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alized Italian towns, where several emission sources operate simultaneously in proximity to the urban
settlement. An intensive monitoring campaign of PAHs was carried out from January 28th to July 30th,
2011, in seven sites located in residential settlement around the industrial area and in the city center. The
collected data were integrated with the information about wind direction and speed by means bivariate

Handling Editor: R Ebinghaus polarplot in order to characterize and localize the industrial sources. High BaP concentrations were

detected especially when Benzene to Toluene ratio (B/T ratio) values excedeed 1 and all receptor sites
Keywords: were downwind to the steel plant. Moreover, in order to discriminate among PAH sources and quantify
PAHs their contributions, a source apportionment analysis of the collected data was provided by means
Steel plant Principal component Analysis (PCA) and Positive Matrix Factorization (PMF) methods. Finally, the pro-
DR . cessing of PMF5.0 output by bivariate polar plot, confirmed the impact of steel plant on both industrial
lﬁ:\’;‘;;eoappomo“mem sites downwind the steel plant and the city center. B[a]P apportionment was quite similar for industrial

and urban sites: the traffic source contributed only 11% and 24% to B[a]P measured at two sites,
respectively. Therefore, the proximity of Taranto downtown to industrial pole makes negligible all other
source contributions to PAH concentrations.

© 2016 Elsevier Ltd. All rights reserved.

* Corresponding author. Biology Department, University of Bari, Via Orabona, 4,
70126, Bari, Italy.
E-mail address: gianluigi.degennaro@uniba.it (G. de Gennaro).

http://dx.doi.org/10.1016/j.chemosphere.2016.10.019
0045-6535/© 2016 Elsevier Ltd. All rights reserved.


mailto:gianluigi.degennaro@uniba.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemosphere.2016.10.019&domain=pdf
www.sciencedirect.com/science/journal/00456535
www.elsevier.com/locate/chemosphere
http://dx.doi.org/10.1016/j.chemosphere.2016.10.019
http://dx.doi.org/10.1016/j.chemosphere.2016.10.019
http://dx.doi.org/10.1016/j.chemosphere.2016.10.019

172 A. Di Gilio et al. / Chemosphere 168 (2017) 171-182

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pol-
lutants in urban atmospheres and they take a heavy toll on public
health and environment because of their high toxicity, persistence
in the environment and bioaccumulation through the food chain.
Most PAHs are produced by incomplete combustion and pyrolysis
of organic substances. In addition to mobile sources, industrial
processes, and waste incineration, steel plant and in particular, coke
ovens are relevant sources of PAHs (Yang et al., 1998; Chen et al,,
2007; Ciaparra et al., 2009; Kong et al., 2011). Moreover, fugitive
emissions can contribute substantially to PAH emissions during
coking (Liberti et al., 2006; Santacatalina et al., 2010; Mu et al,,
2013, 2014; Amodio et al., 2013). In fact, PAHs are, also, released
because of leaks from the furnace door, the lids that cover the
charging ports and the offtake system. Other leakage occur during
mechanical processes as coal bulk handling, processing and
charging. Therefore, a detailed monitoring of fugitive emission
sources is necessary in order to achieve air quality, especially in
sensitive industrial area such as Taranto (Ravindra et al., 2008).

Taranto is the most industrialized towns in the South of Italy and
their industrial area includes the biggest steel plant in Europe, one
of the biggest Italian refinery, the most important harbor in
southern Italy, a big cement plant and a naval shipbuilding industry.
Moreover, Taranto has been identified as an area of high environ-
mental risk in Italy and has been included in the list of polluted sites
of national interest because of the proximity of the industrial area
to the urban settlement, which is prevalently downwind. Epide-
miologic data show that this area experiences a 22% death rate of
cancer in excess of the regional average, with 40% of cases because
of lung disease (Liberti et al., 2006). Thus, to assess public exposure
to PAHs and their associated health risk, the understanding the
contribution of the different emission sources to the ambient PAH
levels in Taranto results necessary (Amodio et al., 2011).

In recent, to provide scientific basis of PAH control, some studies
focused on apportioning their sources. Molecular diagnostic ratios
(DRs) (Yunker et al., 2002; Ravindra et al., 2008), chemical mass
balance (CMB, Li et al., 2003; Lee and Kim, 2007; Kim et al., 2013;
Zou et al., 2015), principal component analysis (PCA Simcik et al.,
1999; May et al., 2012), and positive matrix factorization (PMF,
Larsen and Baker, 2003; Vestenius et al., 2011; Gao et al., 2015;
Taiwo et al., 2014; Zou et al., 2015) are frequently used for this
purpose. All these approaches are based on the assumption that
each PAH source provides a characteristic fingerprint. DR method
considers the ratios of certain PAH compounds related to specific
sources but it shows limitations due to the reactivity and degra-
dation of some PAH congeners in the atmosphere (Tsapakis and
Stephanou, 2003; Robinson and Donahue, 2006, Robinson et al.,
2006; Ravindra et al., 2008; Zhang et al., 2009; Tobiszewski and
Namies$nik, 2012). CMB fits the environmental data with known
PAH fingerprints and thus, requires a priori knowledge about
emission sources (Viana et al., 2008a; 2008b). In contrast, PMF and
PCA generate possible source fingerprint recognizable by known
marker sources (Paatero and Tapper, 1994). However, only PAH data
as model input determine a great uncertainty in the source iden-
tification due to similar PAH profiles among different sources and
high correlation among PAH congeners (Harrison et al., 2011; Gao
et al., 2015). Therefore, some authors introduced in the input data
file used for source apportionment studies, tracers for specific
sources such as hopanes and elemental carbon (EC) for vehicle
emissions (Birch and Cary, 1996; Pant et al., 2014) and picene for
coal combustion (Oros and Simoneit, 2000; Jaeckels et al., 2007;
Shrivastava et al., 2007; Van Drooge and Ballesta, 2009, Gao et al.,
2015).

In this study, an intensive sampling campaign was carried out

from January 28™ to July 30, 2011 at seven different sites in Tar-
anto in order to apportion the PAH sources in industrial and urban
area of Taranto. The large number of collected samples (1139
samples) and the introduction of source tracers as gaseous pollut-
ants (NOx, Benzene and Toluene) in input data matrix enable to
improve source apportionment analysis (Wu et al.,, 2007; Zhang
et al., 2009). Finally, the source apportionment results were inte-
grated with information about wind direction and speed by using
bivariate polar plots in order to localize the emission sources.

2. Materials and methods

An intensive sampling campaign of PM10 was carried out from
January 28™ to July 30™, 2011, in seven receptor sites at Taranto
(South of Italy) denominated: Cementir, Cimitero, Eni, Machiavelli,
Adige, Italcave, and Paolo VI. A total of 1139 PM10 samples were
collected and analyzed for PAHs determination. The hourly con-
centrations of Benzene, Toluene, NOx and SO, registered over the
sampling period were downloaded from the monitoring network of
ARPA Puglia, the regional agency for Environmental Protection
(ARPA Puglia) at two sites: Adige (urban site) and Machiavelli (in-
dustrial site). Moreover, the meteorological data as wind speed and
direction, atmospheric temperature, pressure and relative humid-
ity were collected at Machiavelli site. In order to localize the pol-
lutants sources, bivariate polar plots of meteorological data and
pollutant concentrations, were constructed as described by Carslaw
et al. (2006) and Westmoreland et al. (2007) by using R software-
version 3.1.0, (Carslaw and Ropkins, 2012; Carslaw, 2014).

2.1. Sampling sites

A PM10 monitoring campaign was performed around the iron
and steel pole of Taranto (Fig. 1). Taranto (40°28'N 17°14’E) is the
third most populated city in southern Italy and it includes the most
important seaport in southern Italy and one of the biggest steel
plants in Europe nearby urban area. In addition, a petrochemical
center, a cement plants, a military and trade harbour and a naval
shipbuilding industry are all located in close proximity to the urban
area. Daily PM10 samples were collected at seven sites in Taranto.
Four sites were located close to the industrial area (Cementir,
Cimitero, Eni, Machiavelli) and the other three were distributed in
different areas of Taranto (Adige, Italcave, and Paolo VI) (Fig. 1).
Cementir site (CM; 40°29'15.64"N, 17°12/15.13”E) was placed inside
the cement plant (purple zone) and Eni receptor site (E;
40°29'30.78"N, 17°11’58.76"E) was located at refinery entrance
(yellow zone), both positioned at SW of steel plant. Cimitero (C;
40°29'34.40"N, 17°13’14.48"E) and Machiavelli (M; 40°29'19.11” N,
17°13/32.79" E) sites were placed in suburban area (western blue
zone), bordering to the southern side of steelworks plant. Adige
(AA; 40°27'39.98"N, 17°15’48.16"E) was located at SSW of the steel
plant in downtown, Paolo VI (P; 40°3111.89”N, 17°15’9.20”E) was
placed in suburban area at NNE of steelworks, and Italcave sam-
pling site (IT; 40°31'39.49”N, 17°13'04.08") was located in a quarry,
at NNE of the steel plant (orange zone).

2.2. PM sampling

PM10 daily samples were collected on quartz filters (What-
mann, 47 mm diameter) using a dichotomous low volume sampler,
SWAM Dual Sampler (FAI Instruments s.r.l., Roma, Italy) and sam-
pling heads FAI EN 1234.1 operating at a flow rateof 23 m*h~ L A
total of 1139 PM10 samples were collected and a half of PM10 filter
was analyzed for PAHs quantification.
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Fig. 1. Map of the seven sampling sites and main emission sources.

2.3. PAHs analysis

The extraction of PAHs was performed with an acetone/hexane
mixture (1:1) through a microwave assisted solvent extraction
(Milestone s.r.l, model Ethos D, Sorisole (BG), Italy). The extracted
samples were analyzed using an Agilent 6890 PLUS gas chro-
matograph (Agilent Technologies, Inc., Santa Clara, CA USA)
equipped with a programmable temperature vaporization injection
system (PTV) and interfaced with a quadrupole mass spectrometer,
operating in electron impact ionization (Agilent MS-5973 N). The
identification of each PAH (Benzo(a)Anthracene B(a)A, Benzo(b)
Fluorene B(b)F, Benzo(j+k)Fluorene B(j+k)F, Benzo(a)Pyrene B(a)P,
Benzo(g)Perylene B(g)P, Indeno Pyrene IP and DiBenzoAnthracene
DBA) was performed using Perylene-D12 (PrD, 264) as the internal
standard (IS). The analytical performance of the whole procedure
(extraction recovery, extraction linearity, analytical repeatability,
LOD) was verified in our previous study (Bruno et al., 2007).

2.4. Source apportionment analysis

Principal Component Analysis (PCA) and Positive Matrix
Factorization (PMF) are useful multivariate factor analysis tools.
PCA is probably the oldest and best-known technique of multi-
variate analysis (Amodio et al, 2010; Andriani et al., 2010;
Hellebust et al., 2010; Pant and Harrison et al., 2011). The purpose
of PCA is to reduce the number of variables, which explain the total
variance of data using the principal components (PCs): linear
combinations of the original variables. The first step of the pro-
cedure consists in calculating eigenvalues and eigenvectors (PCs) of
the covariance matrix of original data. Generally, not all of these PCs
contribute significantly in representing the original data matrix,

but the first ones can reconstruct the original data with little loss of
information. Therefore, only the most significant eigenvectors,
whose eigenvalues are greater than unity (Kaiser rule), are then
rotated by an orthogonal or oblique rotation in order to obtain
components more representative of the source (factors) profiles. In
this study, the PCA was performed using R software (R
Development Core Team, 2003). In details, PCA with Varimax
rotation was applied to the normalized data matrix consisting of
the daily concentrations of BaA, BbF, BKF, BaP, InP, BgP, DBA, Ben-
zene, Toluene and NOx.

PMF analysis has significantly advanced source apportionment
analysis in environmental studies. In fact, compared to many other
source apportionment methods, PMF has the advantage of posing
positive constraints to matrices rotation, and therefore, is consid-
ered able to generate physically meaningful source fingerprints and
loadings (Paatero, 1997). In details, PMF determines the best fit
source fingerprints (or factor) and their contributions through non-
linear least square regressions. In this study, new EPA PMF v5.0
software was used. The concentrations and uncertainty input ma-
trix were determined according to Reff et al., 2007 and Polissar
et al., 1998. The input variables were classified using the Signal-
to-Noise (S/N) criteria (Paatero and Hopke, 2003) and all the spe-
cies were classified as “strong variables”, except DBA considered
‘weak’. An additional uncertainty of 5% was added to the estimated
uncertainties before application of receptor model. This value en-
compasses various errors not considered like measurement or
laboratory errors, variation of source profiles, and chemical trans-
formations in the atmosphere. Parameters as IM (the maximum
individual column mean), IS (the maximum individual column
standard deviation), and Q-values (goodness of fit parameter) were
examined to find out the most reasonable solution. As a further
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confirmation, the PMF solutions were explored for multiple values
of the peak coefficient (Fpeak, between —1.0 and + 1.0, with steps
of 0.2). Finally, the uncertainties on estimated factor profiles and
contributions were evaluated using the bootstrap method (Paatero
et al,, 2014).

3. Results and discussion

The average, maximum and minimum values of PM10 concen-
trations for the investigated sites are reported in Table 1.

During the sampling period, the mean PM10 concentrations at
Cementir and Italcave sites were 54.3 pg/m> and 54.5 pg/m?>,
respectively, and they were higher than those determined at the
nearest sites to industrial area, as Cimitero, Machiavelli and Eni
sites. The 90.4 percentile of PM10 concentrations exceeded the
concentration limit established by European Directive (2008/50/
CE) for all sites except for Paolo VI and Adige sites. Moreover, during
the sampling period, PM10 concentrations exceeded the daily limit
value (50 pg/m?) for 76, 64 and 52 days at Italcave, Cementir and
Cimitero sites, respective (Table 1). On the contrary, the highest
concentrations of B(a)P were measured at Cimitero site, the nearest
site to steel plant, while lower B(a)P concentrations were registered
at Cementir and Italcave sites (Table 2). In fact, the mean concen-
tration during the monitoring period for the Cimitero receptor site
was equal to 1.8 ng/m3 with a maximum value of 12.58 ng/m3
measured in days when this site was downwind to the steel plant
(Table 2). Italcave and Paolo VI sites showed B(a)P mean concen-
trations one order of magnitude lower than Cimitero site (0.14 ng/
m>). Although the B(a)P mean concentrations registered at
Machiavelli, ENI and Cementir site (the nearest site to steel plant)
resulted lower than the annual target value of 1 ng/m3, daily trends
showed B(a)P concentrations exceedances. According to Cimitero
data, these exceedances were observed on days when wind di-
rections were predominantly from the steelworks towards receptor
sites. In order to deepen the relation between B(a)P and wind di-
rection, the polarplots related to B(a)P concentrations measured at
the seven sampling sites were plotted in Fig. 2. The high values of
B(a)P were determined for Cimitero and Machiavelli sites only
when they were downwind to steel plant. Although low values of
mean B(a)P concentration were determined at other sampling sites,
the highest B(a)P concentrations for each site were determined in
correspondence of wind blowing from industrial area. For example,
the polarplot of B(a)P concentrations for Adige urban site is re-
ported in the insert of Fig. 2 and it shows the impact of industrial
area on Taranto urban center. These findings suggested that the
only PM10 concentrations do not allow evaluating the real air
quality at receptor site and its health impact. In fact, the highest
PM10 concentrations at Italcave and Cementir sites were due to
coarse particles emitted by powdery activities carried out in the
cave and the cement plant. On the contrary, PM10 collected at re-
ceptor sites downwind to steel plant were enriched of toxic pol-
lutants as ultrafine particles and B(a)P.

Since different sources show specific concentration profiles of
PAHs, several studies focused on PAHs diagnostic ratios, especially

on B(a)P/B(g)P and IP/(IP + BgP) ratios (Park et al., 2002; Hwang
et al., 2003; Barletta et al., 2005; Manoli et al., 2004; Azimi et al.,
2005; del Rosario Sienra et al., 2005; Ravindra et al., 2006, 2008;
Aky(z and C, 2008; Kong et al., 2011). The mean value of B(a)P/
B(g)P ranged from 0.66 at Cementir to 0.91 at Cimitero and the
difference among the sites were not relevant. The same results
were obtained for the mean value of IP/(IP + BgP) ratios that ranged
from 0.44 to 0.48 (Table 3). According to Galarneau (2008), PAH
isomer ratios showed substantial intra-source variability and inter-
source similarity. Therefore, the analysis of PAH ratios depending to
the wind direction is more useful for source identification. For
example, Fig. 3 shows the polarplots of B(a)P/B(g)P ratio for each
site. The highest ratio values were recorded in Machiavelli
(1.33—1.55) and Cimitero (1.57—2.61) sites when winds blew
mainly from the NW sector and in Eni (1.19—1.35) and Cementir
(1.08—1.32) receptors when the wind blew from NE. These results
confirmed the contribution of coal combustion source on PAH
concentrations determined at sampling sites. On the contrary, these
DR values decreased to 0.5—0.6, typical of vehicular traffic contri-
bution, when the receptor sites located around the industrial pole
were upwind of industrial area. Moreover, polaplots related to re-
ceptor sites further away from the industrial plants (Paolo VI, Ital-
cave and Adige) showed DR values lower than those registered
nearest the steel plant. In average, they fell below the coal com-
bustion diagnostic value of 1.25, probably due both to the distance
of the receptor site from the industrial site and to the atmospheric
degradation of PAHs. Nevertheless, as showed in the insert in Fig. 3
for Adige site, the highest values of B(a)P/B(g)P ratio were obtained
in correspondence of wind blowing from the industrial area of
Taranto. The results obtained for Benzene to Toluene ratio (B/T ra-
tio) determined at Adige (urban site) and Machiavelli (industrial
site) receptor sites returned the same findings achieved for PAH
ratios: the highest DR values (DR > 1) were determined by indus-
trial area for both sites. In some studies, authors found that a scatter
plot of two DRs could provide a more intuitive understanding of the
result of diagnostic ratio (Lehndorff and Schwark, 2004; Yunker
et al.,, 2002). For this reason a scatter plot of B/T ratio against B(a)
P concentrations was reported in Fig. 4. The B(a)P concentrations
registered at Machiavelli site exceeded the target value of the yearly
mean concentration (1 ng/m>) especially when the B/T ratio values
were greater than 1 and the receptor sites were downwind to the
coke ovens. The same result was obtained for the urban site (Adige)
where the highest B(a)P concentrations were registered in the
same conditions.

3.1. Statistical analysis

In order to identify the impact of industrial sources on down-
town area of Taranto, principal component analysis (PCA) with the
varimax normalized rotation was applied to data matrix related to
each sites. PCA analysis applied to data matrix consisting of only
PAHs concentrations failed to identify PAH emission sources
probably due to closeness of the sites to the industrial area and due
to the affinity among the different PAHs. In fact, even if the

Table 1
PM10 concentrations (pg/m?): values of mean, maximum, minimum, 90™ percentile and number of exceedances.
Eni Cementir Cimitero Machiavelli Altoadige Paolo VI Italcave

Mean 35.5 54.3 46.4 38.7 26.3 24.7 54.5
Max 96.6 250.6 2715 159.4 63.8 165.8 216.5
Min 7.51 10.6 10.1 11.7 6.08 1.09 8.52
90™ Percentile 59.5 86.8 81.0 55.1 35.9 33.7 94.5
Exceedances (n°®) 27 64 52 29 6 1 76
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Table 2

Maximum and mean values of B(a)P concentrations measured at the seven receptor sites. Moreover, date and wind direction in which the maximum concentration of B(a)P has

been registered, are showed.

Sites Mean concentration (ng/m>) Max concentration (ng/m?) Wind Direction (degree) Date (dd/mm/yyyy)
Alto Adige 0.21 0.90 ONO 25/02/2011
Cementir 0.32 6.11 NNE 10/05/2011
Cimitero 1.80 12.58 NNO 06/04/2011
Eni 0.24 2.39 NNO 16/04/2011
Italcave 0.14 0.99 SSO 08/02/2011
Machiavelli 0.70 5.13 NNO 24/02/2011
PaoloVI 0.14 0.80 0SsO 21/04/2011

mean

10

Fig. 2. Polarplots of B[a]P concentrations for the period under investigation at the seven sampling sites and at Adige site on autoscaled axis (insert).

combustion emissions are characterized by significantly higher
fractions of 4-ring PAHs and the petroleum products (gasoline and
diesel) by high fraction of heavier PAHs (Zou et al., 2015; Ravindra
et al., 2006; 2008), it seems difficult to discriminate among PAH
sources taking into account these differences especially when a big
variety of PAH sources were present simultaneously (Zou et al.,
2015). Therefore, the data matrix including also Benzene, Toluene
and NOx concentrations were processed by PCA (172 samples and
10 variables: B(a)A, B(b)F, B(k)F, B(a)P, IP, B(g)P, DBA, Benzene,
Toluene and NOx). In Table 4 the results about Machiavelli and
Adige sites only are reported because of the characteristics of both
these sites allow to better deeper the impact of industrial area on
urban and populated area. In details, two principal components
based on the criterion of eigenvalue larger than one were obtained.
They accounted for 91% and 89% of the total variance of data
collected at urban and industrial sites, respectively. For both sites,

the first principal component (PC1) accounted for 75% of the total
variance and showed high loadings for PAHs and Benzene. This PC
could be related to an industrial contribution. The PC2 accounted
for 16% and 14% of the total variance for Adige and Machiavelli sites,
respectively, and they were characterized by high loadings for
Toluene and NO», typical markers of vehicular traffic source. Ben-
zene split between the two components, with loadings of about 0.7
and 0.4, respectively, for industrial processes and traffic source in
both sites. Anyway, PCA do not allow quantifying the different
source contributions. Therefore, the collected data were processed
by PMF model in order to quantify source contributions and then,
the output were processed by polarplot in order to localize them.

In the first, the concentrations of 7 PAHs determined for all
seven site (1139 samples) were processed by EPA PMF 5.0. Several
base run settings were processed in order to identify the most
reliable experimental Q value. The two factors solution showed the
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Table 3
DRs range determined in literature and in this study.
B(a)P/B(g)P IP/(IP + BgP) B/T
Traffic*” 0.5-0.6 017" ~0.5
Lead smelter (coke burning) 0.45¢ 0.36%
Coke >1.25%¢ 0.33 >1
Combustion 0.9-6.6" 0.56"
Coal burning
This study mean (min-mx) Cimitero 091 0.48
(0.17-2.61) (0.25—0.58)
Machiavelli 0.77 0.47 0.65
(0.27-1.55) (0.29—0.56) (0.06—5.89)
Eni 0.66 (0.18—1.35) 0.45
(0.25-0.53)
Cementir 0.69 (0.27—1.32) 0.44
(0.12—0.55)
Paolo VI 0.80 0.48
(0.17—1.66) (0.04—0.6)
Italcave 0.77 0.48
(0.10—-1.50) (0.23-0.59)
Adige 0.71 0.45 0.41 (0.02—-3.34)
(0.38—1.66) (0.20—0.54)
2 Park, et al., 2002.
b Ravindra et al., 2006.
¢ Manoli et al., 2004.
d Barletta et al., 2005.
€ Ravindra et al., 2008.
f Kong et al,, 2011.
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Table 4

Loadings and explained variance percentage for data collected at Adige and Machiavelli sites.
Adige PC1 PC2 Machiavelli PC1 PC2
B(A)A 0.98 -0.10 B(a)A 0.97 -0.12
B(B)F 0.99 -0.03 B(B)F 0.99 —-0.05
B(-+K)F 0.99 —0.06 B(k-+))F 0.99 —0.08
B(a)P 0.98 -0.08 B(a)P 0.97 -0.11
P 0.99 —0.05 P 0.99 -0.07
DBA 0.97 —0.08 DBA 0.97 —-0.09
B(c)P 0.98 -0.04 B(c)P 0.98 —0.07
NO, 0.34 0.82 NO; 0.27 0.73
Benzene 0.71 0.37 Benzene 0.73 0.35
Toluene —0.09 0.89 Toluene —0.07 0.93
Explained Variance (%) 75 16 Explained Variance (%) 75 14

Considered loadings higher than 0.7 are represented in bold.
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Fig. 5. Factor source profiles identified by PMF5.0 applied to data matrix consisting of PAH concentrations measured at seven sites (a). Concentrations are expressed both as
absolute (bars) and relative concentrations (marks). Polarplot of PMF output extrapolated for Adige (b) and Machiavelli (c) receptor sites.
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modelled Q value (5607) closest to the theoretical one (5681).
Moreover, an exploration of displacement error estimation and a
bootstrap analysis were carried out. Fpeak rotation equal to — 1 was
adopted. Similar to PCA results, two factors were identified: the
first one characterized by high percentages of lighter PAHs (B(a)A,
B(b+j)F, B(k)F, B(a)P) markers of industrial source (Yang et al., 1998,
2002; Ravindra et al., 2006; 2008; Gao et al., 2015) and the second
one characterized by high percentage of IP, DBA and B(g)P, markers
of traffic source (Ravindra et al., 2006; 2008, Gao et al., 2011; Khalili
et al., 1995). The polarplot of output related to Machiavelli and
Adige sites not allowed distinguishing between the two sources,
even if higher concentrations in correspondence of calm of wind
were observed (Adige) (Fig. 5

In the second, the previous approach was adopted for a data
matrix related to PAH concentrations collected at Adige (169
samples by 7 PAHs) and Machiavelli sites (158 samples by 7 PAHs),
respectively Two factor were selected for both processing and the Q
values were 563 (vs. a theoretical Q value of 831) and 599 (vs. a
theoretical Q value of 776), respectively. Then, an error estimation
of base run results and the G-score plots analysis were carried out
in order to optimize the Fpeak rotation run. Fpeak rotation

parameter equals to —0.6 resulted the most suitable. The results
related to Machiavelli and Adige sites are showed in Figs. 6 and 7,
respectively. In contrast to Adige site, the PMF analysis applied to
Machiavelli data matrix failed in discrimination of the sources. The
polarplot of PMF output did not show relevant differences between
the two factors and both contributions increased when Nord-West
wind blew. These findings suggested that the proximity of this site
to industrial pole makes negligible all other source contributions.
Therefore, in order to improve the factors recognizing, the data
matrix was then upgraded with the NOx, Benzene and Toluene
concentrations. As shown in Figs. 8 and 9 for Adige and Machiavelli
sites, respectively, two profile sources were obtained by PMF. The
first factor was characterized by relevant contributions of PAHs
while the second one showed higher contributions for NO2, Ben-
zene and Toluene. The polarplot of PMF results also highlighted the
two sources: the industrial one was located at North-West respect
to both sites while the traffic one resulted locally relevant in cor-
respondence of calm of wind. The focus on PAHs showed higher
relative contributions of B(a)A, B(a)P and DBA for industrial (Mu
et al,, 2013) and of B(b-+j)F, B(k)F and B(g,h,i)P for traffic sources,
respectively. However, the relative difference among PAH isomers
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contributions were less relevant for Machiavelli respect to Adige
site, probably due to the proximity of the first site to industrial area.
These findings suggested that the approach developed in this study,
although useful, did not allow discriminating also among different
fugitive emission sources in the complex industrial area of Taranto.
Probably, it is due to closeness of several combustion sources to
each other and due to their closeness to downtown. In fact, B[a]P
apportionment was quite similar for both sites. In details, the traffic
source contributed only 11% and 24% to B[a]P measured in
Machiavelli and Adige, respectively. Therefore, the industrial source
was the main source of B[a]P for both sites, confirming the relevant
impact of industrial source on urban area, too.

4. Conclusions

In order to assess the impact of a biggest European steel plant
on nearby residential area of Taranto, an intensive monitoring
campaign of PAHs was carried out from January 28th to July 30",
2011, in seven sites located in residential settlement around the
industrial and downtown area of Taranto. The PAHs concentra-
tions and the source apportionment output data were integrated

with the information about wind direction and speed by means
bivariate polarplot. High BaP concentrations were detected espe-
cially when B/T ratio values exceeded 1 and all receptor sites were
downwind to the steel plant. The source apportionment analysis
was applied to PAH concentrations data upgraded with source
marker gases pollutants (NOx, B and T) and it allowed to identify
two factors: an industrial source characterized by high contribu-
tion for PAHs and a traffic one characterized by high contribution
for NOx, B and T. B[a]P apportionment was quite similar for the
two sites and the traffic source contributed only 11% and 24% to B
[a]P measured at industrial and urban sites, respectively. This
finding confirmed that the proximity of Taranto city center to in-
dustrial pole makes negligible all other source contributions to
PAH concentrations. However, the approach developed in this
study, although useful, did not allow discriminating also among
different fugitive emission sources in the complex industrial area
of Taranto. Probably, it is due to closeness of several combustion
sources to each other and due to their closeness to downtown
area. Therefore, further studies will aim to characterize PM sam-
ples also for elements content in order to allow a better discrim-
ination among source contributions.
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