on the space dimension can
be removed, thanks to the presence of the viscoelastic damping −∆ut. Also,
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we obtain sharp estimates for the L1 norm of the solution to the semilinear
problem and its time derivative. Similar properties have been proved for
the wave equation with structural damping, (−∆)

1
2ut, where (−∆)

1
2 is the

fractional Laplace operator (see [1, 2, 13]), but in that case the structure
of the solution is much simpler than the structure of the solution to (1.1)
(for instance, the smoothing effect is stronger). More general results about
evolution equations with structural damping and power nonlinearities |u|p
and |ut|p have been recently obtained in [3].

If we consider the problem with power nonlinearity |u|p,{
utt −∆u+ ut −∆ut = |u|p, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x),
(1.2)

it is very easy to show that the critical exponent is Fujita exponent 1 + 2/n
(the same of the problem without the viscoelastic damping). In particular,
using the test function method, one immediately see that no global solutions
to (1.2) may exist, if p ∈ (1, 1+ 2/n], even in a weak sense (see, for instance,
[5, 17]), under a suitable sign assumption on the initial data u0, u1.

To prove the global existence of small data solutions for p > 1 + 2/n,
it is sufficient to use only energy estimates in space dimension n = 1, 2 (fol-
lowing as in [8]), but the use of suitable, optimal, Lr − Lq linear estimates,
in particular L1 − L1 estimates, allow us to obtain the result in any space
dimension n ≥ 1.

Theorem 1.1. Let n ≥ 1 and p > 1+2/n. Also, assume that p ≤ 1+2/(n−2),
if n ≥ 3. Then there exists ε > 0 such that for any data

(u0, u1) ∈ A .
= (L1 ∩H1)× (L1 ∩ L2), with

∥(u0, u1)∥A
.
= ∥u0∥L1 + ∥u0∥H1 + ∥u1∥L1 + ∥u1∥L2 ≤ ε,

(1.3)

there exists a unique solution

u ∈ C([0,∞), L1 ∩H1) ∩ C1([0,∞), L1 ∩ L2) (1.4)

to (1.2). Moreover, it satisfies the following estimates

∥∇u(t, ·)∥L2 ≲ (1 + t)−
n
4 − 1

2 ∥(u0, u1)∥A, (1.5)

∥u(t, ·)∥L2 ≲ (1 + t)−
n
4 ∥(u0, u1)∥A, (1.6)

∥ut(t, ·)∥L2 ≲ (1 + t)−
n
4 −1∥(u0, u1)∥A, (1.7)

∥u(t, ·)∥L1 ≲ ∥(u0, u1)∥A, (1.8)

∥ut(t, ·)∥L1 ≲ (1 + t)−1∥(u0, u1)∥A. (1.9)

The restrictions from above on p in Theorem 1.1 may be relaxed by
assuming additional regularity on the data.

Our linear estimates also apply to the problem with power nonlinear-
ity |ut|p: {

utt −∆u+ ut −∆ut = |ut|p, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x).
(1.10)
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In this case, homogeneity arguments lead to expect that the critical exponent
is 1. Indeed, we may prove global existence of small data solutions to (1.10),
for p > 1, in any space dimension n ≥ 1, by only assuming small initial data
as before.

Theorem 1.2. Let n = 1 and p ∈ (1, 2], or n ≥ 2 and 1 < p < 1 + 2/n.
Then there exists ε > 0 such that for any data as in (1.3), there exists a
unique solution as in (1.4) to (1.10). Moreover, it satisfies estimates (1.5)-
(1.6)-(1.7)-(1.8)-(1.9).

The restriction from above on p in Theorem 1.2 may be relaxed to p ≤ 2
if n = 2, 3 and to p < 1 + 4/n if n ≥ 4, by dropping the requirement
that ∇u(t, ·) ∈ L2 (see the proof of Theorem 1.2).

Finally, we consider the problem with power nonlinearity |∇u|p:{
utt −∆u+ ut −∆ut = |∇u|p, t ≥ 0, x ∈ Rn,

(u, ut)(0, x) = (u0, u1)(x).
(1.11)

In this case, we may prove global existence of small data solutions to (1.11),
for p > 1 + 1/(n + 1), in any space dimension n ≥ 1. Clearly, to obtain an
estimate for ∥∇u(t, ·)∥L1 , we also assume∇u0 ∈ L1, when dealing with (1.11).
Moreover, we ask ∆u0 ∈ L2, to get the same upper bound for p, that we have
in Theorem 1.1.

Theorem 1.3. Let n ≥ 1 and p > 1 + 1/(n + 1). Also, assume that p ≤
1 + 2/(n− 2), if n ≥ 3. Then there exists ε > 0 such that for any data

(u0, u1) ∈ A .
= (W 1,1 ∩H2)× (L1 ∩ L2), with

∥(u0, u1)∥A
.
= ∥u0∥W 1,1 + ∥u0∥H2 + ∥u1∥L1 + ∥u1∥L2 ≤ ε,

(1.12)

there exists a unique solution

u ∈ C([0,∞),W 1,1 ∩H2) ∩ C1([0,∞), L1 ∩ L2) (1.13)

to (1.11). Moreover, it satisfies estimates (1.6)-(1.7)-(1.8)-(1.9), and esti-
mates

∥∆u(t, ·)∥L2 ≲ (1 + t)−
n
4 −1∥(u0, u1)∥A, (1.14)

∥∇u(t, ·)∥L1 ≲ (1 + t)−
1
2 ∥(u0, u1)∥A. (1.15)

Assuming also ∇u0 ∈ L1, it would become possible to construct a
global solution to (1.2) and (1.10), which also verifies ∇u(t, ·) ∈ L1, and
estimate (1.15). However, this additional regularity property for the solution
is not essential to prove the global existence argument for problems (1.2)
and (1.10), so we avoided to take extra assumptions on the data in the state-
ments of Theorems 1.1 and 1.2. Of course, the assumption ∇u0 ∈ L1 becomes
fundamental, when dealing with problem (1.11).

Notation. In this paper, we write f ≲ g, when there exists a constant C > 0
such that f ≤ Cg. We write f ≈ g when g ≲ f ≲ g.
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1.1. Main goal

The proofs of Theorems 1.1 and 1.3 are relatively standard, once we prove
suitable linear estimates for (1.1), and we use a contraction argument and
Duhamel’s principle. However, the proof of Theorem 1.2 is more delicate.

First of all, the corresponding result is not true, in absence of the vis-
coelastic damping, since, in that case, regularity issues arise, when p is smaller
than 2. To fix this problem, we use the smoothing effect appearing for the
time derivative of the solution to (1.1), which is a consequence of the presence
of the viscoelastic damping (see Theorem 2.2 in [15]). This smoothing effect
lead to the employment of estimates, which are singular at t = 0, but whose
singularity is integrable.

The use of singular estimates lead, in general, to a possible loss of decay,
but we avoid it by using Lm−L2 singular estimates, withm = 2/p. Indeed, the

loss of decay, described by t
1
m− 1

2 , in Duhamel’s integral, tends to 0 as p → 1,
i.e., to the critical exponent, and it is compensated by other contributions in
the integral, when p is away from 1 (see Remark 3.1).

The description of this interesting effect, which is only attainable if both
damping terms are present in the wave equation, was the first motivation for
this paper.

Another motivation for this paper, is the objective to obtain optimal
L1 estimates, for linear and semilinear problems. Estimates in L1 are, in
general, more difficult to obtain than estimates in Lq, for q > 1. However,
the special structure of the solution to (1.1) allow us to do that, in any space
dimension n ≥ 1. The use of L1 − L1 estimates also makes more elegant the
argument employed to prove the global existence of small data solutions to
the semilinear problems.

2. Linear estimates

After performing the Fourier transform with respect to x, û = Fu, the equa-
tion in (1.1) reads as

ûtt + (1 + |ξ|2)ût + |ξ|2û = 0. (2.1)

Therefore, the characteristic roots of

λ2 + (1 + |ξ|2)λ+ |ξ|2 = 0, i.e. (λ+ 1)(λ+ |ξ|2) = 0,

are given by:

λ− = −1, λ+ = −|ξ|2.
In particular, for any |ξ| ̸= 1, the solution u may be decomposed in two
components, u = u+ + u−, with

û− =
λ+û0 − û1

λ+ − λ−
eλ−t =

−|ξ|2û0 − û1

1− |ξ|2
e−t,

û+ =
−λ−û0 + û1

λ+ − λ−
eλ+t =

û0 + û1

1− |ξ|2
e−t|ξ|2 .
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In order to derive estimates for the solution to (1.1), it is crucial to study the
behavior at low and high frequencies, namely, as ξ → 0 and as |ξ| → ∞.

With no loss of generality, we assume in the following that û0 and û1

vanish in a neighborhood of the unit sphere Sn−1 = {|ξ| = 1}, and therefore
so û itself does. Indeed, in any compact subset of Rn \ {0}, one may imme-
diately prove any of the estimates that we are going to prove in this Section,
since an exponential decay appears for the solution localized at intermedi-
ate frequencies, and the regularity issues do not come into play in compact
subsets of Rn \ {0} (see later, Remark 2.7).

Let Ω0 = Ba(0) = {|ξ| < a}, for some a ∈ (0, 1), and Ω1 = Rn \ B̄b(0),
for some b > 1, be such that û0, û1 are supported in Ω0 ∪ Ω1. With this
assumption, we are legitimated to write u = u+ + u−.

First of all, we notice that there is not much to say about u−, since:

u−(t, x) = −e−t w0(x), w0
.
= (1+∆)−1(−∆u0+u1) = F−1

(
|ξ|2û0 + û1

1− |ξ|2

)
.

Clearly, w0 is well-defined, thanks to the assumption that û0 and û1 vanish
in a neighborhood of Sn−1. On the other hand, u+ is the solution to the
Cauchy problem for the heat equation{

vt −∆v = 0,

v(0, x) = v0(x),
(2.2)

with initial data

v0 = (1 +∆)−1(u0 + u1) = F−1

(
û0 + û1

1− |ξ|2

)
.

Briefly, we will write u+ = et∆v0. Clearly, v0 is well-defined, thanks to the
assumption that û0 and û1 vanish in a neighborhood of Sn−1.

This decomposition makes shorter the proof of the desired estimates for
the solution to (1.1). First of all, we consider energy estimates.

Proposition 2.1. The solution to (1.1) satisfies the following estimates:

∥∆u(t, ·)∥L2 ≲ (1 + t)−1
(
∥u0∥H2 + ∥u1∥L2

)
, (2.3)

∥∆u(t, ·)∥L2 ≲ (1 + t)−
n
4 −1

(
∥u0∥L1 + ∥u0∥H2 + ∥u1∥L1 + ∥u1∥L2

)
, (2.4)

∥ut(t, ·)∥L2 ≲ (1 + t)−1
(
∥u0∥L2 + ∥u1∥L2

)
, (2.5)

∥ut(t, ·)∥L2 ≲ (1 + t)−
n
4 −1

(
∥u0∥L1 + ∥u0∥L2 + ∥u1∥L1 + ∥u1∥L2

)
. (2.6)

Also, for any m ∈ [1, 2], such that

n

(
1

m
− 1

2

)
< 1, (2.7)

it satisfies the following estimates:

∥∇u(t, ·)∥L2 ≲ (1 + t)−
1
2−

n
2 (

1
m− 1

2 )
(
∥u0∥Lm + ∥u0∥H1 + ∥u1∥Lm

)
, (2.8)

∥∇u(t, ·)∥L2 ≲ (1 + t)−
n
4 − 3

2

(
∥u0∥L1 + ∥u0∥H1 + ∥u1∥L1 + ∥u1∥Lm

)
, (2.9)
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whereas for any m ∈ [1, 2] such that

n

(
1

m
− 1

2

)
< 2, (2.10)

it satisfies the following estimates:

∥u(t, ·)∥L2 ≲ (1 + t)−
n
2 (

1
m− 1

2 )
(
∥u0∥Lm + ∥u0∥L2 + ∥u1∥Lm

)
, (2.11)

∥u(t, ·)∥L2 ≲ (1 + t)−
n
4 −1

(
∥u0∥L1 + ∥u0∥L2 + ∥u1∥L1 + ∥u1∥Lm

)
. (2.12)

Proof. First, we consider u−. By Plancherel’s theorem, one immediately ob-
tains:

∥w0∥Hκ ≲ ∥u0∥Hκ + ∥u1∥L2 , κ = 0, 1, 2, (2.13)

so that, u− = −e−tw0 verifies estimates (2.3)-(2.4)-(2.5)-(2.6). Also, by
Hölder’s inequality,

∥(1− |ξ|2)−1|ξ|j û1∥L2 ≲ ∥û1∥Lm′ ≲ ∥u1∥Lm ,

for any m ∈ [1, 2], satisfying (2.7) if j = 1, or (2.10) if j = 0. Here m′ =
m/(m − 1) is the Hölder conjugate of m. Therefore, u− also verifies (2.8)-
(2.9)-(2.11)-(2.12).

Now we consider u+. By using the Fourier transform mapping proper-
ties, and Hölder’s inequality,

∥∂k
t ∂

α
x u

+(t, ·)∥L2 ≲ ∥|ξ||α|∂k
t û

+(t, ·)∥L2

≲ ∥|ξ||α|+2k
e−t|ξ|2∥Lr(Ω0)

(
∥û0∥Lm′ (Ω0)

+ ∥û1∥Lm′ (Ω0)

)
+ e−t

(
∥û0∥L2(Ω1) + ∥û1∥L2(Ω1)

)
≲ (1 + t)−

n
2r−

|α|
2 −k

(
∥u0∥Lm + ∥u0∥L2 + ∥u1∥Lm + ∥u1∥L2

)
,

for any |α|+ 2k = 0, 1, 2, and for any m ∈ [1, 2], where we set r ∈ [1, 2] such
that

1

r
=

1

2
− 1

m′ =
1

m
− 1

2
. (2.14)

We remark that we used that 1/(1−|ξ|2) is bounded in Ω0 and (1+ |ξ|2)/(1−
|ξ|2) is bounded in Ω1. The exponential decay has been produced by us-

ing e−t|ξ|2 ≤ e−t, for ξ ∈ Ω1, whereas, in the last line, the polynomial decay
has been produced by using

∥|ξ||α|+2k
e−t|ξ|2∥Lr(Ω0) ≲

{
|Ω0|

1
r if t ∈ [0, 1],

t−
n
2r−

|α|
2 −k if t ≥ 1,

i.e. using the well-known self-similarity of the fundamental solution to the
heat equation, only for t ≥ 1. That, is, for t ≥ 1 the change of variable η =√
t ξ, gives:

∥|ξ||α|+2k
e−t|ξ|2∥Lr(Ω0) ≤ ∥|ξ||α|+2k

e−t|ξ|2∥Lr(Rn)

= t−
n
2r−

|α|
2 −k ∥|η||α|+2ke−|η|2∥Lr(Rn).
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The proofs of (2.3) and (2.5) follow by setting m = 2 (so that r = ∞),
whereas the proofs of (2.4) and (2.6) follow by setting m = 1 (so that r = 2).

Now, letm ∈ [1, 2] satisfy (2.7) or, respectively, (2.10), and r as in (2.14).
To prove (2.8) or, respectively, (2.11), we estimate

∥∇ju+(t, ·)∥L2 ≲ ∥|ξ|j û+(t, ·)∥L2

≲ ∥|ξ|je−t|ξ|2∥Lr(Ω0)

(
∥û0∥Lm′ (Ω0)

+ ∥û1∥Lm′ (Ω0)

)
+ e−t

(
∥û0∥Lm′ (Ω1)

+ ∥û1∥Lm′ (Ω1)

)
≲ (1 + t)−

n
2r−

j
2

(
∥u0∥Lm + ∥u1∥Lm

)
,

whereas, to prove (2.9) and (2.12), we estimate

∥∇ju+(t, ·)∥L2 ≲ ∥|ξ|j û+(t, ·)∥L2

≲ ∥|ξ|je−t|ξ|2∥L2(Ω0)

(
∥û0∥L∞(Ω0) + ∥û1∥L∞(Ω0)

)
+ e−t

(
∥û0∥Lm′ (Ω1)

+ ∥û1∥Lm′ (Ω1)

)
≲ (1 + t)−

n
4 − j

2

(
∥u0∥L1 + ∥u0∥Lm + ∥u1∥L1 + ∥u1∥Lm

)
.

We remark that we used (2.7) and, respectively, (2.10), to get |ξ|−(2−j) ∈
Lr(Ω1), with j = 1 and, respectively, j = 0.

This concludes the proof. □

Thanks to the very special structure of the solution to (1.1), we may
also easily obtain L1 − L1 estimates.

Proposition 2.2. The solution to (1.1) satisfies the following L1 − L1 esti-
mates:

∥u(t, ·)∥L1 ≲
(
∥u0∥L1 + ∥u1∥L1

)
, (2.15)

∥∇u(t, ·)∥L1 ≲ (1 + t)−
1
2

(
∥u0∥W 1,1 + ∥u1∥L1

)
, (2.16)

∥ut(t, ·)∥L1 ≲ (1 + t)−1
(
∥u0∥L1 + ∥u1∥L1

)
. (2.17)

Proof. First, we consider u−. For any |ξ| < 1, we may write

ŵ0 =
|ξ|2

1− |ξ|2
(û0 + û1) + û1,

whereas, for any |ξ| > 1, we may write:

ŵ0 = −û0 −
1

|ξ|2 − 1
(û0 + û1).

Therefore, by applying Lemmas A.1 and A.2, thanks to Young inequality, we
derive:

∥w0∥L1 ≲ ∥u0∥L1 + ∥u1∥L1 .

Let us consider ∇w0. For any |ξ| < 1, we may write

iξŵ0 =
|ξ|2

1− |ξ|2
(iξû0) +

iξ

1− |ξ|2
û1,
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whereas, for any |ξ| > 1, we may write:

iξŵ0 = −(iξû0)−
1

|ξ|2 − 1
(iξû0)−

iξ

|ξ|2 − 1
û1.

By using again Lemmas A.1 and A.2, and Young inequality, we derive:

∥∇w0∥L1 ≲ ∥∇u0∥L1 + ∥u1∥L1 .

Therefore, u− = −e−tw0(x) verifies the desired estimates. Now we con-
sider u+ = et∆v0. Proceeding in a similar way, due to:

v̂0 = û0 + û1 +
|ξ|2

1− |ξ|2
(û0 + û1),

iξv̂0 =
iξ

1− |ξ|2
(û0 + û1),

if |ξ| < 1, and

v̂0 = − 1

|ξ|2 − 1
(û0 + û1),

iξv̂0 = − iξ

|ξ|2 − 1
(û0 + û1),

if |ξ| > 1, by using Young inequality, applying Lemmas A.1 and A.2, we
obtain

∥v0∥L1 + ∥∇v0∥L1 ≲ ∥u0∥L1 + ∥u1∥L1 . (2.18)

On the other hand, we write ∆v0 in the form

−|ξ|2v̂0 =
|ξ|2

|ξ|2 − 1
(û0 + û1), if |ξ| < 1,

−|ξ|2v̂0 = û0 + û1 +
1

|ξ|2 − 1
(û0 + û1), if |ξ| > 1,

so that we also obtain

∥∆v0∥L1 ≲ ∥u0∥L1 + ∥u1∥L1 . (2.19)

Estimates (2.15)-(2.16)-(2.17) follow for u+ = et∆v0 by the well-known L1 −
L1 estimates for the solution to the heat equation, in particular:

∥∂k
t ∇ju+(t, ·)∥L1 ≲

{
∥∆k∇jv0∥L1 , for t ∈ [0, 1],

t−
j
2−k ∥v0∥L1 for t ≥ 1,

for j + k = 0, 1. □

Remark 2.3. Estimate (2.17) requires lesser regularity, with respect to u0,
than the corresponding estimate in [15], for the wave equation with only vis-
coelastic damping. This effect is related to the fact that the solution to our
problem (1.1) decomposes in simpler terms, if compared with the correspond-
ing ones in [15].
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We also notice that estimate (2.19), which we used to prove (2.17), is
no longer valid, in general, in space dimension n ≥ 2, if we replace ∆ by a
different second order operator, like ∂x1∂x2 .

A peculiarity due to the presence of the viscoelastic damping, is the
smoothing effect that appears for the time derivatives of the solution to (1.1).
This smoothing effect may also be used at short time, if we allow singular
estimates at t = 0 (see Theorem 2.2 in [15]). When studying semilinear prob-
lems, by using Duhamel’s principle, it becomes possible to employ estimates
which are singular at t = 0, provided that the singular power is integrable
in 0. These singular estimates play a fundamental role in the proof of Theo-
rem 1.2.

Proposition 2.4. Let u0 = 0. For any m ∈ [1, 2], such that (2.10) holds, the
solution to (1.1) satisfies the following estimates, for any t > 0:

∥ut(t, ·)∥L2 ≲ (1 + t)−1 t−
n
2 (

1
m− 1

2 )∥u1∥Lm , (2.20)

∥ut(t, ·)∥L2 ≲ (1 + t)−
n
2 (1−

1
m )−1 t−

n
2 (

1
m− 1

2 )
(
∥u1∥L1 + ∥u1∥Lm

)
. (2.21)

Proof. The proof is analogous to the proof of (2.11)-(2.12), in Proposition 2.1,
in particular, no change is needed for u−

t . When we consider u+
t , we use the

smoothing effect of et∆ to produce a regularity gain, by paying a singular
power at t = 0.

To prove (2.20), we estimate

∥u+
t (t, ·)∥L2 ≲ ∥|ξ|2û+(t, ·)∥L2

≲ ∥|ξ|2e−t|ξ|2∥Lr(Ω0) ∥û1∥Lm′ (Ω0)

+ e−t/2 ∥e−t|ξ|2/2∥Lr(Ω1) ∥û1∥Lm′ (Ω1)

≲ (1 + t)−1− n
2r ∥u1∥Lm + e−t/2t−

n
2r ∥u1∥Lm ,

where r is as in (2.14). We remark that we used that |ξ|2/(1−|ξ|2) is bounded
in Ω1, and that e−t|ξ|2 ≤ e−t/2 e−t|ξ|2/2 in Ω1. We used the self-similarity
of the fundamental solution to the heat equation, namely, the change of
variable η =

√
t ξ, to obtain the singular power:

∥e−t|ξ|2/2∥Lr(Ω1) ≤ ∥e−t|ξ|2/2∥Lr(Rn) = t−
n
2r ∥e−|η|2/2∥Lr(Rn).

This concludes the proof of (2.20). The proof of (2.21) for u+ follows from
the previous step for t ∈ [0, 1], whereas we may directly estimate

∥u+
t (t, ·)∥L2 ≲ ∥|ξ|2û+(t, ·)∥L2 ≲ ∥|ξ|2e−t|ξ|2∥L2 ∥û1∥L∞ ≲ t−

n
4 −1 ∥u1∥L1 ,

for t ≥ 1. This concludes the proof of (2.21). □

Remark 2.5. The decay rates obtained in the linear estimates are sharp,
since u ∼ v, with v = et∆(u0+u1), as t → ∞, in the sense that, for sufficiently
smooth u0, u1, with suitable sign assumption on u0 + u1,

∥∂k
t ∂

α
x u(t, ·)∥Lq ∼ ∥∂k

t ∂
α
x v(t, ·)∥Lq ∼ t−

n
2 (1−

1
q )−

|α|
2 −k,
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the so-called diffusion phenomenon. The proof is based on the estimate of
the low frequencies part of u+ − v, since the other components of u and v
exponentially decay as t → ∞.

Remark 2.6. If we replace equation in (1.1) by

utt −∆u+ aut − b∆ut = 0, t ≥ 0, x ∈ Rn,

for some a, b > 0, the previous technique to derive linear estimates remain
valid, since the behavior at ξ → 0 and |ξ| → ∞ remains unchanged. Indeed,
the characteristic roots λ±(ξ), of

λ2 + (a+ b|ξ|2)λ+ |ξ|2 = 0,

have the following behaviors:

λ− →

{
−a as ξ → 0,

−b−1 as |ξ| → ∞,
λ+ ∼

{
−a−1|ξ|2 as ξ → 0,

−b|ξ|2 as |ξ| → ∞.

In particular, the solution can still be “approximated” by e−atw0+ eb
−1t∆v0,

in a neighborhood of ξ = 0, and by e−a−1tw0 + ebt∆v0, for large |ξ|, for
some w0, v0, depending on u0, u1. However, some extra attention is neces-
sary to deal with the L1 − L1 estimates, which can be harder to obtain (see
Remark 2.3).

Remark 2.7. As we claimed in the beginning of this Section, linear estimates
in Propositions 2.1, 2.2 and 2.4 may be trivially proved for initial data lo-
calized at intermediate frequencies, namely, away from ξ → 0 and |ξ| → ∞.
For instance, let us prove (2.3), assuming û0, û1 to be supported in the an-
nulus Aε = {1− ε ≤ |ξ| ≤ 1 + ε}, for some ε ∈ (0, 1). In Aε, it holds

|û(t, ξ)| ≤ Cε

(
|û0|+ t|û1|

)
e−t(1−ε)2 ,

due to

û =
e−t|ξ|2 − |ξ|2e−t

1− |ξ|2
û0 +

e−t|ξ|2 − e−t

1− |ξ|2
û1 for |ξ| ≠ 1,

û = û0 + t û1 for |ξ| = 1.

In particular, as it is well known, the singularity (1− |ξ|2)−1 is compensated
by the difference of the two exponential terms, as |ξ| → 1. By Plancherel’s
theorem,

∥∆u(t, ·)∥L2 ≲ ∥|ξ|2û(t, ·)∥L2 ≤ (1 + ε)2 ∥û(t, ·)∥L2

≲
(
∥û0∥L2 + t∥û1∥L2

)
e−t(1−ε)2 ,

so that (2.3) trivially follows.
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3. Proof of Theorems 1.1, 1.2 and 1.3

The proofs of Theorems 1.1, 1.2 and 1.3 rely on a classical contraction argu-
ment.

We may write the (global) solution to the linear Cauchy problem (1.1)
in the form

ulin .
= J0(t, x) ∗(x) u0(x) + J1(t, x) ∗(x) u1(x) .

By Duhamel’s principle, a function u ∈ X, where X is a suitable space, is a
solution to (1.2), (1.10) or (1.11) if, and only if, it satisfies the equality

u(t, x) = ulin(t, x)+

∫ t

0

J1(t−s, x)∗(x) f(u, ut,∇u)(s, x) ds , in X, (3.1)

where f = |u|p, f = |ut|p or f = |∇u|p. To prove Theorems 1.1 and 1.2, we
define the solution space

X
.
= C

(
[0,∞), L1 ∩H1

)
∩ C1

(
[0,∞), L1 ∩ L2

)
, (3.2)

with norm given by

∥u∥X
.
= sup

t∈[0,∞)

{
(1 + t)

n
4 ∥u(t, ·)∥L2 + (1 + t)

n
4 + 1

2 ∥∇u(t, ·)∥L2

+ (1 + t)
n
4 + 1

2 ∥ut(t, ·)∥L2 + ∥u(t, ·)∥L1 + (1 + t)∥ut(t, ·)∥L1

}
. (3.3)

In particular, any function u ∈ X satisfies estimates (1.5)-(1.6)-(1.7)-(1.8)-
(1.9).

Thanks to linear estimates (2.6), (2.9), (2.12), (2.15) and (2.17), it fol-
lows that ulin ∈ X and it satisfies

∥ulin∥X ≤ C ∥(u0, u1)∥A . (3.4)

We define the operator F such that, for any u ∈ X,

Fu(t, x)
.
=

∫ t

0

J1(t− s, x) ∗(x) f(u, ut,∇u)(s, x) ds , (3.5)

then we prove the estimates

∥Fu∥X ≤ C∥u∥pX , (3.6)

∥Fu− Fv∥X ≤ C∥u− v∥X
(
∥u∥p−1

X + ∥v∥p−1
X

)
. (3.7)

By standard arguments, since ulin satisfies (3.4) and p > 1, from (3.6) it
follows that F + ulin maps balls of X into balls of X, for small data in A,
and estimates (3.6)-(3.7) lead to the existence of a unique solution to (3.1),
that is, u = ulin +Fu, satisfying (3.4). We simultaneously gain a local and a
global existence result.

Therefore, we shall only prove (3.6) and (3.7). For the sake of brevity,
we will omit the proof of (3.7), which is analogous to the proof of (3.6).

We notice that, for any u ∈ X, it holds:

∥u(t, ·)∥Lq ≲ (1 + t)−
n
2 (1−

1
q ) ∥u∥X , (3.8)
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for any q ∈ [1,∞] if n = 1, for any q ∈ [1,∞) if n = 2, and for any q ∈
[1, 2n/(n− 2)], if n ≥ 3, and

∥ut(t, ·)∥Lq ≲ (1 + t)−
n
2 (1−

1
q )−1 ∥u∥X , (3.9)

for any q ∈ [1, 2]. Indeed, (3.8) and (3.9) hold for q = 1, 2, as a consequence
of (3.3), and so they hold for any q ∈ (1, 2), by interpolation. Moreover,
since (3.3) implies

∥∇u(t, ·)∥L2 ≲ (1 + t)−
n
4 − 1

2 ∥u∥X ,

we may use Gagliardo-Nirenberg inequality to get (3.8), for any q ∈ (2,∞]
if n = 1, for any q ∈ (2,∞) if n = 2, and for any q ∈ (2, 2n/(n− 2)], if n ≥ 3.

In the following, we write p ≤ n/(n− 2)+ to mean that the finite expo-
nent p verifies p ≤ 1 + 2/(n− 2) if n ≥ 3, i.e., that H1 embeds in L2p.

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let f = |u|p. We first prove that

∥∂t(Fu)(t, ·)∥L2 ≲ (1 + t)−1∥u∥pX . (3.10)

We use estimate (2.6) in [0, t/2], and estimate (2.5) in [t/2, t]. Then

∥∂t(Fu)(t, ·)∥L2 ≤
∫ t

0

∥∂tJ1(t− τ, ·) ∗(x) |u(τ, ·)|p∥L2 dτ

≲
∫ t/2

0

(1 + t− τ)−
n
4 −1

(
∥|u(τ, ·)|p∥L1 + ∥|u(τ, ·)|p∥L2

)
dτ

+

∫ t

t/2

(1 + t− τ)−1 ∥|u(τ, ·)|p∥L2 dτ

≲
∫ t/2

0

(1 + t− τ)−
n
4 −1

(
∥u(τ, ·)∥pLp + ∥u(τ, ·)∥pL2p

)
dτ

+

∫ t

t/2

(1 + t− τ)−1 ∥u(τ, ·)∥pL2p dτ.

Recalling that p ≤ n/(n− 2)+, we may use u ∈ X and (3.8), to get:

∥u(τ, ·)∥pLp ≲ (1 + τ)−
n
2 (p−1) ∥u∥pX ,

∥u(τ, ·)∥pL2p ≲ (1 + τ)−
n
4 −n

2 (p−1) ∥u∥pX .

Here and in the following, we use:

1 + t− τ ≈ 1 + t, for any τ ∈ [0, t/2],

1 + τ ≈ 1 + t, for any τ ∈ [t/2, t].
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Therefore, we obtain:

∥∂t(Fu)(t, ·)∥L2 ≲ ∥u∥pX
∫ t/2

0

(1 + t− τ)−
n
4 −1 (1 + τ)−

n
2 (p−1) dτ

+ ∥u∥pX
∫ t

t/2

(1 + t− τ)−1 (1 + τ)−
n
4 −n

2 (p−1) dτ

≈ ∥u∥pX (1 + t)−
n
4 −1

∫ t/2

0

(1 + τ)−
n
2 (p−1) dτ

+ ∥u∥pX (1 + t)−
n
4 −n

2 (p−1)

∫ t

t/2

(1 + t− τ)−1 dτ

≈ (1 + t)−
n
4 −1 ∥u∥pX ,

thanks to n(p− 1)/2 > 1, i.e., p > 1 + 2/n.

Similarly, we may derive the estimates

∥∇(Fu)(t, ·)∥L2 ≲ (1 + t)−
1
2 ∥u∥pX , (3.11)

∥(Fu)(t, ·)∥L2 ≲ ∥u∥pX . (3.12)

Using estimate (2.9) or, respectively, estimate (2.12), in [0, t/2], and esti-
mate (2.8) or, respectively, estimate (2.11), in [t/2, t], with m = 2, we get

∥∇j(Fu)(t, ·)∥L2 ≲
∫ t/2

0

(1 + t− τ)−
n
4 − j

2

(
∥u(τ, ·)∥pLp + ∥u(τ, ·)∥pL2p

)
dτ

+

∫ t

t/2

(1 + t− τ)−
j
2 ∥u(τ, ·)∥pL2p dτ

≲ ∥u∥pX
∫ t/2

0

(1 + t− τ)−
n
4 − j

2 (1 + τ)−
n
2 (p−1) dτ

+ ∥u∥pX
∫ t

t/2

(1 + t− τ)−
j
2 (1 + τ)−

n
4 −n

2 (p−1) dτ

≈ ∥u∥pX (1 + t)−
n
4 − j

2

∫ t/2

0

(1 + τ)−
n
2 (p−1) dτ

+ ∥u∥pX (1 + t)−
n
4 −n

2 (p−1)

∫ t

t/2

(1 + t− τ)−
j
2 dτ

≈ (1 + t)−
n
4 − j

2 ∥u∥pX ,

for j = 0, 1, where we used again p ≤ n/(n − 2)+, u ∈ X, (3.8), and p >
1 + 2/n.

Finally, we derive the estimates

∥Fu(t, ·)∥L1 ≲ ∥u∥pX , (3.13)

∥∂t(Fu)(t, ·)∥L1 ≲ (1 + t)−1∥u∥pX . (3.14)



L1 − L1 estimates for a doubly dissipative semilinear wave equation 15

We may use (2.15) and (2.17) to obtain

∥∂k
t (Fu)(t, ·)∥L1 ≲

∫ t

0

(1 + t− τ)−k ∥u(τ, ·)∥pLp dτ

≲ ∥u∥pX
∫ t

0

(1 + t− τ)−k (1 + τ)−
n
2 (p−1) dτ

≈ (1 + t)−k ∥u∥pX ,

for k = 0, 1, where we used again p > 1 + 2/n, u ∈ X, and (3.8).

This concludes the proof of (3.6), for f = |u|p, and so the proof of
Theorem 1.1. □

Proof of Theorem 1.2. Let f = |ut|p. In this case, the proof of (3.6) is more
delicate, and singular linear estimates (2.20) and (2.21) play a fundamental
role.

First we prove (3.10). Thanks to the assumptions p ≤ 2, we may setm =
2/p ∈ [1, 2), and use (2.21) in [0, t/2] and (2.20) in [t/2, t]. We notice that

n

(
1

m
− 1

2

)
=

n(p− 1)

2
< 2, (3.15)

if, and only if, p < 1 + 4/n, so that the assumption p < 1 + 2/n is sufficient.
Therefore, we get

∥∂t(Fu)(t, ·)∥L2 ≲
∫ t/2

0

(1 + t− τ)−
n
2 (1−

1
m )−1

× (t− τ)−
n
2 (

1
m− 1

2 )
(
∥ut(τ, ·)∥pLp + ∥ut(τ, ·)∥pL2

)
dτ

+

∫ t

t/2

(1 + t− τ)−1 (t− τ)−
n
2 (

1
m− 1

2 )∥ut(τ, ·)∥pL2 dτ.

Now, thanks to u ∈ X and p ≤ 2, using (3.9), we derive

∥ut(τ, ·)∥pLp ≲ (1 + τ)−
n
2 (p−1)−p ∥u∥pX ,

∥ut(τ, ·)∥pL2 ≲ (1 + τ)−(
n
4 +1)p ∥u∥pX .

In the first integral, we may proceed as we did for f = |u|p; the assump-
tion p > 1 is sufficient to get

∫ t/2

0

(1 + t− τ)−
n
2 (1−

1
m )−1 (t− τ)−

n
2 (

1
m− 1

2 )
(
∥ut(τ, ·)∥pLp + ∥ut(τ, ·)∥pL2

)
dτ

≲ (1 + t)−
n
4 −1∥u∥pX

∫ t/2

0

(1 + τ)−
n
2 (p−1)−p dτ ≈ (1 + t)−

n
4 −1∥u∥pX .
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In the second integral, we should pay more attention, since we have

∫ t

t/2

(1 + t− τ)−1 (t− τ)−
n
2 (

1
m− 1

2 )∥ut(τ, ·)∥pL2 dτ

≲ (1 + t)−(
n
4 +1)p∥u∥pX

∫ t

t/2

(1 + t− τ)−1 (t− τ)−
n
2 (

1
m− 1

2 ) dτ.

The difference with respect to the previous cases, is that, integrating, we lose

a power t−
n
2 (

1
m− 1

2 ), in the estimate:∫ t

t/2

(1 + t− τ)−1 (t− τ)−
n
2 (

1
m− 1

2 ) dτ ≈ 1. (3.16)

We remark that the singular power (t − τ)−
n
2 (

1
m− 1

2 ) is integrable at τ = t,
due to (3.15).

However, the loss in (3.16) does not influence the final estimates, since,
for any p ≥ 1, we get

(1 + t)−(
n
4 +1)p∥u∥pX ≤ (1 + t)−

n
4 −1∥u∥pX . (3.17)

Now we prove (3.11). Setting m = 2/p as before, we have that

n

(
1

m
− 1

2

)
=

n(p− 1)

2
< 1,

where we now used the assumption p < 1 + 2/n. We use (2.9) in [0, t/2]
and (2.8) in [t/2, t], to obtain:

∥∇u(t, ·)∥L2 ≲
∫ t/2

0

(1 + t− τ)−
n
4 − 1

2

(
∥ut(τ, ·)∥pLp + ∥ut(τ, ·)∥pL2

)
dτ

+

∫ t

t/2

(1 + t− τ)−
n
2 (

1
m− 1

2 )−
1
2 ∥ut(τ, ·)∥pL2 dτ

≲ (1 + t)−
n
4 − 1

2 ∥u∥pX .

In particular, here we used∫ t

t/2

(1 + t− τ)−
n
2 (

1
m− 1

2 )−
1
2 dτ ≈ (1 + t)−

n
2 (

1
m− 1

2 )+
1
2 ,

due to (3.15), so that

(1+ t)−
n
4 p−p

∫ t

t/2

(1+ t− τ)−
n
2 (

1
m− 1

2 )−
1
2 dτ ≲ (1+ t)

1
2−

n
4 p−p ≤ (1+ t)−

n
4 − 1

2 .
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Similarly, we may prove estimate (3.12). Using (2.12) in [0, t/2] and (2.11)
in [t/2, t], we get:

∥u(t, ·)∥L2 ≲
∫ t/2

0

(1 + t− τ)−
n
4

(
∥ut(τ, ·)∥pLp + ∥ut(τ, ·)∥pL2

)
dτ

+

∫ t

t/2

(1 + t− τ)−
n
2 (

1
m− 1

2 )∥ut(τ, ·)∥pL2 dτ

≲ (1 + t)−
n
4 ∥u∥pX .

To derive this latter it was sufficient again to use 1 < p < 1+ 4/n. Indeed, if
one is not interested in having a solution with ∇u(t, ·) ∈ L2, the bound of p
from above may be relaxed to p ≤ 2 if n ≤ 3, and p < 1 + 4/n, if n ≥ 4.

Finally, we obtain (3.13)-(3.14) by applying (2.15) and (2.17), as in the
case f = |u|p; we obtain

∥∂k
t (Fu)(t, ·)∥L1 ≲

∫ t

0

(1 + t− τ)−k ∥ut(τ, ·)∥pLp dτ

≲ ∥u∥pX
∫ t

0

(1 + t− τ)−k (1 + τ)−
n
2 (p−1)−p dτ

≈ (1 + t)−k ∥u∥pX ,

for k = 0, 1, using p > 1. This concludes the proof of (3.6), and so the proof
of Theorem 1.2. □

Remark 3.1. The compensating effect in (3.17) depends on the choice m =
2/p. A different choice for m ∈ [1, 2), verifying (2.10) and mp ≤ 2, would led
to:∫ t

t/2

(1+ t−τ)−1 (t−τ)−
n
2 (

1
m− 1

2 )∥ut(τ, ·)∥pLmp dτ ≲ (1+ t)−
n
2 (p−1/m)−p ∥u∥pX ,

and

n

2

(
p− 1

m

)
+ p ≥ n

4
+ 1 ⇐⇒ p ≥ 1 +

n

n+ 2

(
1

m
− 1

2

)
.

In particular, one cannot obtain the desired estimate, by fixing an expo-
nent m, uniformly chosen for any p close to 1. This delicate situation shows
how to grasp the critical exponent, one has to use the “correct” linear esti-
mate, when it is necessary to compensate possible losses due to the integration
of Duhamel’s part of the solution.

To prove Theorem 1.3, we may follow the proof of Theorem 1.1, but
now we use the solution space

X
.
= C

(
[0,∞),W 1,1 ∩H2

)
∩ C1

(
[0,∞), L1 ∩ L2

)
, (3.18)
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with norm given by

∥u∥X
.
= sup

t∈[0,∞)

{
(1 + t)

n
4

(
∥u(t, ·)∥L2 + (1 + t)∥(∆u, ut)(t, ·)∥L2

)
+ ∥u(t, ·)∥L1 + (1 + t)

1
2 ∥∇u(t, ·)∥L1 + (1 + t)∥ut(t, ·)∥L1

}
.

(3.19)

As we did to prove Theorems 1.1 and 1.2, we will only prove (3.6), where
now X is given by (3.18)-(3.19).

For any u ∈ X, it holds:

∥∇u(t, ·)∥Lq ≲ (1 + t)−
n
2 (1−

1
q )−

1
2 ∥u∥X , (3.20)

for any q ∈ [1,∞] if n = 1, for any q ∈ [1,∞) if n = 2, and for any q ∈
[1, 2n/(n − 2)], if n ≥ 3. Indeed, on the one hand, (3.20) holds for q = 1, as
a consequence of (3.19). On the other hand, since (3.19) implies

∥u(t, ·)∥Ḣ2 ≲ (1 + t)−
n
4 −1 ∥u∥X ,

by the equivalence of the norm of ∥∆f∥L2 and ∥f∥Ḣ2 , we may use Gagliardo-
Nirenberg inequality to get (3.8), for any q ∈ (1,∞] if n = 1, for any q ∈
(1,∞) if n = 2, and for any q ∈ (1, 2n/(n− 2)], if n ≥ 3.

Proof of Theorem 1.3. We first prove

∥∆(Fu)(t, ·)∥L2 + ∥∂t(Fu)(t, ·)∥L2 ≲ (1 + t)−1∥u∥pX , (3.21)

as we did to prove (3.10), in the case f = |u|p. We use estimate (2.4) in [0, t/2],
and estimate (2.3) in [t/2, t]. Then

∥∆(Fu)(t, ·)∥L2 + ∥∂t(Fu)(t, ·)∥L2

≲
∫ t/2

0

(1 + t− τ)−
n
4 −1

(
∥∇u(τ, ·)∥pLp + ∥∇u(τ, ·)∥pL2p

)
dτ

+

∫ t

t/2

(1 + t− τ)−1 ∥∇u(τ, ·)∥pL2p dτ.

Now, using u ∈ X, (3.20), and p ≤ n/(n− 2)+, we get:

∥∇u(τ, ·)∥pLp ≲ (1 + τ)−
n
2 (p−1)− p

2 ∥u∥pX ,

∥∇u(τ, ·)∥pL2p ≲ (1 + τ)−
n
4 −n

2 (p−1)− p
2 ∥u∥pX .
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Therefore, we obtain:

∥∆(Fu)(t, ·)∥L2 + ∥∂t(Fu)(t, ·)∥L2

≲ ∥u∥pX
∫ t/2

0

(1 + t− τ)−
n
4 −1 (1 + τ)−

n
2 (p−1)− p

2 dτ

+ ∥u∥pX
∫ t

t/2

(1 + t− τ)−1 (1 + τ)−
n
4 −n

2 (p−1)− p
2 dτ

≈ ∥u∥pX (1 + t)−
n
4 −1

∫ t/2

0

(1 + τ)−
n
2 (p−1)− p

2 dτ

+ ∥u∥pX (1 + t)−
n
4 −n

2 (p−1)− p
2

∫ t

t/2

(1 + t− τ)−1 dτ

≈ (1 + t)−
n
4 −1 ∥u∥pX ,

thanks to p > 1 + 1/(n + 1). Let us prove (3.12). Using estimate (2.12),
in [0, t/2], and estimate (2.11), in [t/2, t], with m = 2, we get

∥(Fu)(t, ·)∥L2 ≲
∫ t/2

0

(1 + t− τ)−
n
4

(
∥∇u(τ, ·)∥pLp + ∥∇u(τ, ·)∥pL2p

)
dτ

+

∫ t

t/2

∥∇u(τ, ·)∥pL2p dτ

≲ ∥u∥pX
∫ t/2

0

(1 + t− τ)−
n
4 (1 + τ)−

n
2 (p−1)− p

2 dτ

+ ∥u∥pX
∫ t

t/2

(1 + τ)−
n
4 −n

2 (p−1)− p
2 dτ

≈ ∥u∥pX (1 + t)−
n
4

∫ t/2

0

(1 + τ)−
n
2 (p−1)− p

2 dτ

+ ∥u∥pX (1 + t)−
n
4 −n

2 (p−1)− p
2

∫ t

t/2

1 dτ

≈ (1 + t)−
n
4 ∥u∥pX ,

where we used again u ∈ X, (3.20), p ≤ n/(n− 2)+ and p > 1 + 1/(n+ 1).
Finally, we derive estimates (3.13), (3.14), and

∥∇(Fu)(t, ·)∥L1 ≲ (1 + t)−
1
2 ∥u∥pX . (3.22)

We may use (2.15), (2.16), and (2.17), to estimate

∥∇j∂k
t (Fu)(t, ·)∥L1 ≲

∫ t

0

(1 + t− τ)−
j
2−k ∥∇u(τ, ·)∥pLp dτ

≲ ∥u∥pX
∫ t

0

(1 + t− τ)−
j
2−k (1 + τ)−

n
2 (p−1)− p

2 dτ

≲ (1 + t)−
j
2−k ∥u∥pX ,

for j + k = 0, 1, where we used again p > 1 + 1/(n+ 1), u ∈ X, and (3.20).
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This concludes the proof of (3.6), for f = |∇u|p, and so the proof of
Theorem 1.3. □

Appendix A. L1 multipliers estimates

In this appendix we prove an L1 estimate for multipliers, localized at low
and high frequencies. The employment of these estimates allow us to derive
L1 − L1 estimates for the solution to (1.1). The technique employed is well-
known, but we give some details for the ease of reading.

Lemma A.1. Let n ≥ 1 and χ0 be a C∞ function, supported in B1(0) = {|ξ| <
1}, and constant in some neighborhood of the origin. Then:

K2 = F−1

(
|ξ|2

1− |ξ|2
χ0

)
∈ L1, K1 = F−1

(
ξ

1− |ξ|2
χ0

)
∈ L1. (A.1)

Proof. Let a ∈ (0, 1) be such that suppχ0 ⊂ Ba(0) = {|ξ| < a}, and

let g2(ξ) = |ξ|2 and g1(ξ) = ξ. Then

Kj(x) = (2π)−n

∫
|ξ|≤a

eixξ
gj(ξ)

1− |ξ|2
χ0(ξ) dξ.

It is clear that Kj ∈ L∞, in particular, it is in L1
loc. Let |x| ≥ a−1. Thanks to

eixξ =

n∑
j=1

−ixj

|x|2
∂ξje

ixξ, (A.2)

after integrating by parts n − 1 times (the boundary terms vanish, since χ0

identically vanishes near {|ξ| = a}), we obtain:

Kj(x) = |x|−(n−1)
∑

|γ|=n−1

cn,γ

(
ix

|x|

)γ ∫
|ξ|≤a

eixξ ∂γ
ξ

(
gj(ξ)

1− |ξ|2
χ0(ξ)

)
dξ.

Indeed,

Kj(x) = (2π)−n
n∑

ℓ=1

ixℓ

|x|2

∫
|ξ|≤a

eixξ ∂ξℓ

(
gj(ξ)

1− |ξ|2
χ0(ξ)

)
dξ

= (2π)−n
n∑

ℓ=1

n∑
k=1

−xℓxk

|x|4

∫
|ξ|≤a

eixξ ∂ξk∂ξℓ

(
gj(ξ)

1− |ξ|2
χ0(ξ)

)
dξ

= . . .

We split each of the integral in Kj into two parts. We immediately get∫
|ξ|≤|x|−1

∣∣∣∣∣∂γ
ξ

(
gj(ξ)

1− |ξ|2
χ0(ξ)

)∣∣∣∣∣ dξ ≲
∫
|ξ|≤|x|−1

|ξ|j−(n−1)
dξ ≲ |x|−1−j .
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Integrating one more time the remaining integral, we obtain:

∫
|x|−1≤|ξ|≤a

eixξ ∂γ
ξ

(
gj(ξ)

1− |ξ|2
χ0(ξ)

)
dξ =

n∑
j=1

−ixj

|x|2

∫
|ξ|=|x|−1

eixξ ∂γ
ξ

(
gj(ξ)

1− |ξ|2
χ0(ξ)

)
dS

+

n∑
j=1

ixj

|x|2

∫
|x|−1≤|ξ|≤a

eixξ ∂ξj∂
γ
ξ

(
gj(ξ)

1− |ξ|2
χ0(ξ)

)
dξ.

The first term in the right-hand side is bounded by |x|−1−j , whereas we may
perform one more step of integration on the second one, which leads us to
estimate ∫

|x|−1≤|ξ|≤a

|ξ|j−(n+1)
dξ ≲

{
1 if j = 2,

1 + log |x| if j = 1.

In turns, we obtain: |K1(x)| ≲ |x|−(n+1)(1+log |x|), and |K2(x)| ≲ |x|−(n+1),
for large |x|. That is, Kj ∈ L1. □

Lemma A.2. Let n ≥ 1 and χ1 be a C∞ function, supported in Rn \ B̄1(0) =
{|ξ| > 1}, and constant for |x| ≥ R, for some R > 1. Then:

K0 = F−1

(
1

|ξ|2 − 1
χ1

)
∈ L1, K1 = F−1

(
ξ

|ξ|2 − 1
χ1

)
∈ L1. (A.3)

Proof. Let b > 1, be such that suppχ1 ⊂ Rn \ B̄b(0) = {|ξ| > b}. Recall-
ing (A.2), and following the proof of Lemma A.1, we integrate by parts n− 1
times:

Kj(x) = |x|−(n−1) (2π)−n
∑

|γ|=n−1

(
ix

|x|

)γ ∫
|ξ|≥a

eixξ ∂γ
ξ

(
gj(ξ)

|ξ|2 − 1
χ1(ξ)

)
dξ,

(A.4)
with g0(ξ) = 1 and g1(ξ) = ξ. We immediately obtain

|K0(x)| ≲ |x|−(n−1)

∫
|ξ|≥a

|ξ|−2−(n−1)
dξ ≲ |x|−(n−1),

whereas, to treat K1 for small |x|, we split (A.4) into two integrals. On the
one hand, we easily obtain:

|x|−(n−1)

∫
a≤|ξ|≤|x|−1

|ξ|−1−(n−1)
dξ ≲ |x|−(n−1)(1 + | log |x||).
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On the other hand, performing one more step of integration by parts of the
remaining integral, we get∫

|x|−1≤|ξ|
eixξ ∂γ

ξ

(
ξ

|ξ|2 − 1
χ1(ξ)

)
dξ =

n∑
j=1

−ixj

|x|2

∫
|ξ|=|x|−1

eixξ ∂γ
ξ

(
ξ

|ξ|2 − 1
χ1(ξ)

)
dS

+

n∑
j=1

ixj

|x|2

∫
|x|−1≤|ξ|

eixξ ∂ξj∂
γ
ξ

(
ξ

|ξ|2 − 1
χ1(ξ)

)
dξ,

which we may control by |x|−(n−1). To estimate Kj , j = 0, 1, for large |x|,
it is sufficient to perform two more steps of integration by parts in (A.4),
obtaining:

|Kj(x)| ≲ |x|−(n+1)

∫
|ξ|≥a

|ξ|j−(n+3)
dξ ≲ |x|−(n+1).

Summarizing, we proved that K0,K1 ∈ L1 (and also in Lq, for any q <
n/(n− 1)). □
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