
Computation of smooth manifolds via rigorous
multi-parameter continuation in infinite dimensions

Marcio Gameiro⇤ Jean-Philippe Lessard† Alessandro Pugliese ‡

Abstract

In this paper, we introduce a constructive rigorous numerical method to compute

smooth manifolds implicitly defined by infinite dimensional nonlinear operators. We

compute a simplicial triangulation of the manifold using a multi-parameter continuation

method on a finite dimensional projection. The triangulation is then used to construct

local charts and an atlas of the manifold in the infinite dimensional domain of the

operator. The idea behind the construction of the smooth charts is to use the radii

polynomial approach to verify the hypotheses of the uniform contraction principle over

a simplex. The construction of the manifold is globalized by proving smoothness along

the edge of adjacent simplices. We apply the method to compute portions of a two-

dimensional manifold of equilibria of the Cahn-Hilliard equation.

1 Introduction

Partial di↵erential equations (PDEs), delay di↵erential equations (DDEs) and ordinary dif-
ferential equations arising from physics, biology, chemistry, economics or engineering often
depend on parameters. It is, therefore, natural to study the changes in the qualitative be-
havior of the solutions as one changes some parameters in the equations. Thus, it is not
surprising that there is a vast literature on numerical techniques devoted to continuation of
such solutions, often in the form of predictor-corrector algorithms. In the context of infinite
dimensional problems like PDEs and DDEs, the continuation algorithms have to be per-
formed on a finite dimensional projection, which raises the natural question of the validity
of the outputs. In order to address this fundamental question, rigorous one-parameter con-
tinuation methods have been proposed to compute global branches of solutions of PDEs and
DDEs [1, 2, 3, 4, 5]. While these methods have been applied to compute one-dimensional
manifolds, we are not aware of any rigorous method aiming at computing solution manifolds
of dimension greater than one. In this regard, we propose here a rigorous multi-parameter
continuation method to compute smooth two-dimensional manifolds implicitly defined by
zeros of nonlinear operators defined on infinite dimensional Banach spaces. More explicitly,
we are interested in the following general problem.

⇤
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668,

13560-970, São Carlos, SP, Brazil (e-mail address: gameiro@icmc.usp.br). This author was partially sup-

ported by FAPESP, CAPES and CNPq, Brazil.
†
Université Laval, Département de Mathématiques et de Statistique, 1045 avenue de la Médecine, Québec,

QC, G1V 0A6, CANADA (jean-philippe.lessard@mat.ulaval.ca).
‡
Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari,

ITALY (alessandro.pugliese@uniba.it). This author was supported in part by INdAM – GNCS.

1

This is the preprint of the following article:
M. Gameiro, J.P. Lessard, A. Pugliese
Computation of smooth manifolds via rigorous multi-parameter continuation in infinite dimensions
Found. Comput. Math., Volume 16, Issue 2, pp 531-575, 2016
DOI: https://doi.org/10.1007/s10208-015-9259-7

Problem Definition: Let B1, B2 two Banach spaces (possibly infinite dimensional), and

a nonlinear operator f : R2 ⇥ B1 ! B2 which is assumed to be compact and twice Fréchet

di↵erentiable. Let M ⇢ R2 ⇥ B1 a set that satisfies the two assumptions

• M ⇢
�
x 2 R2 ⇥ B1 : f(x) = 0

,

• 8 x 2 M, the linear operator Df(x) : R2 ⇥ B1 ! B2 has a bounded inverse.

The general goal of this paper is to introduce a method to rigorously compute local charts

and an atlas for the two-dimensional manifold M.

Our main motivation for developing such method comes from the study of finite and
infinite dimensional parameter dependent dynamical systems. From the point of view of
dynamical systems, the objects of interest are bounded solutions that exist globally in time,
for instance, equilibria (steady states), time periodic solutions, solutions of boundary value
problems, connecting orbits, etc. For a large class of problems, these solutions are more
regular than the typical solutions of the phase space. Based on this a priori knowledge of
regularity, spectral methods can be used to define a nonlinear operator f : R2 ⇥ B1 ! B2

such that a solution x = (p, a) 2 R2 ⇥ B1 of

f(x) = 0 (1)

corresponds to a bounded solution of interest. The domain of f contains the parameter
space R2 and B1, B2 are infinite dimensional Banach spaces of fast decaying coe�cients
(modes). In case the targeted solution has a periodic profile, the infinite dimensional vector
a = (ak)k may be the coe�cients of the Fourier expansion of the solution, while, if the
solution has a non periodic profile, the infinite dimensional vector a may be the coe�cients
of the Chebyshev polynomials expansion of the solution.

An overview of the individual steps that need to be performed to rigorously compute
local charts and an atlas for the manifold M is the following.

1. The problem (1) is reduced to a finite dimensional one using a spectral Galerkin
projection. See (5) for the details of this finite dimensional projection.

2. A simplex-based multi-parameter continuation technique is performed on the finite
dimensional projection to obtain an approximate simplicial triangulation S of the
manifold. The algorithm is presented in Section 3.

3. For each simplex � 2 S, the existence of a genuine smooth local chart U� of the solution
manifold in the original infinite dimensional space is obtained. The local chart U� is
guaranteed to exist with precise and explicit bounds in the Banach space around �. In
practice, this crucial step is done by constructing the radii polynomials as defined in
Definition 2.4 and by applying Lemma 2.5. The radii polynomial approach provides an
e�cient way of verifying that a certain Newton type operator is a uniform contraction
on a thin set centered at a simplex. The construction of the polynomials is presented
in Section 2.2, and requires developing analytic estimates that control the truncation
error terms (the tail part) involved in computing the approximate simplices using a
finite dimensional projection. The analytic estimates are presented in Appendix A.

4. We demonstrate that for each � 2 S, the chart U� is smooth. This is done by verifying
the hypothesis (31) of Lemma 2.6 of Section 2.3 with interval arithmetic.

2

5. The final step is to demonstrate that the set of smooth local charts {U�}�2S forms a
global smooth atlas. This is obtained from the conclusion of Theorem 4.2. This step
is theoretical and does not require any computation. As one can see in the proof of
Theorem 4.2, the conclusion follows from the previous steps. Combining all the above,
we have a constructive proof that the set

M def
=
[

�2S
U�

is a smooth two-dimensional manifold embedded in the Banach space R2 ⇥ B1.

Let us mention that multi-parameter continuation algorithms have already been pro-
posed to compute numerical approximations for smooth manifolds implicitly defined by
finite dimensional nonlinear equations [6, 7, 8, 9, 10]. In fact, the simplex-based multi-
parameter continuation algorithm that we propose to compute the manifold is strongly
inspired by the work of [7, 8]. Although we follow the main philosophy of the algorithm
in [7, 8], we introduce several novelties that improve its robustness and make it suitable
for our purposes. The main distinguishing features of our algorithm are described in Re-
mark 3.1. The verification method based on the uniform contraction principle on each
simplex is inspired by the pseudo-arclength continuation methods introduced in [1, 11] for
smooth one-dimensional manifolds.

Remark 1.1. The reason why we opted for Brodzik and Rheinboldt’s continuation approach
will be illustrated at the beginning of Section 3. However, we point out that, in principle,
di↵erent continuation schemes could also be adapted to fit the needs of our method.

Remark 1.2. The main idea behind our method is not specific to spectral Galerkin projec-
tions. In fact, the conditions that allow the rigorous continuation of the solution manifold
(i.e. the “Y and Z bounds” (11) and (12) that appear in Lemma 2.2) are akin to the hypoth-
esis of the Newton-Kantorovich Theorem: uniform bounds on, respectively, the inverse and
the second derivative of a certain operator. These, in turn, are reminiscent of the “stability
and consistency” conditions of the Lax Equivalence Theorem. We decided to present our
method in the context of spectral Galerkin discretizations because the explicit analytic es-
timates required to control the truncation error terms (the tail part) involved in computing
on a Galerkin projection have been recently developed within the field of rigorous numerics
(e.g. see [11, 13]).

The paper is organized as follows. In Section 2, we present the rigorous method to com-
pute local smooth charts of two-dimensional manifolds implicitly defined by a C

` operator
f , with ` � 2. In Section 3, we introduce the algorithm to construct the finite dimensional
simplicial approximation of the manifold. We show in Section 4 how to combine the methods
of Section 2 and Section 3 to glue the charts and therefore construct rigorously the atlas
of the smooth manifold. In Section 5, we apply the method to rigorously compute a two-
dimensional manifold of equilibria of the Cahn-Hilliard PDE defined on a one-dimensional
spatial domain with Neumann boundary conditions. In Section 6, we conclude and present
some potential future applications, as well as extensions to the present work.

The Appendix A provides the necessary convolution estimates required to construct
the radii polynomials for the Cahn-Hilliard equation studied in Section 5. We decided to
include all formulas and proofs so that the paper is self-contained. Note, however, that these
analytic convolution estimates are taken directly from [15].

3

2 Rigorous computation of the local charts

In this section, we develop a systematic rigorous computer-assisted approach to construct
local charts for two-dimensional manifolds M ⇢

�
x 2 R2 ⇥ B1 : f(x) = 0

. More precisely,

we introduce an algorithm that provides precise bounds in the Banach space R2⇥B1 around
an approximate simplex within which a genuine smooth local chart of the manifold is rig-
orously guaranteed to exist. The bounds are obtained with the use of the radii polynomial
approach, which provides an e�cient means of determining a domain on which the uniform
contraction mapping theorem is applicable. The next section presents this approach.

2.1 The radii polynomial approach

In order to define the radii polynomials, we need to define explicitly the Banach spaces B1

and B2 on which the proofs of existence of the charts are going to be obtained. Recall
that a solution x = (p, a) of f(x) = 0 is composed of a parameter p 2 R2 and an infinite
dimensional vector a = (ak)k�0 of coe�cients of the (Fourier or Chebyshev) expansion of
the a priori unknown solution of interest. As already mentioned in Section 1, due to the
regularity of the solutions, the decay rate of the coe�cients is fast. In fact, if the targeted
solution is analytic, the decay rate of its coe�cients is faster than any algebraic decay.
Considering weights !

q
k with algebraic growth rate q defined by

!
q
k

def
=

(
1, if k = �2, �1, 0

k
q
, if k > 0,

(2)

define the norm
kakq

def
= sup

k�0
{|ak|!q

k} , (3)

which is then used to define the Banach space

⌦q = {a = (ak)k�0 : kakq < 1}. (4)

Define the spaces B1 = ⌦q and B2 = ⌦q0 for some decay rates q, q
0 2 R, and let

X
def
= R2 ⇥ ⌦q

.

Given x 2 X, denote x�2 = p1, x�1 = p2 and xk = ak, for k � 0. For x = (p, a) =
(p1, p2, a) 2 X, define a norm on X by

kxkX = sup
k��2

{|xk|!q
k} = max{|p1|, |p2|, kakq}.

Using this construction, (X, k · kX) is a Banach space. Assume that f : X ! ⌦q0 is
a C

` function. In order to construct local charts of a two-dimensional manifold M ⇢
{x 2 X : f(x) = 0}, we consider first a finite dimensional reduction of f that we denote by

f
(m) : Rm+2 ! Rm

. (5)

Essentially, f
(m) consists of keeping the first m + 2 coordinates of x and the first m com-

ponents of f . Assume that, using a Newton-like iterative method, we computed three
points x̄0, x̄1, x̄2 2 Rm+2 approximately on M, that is, f

(m)(x̄i) ⇡ 0 (i = 0, 1, 2). As-
sume also that Df

(m)(x̄i) 2 L(Rm+2
,Rm) has a two dimensional kernel, or, equivalently,

4

that it has full rank. Hence, for each i = 0, 1, 2, assume the existence of linearly indepen-
dent �

i
1, �

i
2 2 Rm+2 such that Df

(m)(x̄i)�i
j = 0 for j = 1, 2. For each i = 0, 1, 2, define

�̄i = [�i
1 �

i
2] 2 Rm+2 ⇥ Rm+2. Note that, in practice, for i = 0, 1, 2, the �

i
j ’s will be

computed such that they are mutually orthonormal vectors (we refer to Section 3.1.3 for
details about how they are computed). As a consequence of the above construction, the
plane spanned by �

i
1 and �

i
2 is the tangent plane Tx̄iM to the surface M at the point x̄i

(i = 0, 1, 2) and ✓
Df(x̄i)
�̄T

i

◆
�̄i =

✓
0
I

◆
.

Now, let
�

def
= {s = (s1, s2) | s1, s2 � 0 and s1 + s2 1}.

Assuming that x̄1 � x̄0 and x̄2 � x̄0 are linearly independent, the following is a one-to-one
parameterization of a 2-dimensional simplex � with vertices x̄0, x̄1 and x̄2:

x̄s
def
= x̄0 + s1(x̄1 � x̄0) + s2(x̄2 � x̄0), s = (s1, s2) 2 �. (6)

Formally, the simplex is defined as

�
def
=
[

s2�

{x̄s}.

For x̄s 2 Rm+2, we identify (x̄s, 01) 2 X with x̄s, where 01 is the infinite dimensional
vector with coordinates all equal to zero. Consider the interpolation of the two-dimensional
kernels �̄0, �̄1 and �̄2 defined by

�̄s
def
= �̄0 + s1(�̄1 � �̄0) + s2(�̄2 � �̄0), s = (s1, s2) 2 �. (7)

As above, depending on the context, �̄s 2 Rm+2 ⇥ Rm+2 or �̄s 2 X ⇥ X. Consider now
�̄T

s 2 L(X,R2) as a linear transformation between X and R2. Define the Banach space
W = R2 ⇥ ⌦q0 and define Fs : X ! W by

Fs(x) =

✓
�̄T

s (x � x̄s)
f(x)

◆
. (8)

Note that, for a given s 2 �, a solution x of Fs(x) = 0, if it exists, is the projection of
x̄s 2 � onto M orthogonally to �. Our goal is now to find zeros of (8). Rather than
working with (8) directly, we recast the problem as a fixed point problem, essentially given
by a Newton-like operator defined on the full Banach space X. In order to obtain such
operator, we introduce an approximate inverse for �Fs at an approximate solution. Define

F (m)
s (x) =

✓
�̄T

s (x � x̄s)
f
(m)(x)

◆
.

Essentially, F (m) : Rm+2 ! Rm+2 consists of keeping the first m + 2 coordinates of x and
the first m + 2 components of F .

Assume that, with the help of the computer, we have computed explicitly

Am ⇡
⇣
DF (m)

0 (x̄0)
⌘�1

,

a numerical inverse of DF (m)
0 (x̄0). Furthermore, assume that we have verified that Am is

invertible (this hypothesis can be rigorously verified through the use of interval arithmetic).

5

Given x 2 X, denote xF = (x�2, x�1, . . . , xm�1). Finally, define the linear operator A :
W ! X by

(Ax)k =

(
(AmxF)k, k = �2, . . . , m � 1

µ
�1
k xk, k � m,

(9)

where µk
def
= @fk

@xk
(0). We make the assumption that |µk| ! 1 as k ! 1. Note, for instance,

that this assumption is verified when the operator (1) is obtained by expanding in Fourier
series the solutions of a semi-linear parabolic PDE defined on an interval. More explicitly,
given the equation

@tu = Lu + N(u, @yu, . . . , @
n�1
y u),

where L is a linear di↵erential operator of order n in the spatial variable y and N is a
polynomial, the linear part µk in Fourier space corresponding to L dominates the nonlinear
part, and grows faster to infinity. We refer to Section 5 and to (42) for an explicit example
in the context of the fourth order Cahn-Hilliard equation. Assuming that m is taken large
enough so that |µk| > 0 for all k � m, one gets that A defined by (9) is an invertible linear
transformation.

Remark 2.1. The assumption that |µk| > 0 for all k � m may seem unecessary since
|µk| ! 1 as k ! 1. However, for a given parameter dependent problem, it is possible that
the linear part µk = µk(�) depends on a parameter �, and that for every k, there exists
�k such that µk(�k) = 0, with �k ! 1 as k ! 1. That is the case for instance for the
Cahn-Hilliard equation considered in Section 5, where µk(�) = 1 � ⇡

2
k
2
/�. In this case,

�k = ⇡
2
k
2. Hence, for a fixed parameter value �, we have to choose m large enough so that

µk(�) 6= 0, for all k � m.

The idea behind the choice of operator (9) is that for large enough projection dimension
m, one should have that A ⇡ DF0(x̄0)�1. Indeed, since we know a priori that the coe�cients
of the (Fourier or Chebyshev) expansion of the bounded solutions of interest decay fast, the
o↵-diagonal terms in DF0(x̄0) of the form @fk

@xl
should rapidly go to zero as |k � l| grows.

Since |µk| ! 1 as k ! 1, the operator DF0(x̄0) should be asymptotically diagonally
dominant. Hence, at least in principle, the larger m is, the better A is as an approximation
of DF0(x̄0)�1. Using the approximate inverse A given by (9), define Ts : X ! X by

Ts(x) = x � AFs(x). (10)

Denote the closed ball of radius r centered at x̄s in X by Bx̄s(r) = x̄s + B(r), where

B(r) =
�
x 2 X : kxkX r

=

1Y

k=�2

� r

!
q
k

,
r

!
q
k

�
= [�r, r]3 ⇥

1Y

k=1

h
� r

kq
,

r

kq

i

is the closed ball of radius r centered at 0 in X. The idea is to introduce the radii polynomials
to find (if possible) a uniform positive radius r so that for every s 2 �, Ts : Bx̄s(r) ! Bx̄s(r)
is a contraction. If such positive radius exists, then the operator eT : � ⇥ B(r) ! B(r)
defined by eT (s, y) = Ts(y + x̄s) � x̄s is a uniform contraction. The Uniform Contraction
Principle then yields a local chart within precise bounds given in terms of the radius r. The
smoothness of the chart itself is a separate issue, and is dealt with later on in Section 2.3.

Recall the notation x�2 = p1, x�1 = p2 and xk = ak for k � 0. Similarly, [Fs(x)]�2 =
[�̄T

s (x� x̄s)]1, [Fs(x)]�1 = [�̄T
s (x� x̄s)]2 and [Fs(x)]k = fk(x) for k � 0. Define the uniform

bounds Y = (Yk)k��2 and Z = Z(r) = (Zk)k��2 satisfying
���[Ts(x̄s) � x̄s]k

��� Yk, 8 s 2 �, (11)

6

and
sup

b1,b22B(r)

���[DTs(x̄s + b1)b2]k
��� Zk(r), 8 s 2 �. (12)

Lemma 2.2. Consider s 2 �. If there exists an r > 0 such that kY + ZkX < r, with Y

and Z satisfying (11) and (12), respectively, then Ts is a contraction mapping on Bx̄s(r)
with contraction constant at most kZkX/r < 1. Furthermore, there is a unique C

`
function

s 2 � 7! x̃(s) 2 Bx̄s(r) such that Fs(x̃(s)) = 0, and x̃(s) lies in the interior of Bx̄s(r) for

all s 2 �.

Proof. Fix an s 2 � and consider x, y 2 Bx̄s(r) such that x 6= y. For sake of simplicity of
the presentation, denote Ts by T . For any k � �2, the Mean Value Theorem implies

Tk(x) � Tk(y) = DTk(z)(x � y)

for some z = z(k) 2 {tx + (1 � t)y : t 2 [0, 1]} ⇢ Bx̄s(r). Note that r(x�y)
kx�ykX

2 B(r). Thus

from (12),

|Tk(x) � Tk(y)| =
����DTk(z)

r(x � y)

kx � ykX

����
1

r
kx � ykX Zk(r)

r
kx � ykX , (13)

and then

kT (x) � T (y)kX kZ(r)kX
r

kx � ykX .

Now, combining (12) and (13), one gets that |Tk(x)�Tk(x̄s)| Zk(r). Triangular inequality
yelds

|Tk(x) � (x̄s)k| |Tk(x) � Tk(x̄s)| + |Tk(x̄s) � (x̄s)k| Zk(r) + Yk.

Therefore for any x 2 Bx̄s(r),

kT (x)� x̄skX = sup
k��2

{|Tk(x)�(x̄s)k|!q
k} sup

k��2
{|Yk+Zk(r)|!q

k} = kY +Z(r)kX < r. (14)

This proves that T (Bx̄s(r)) ⇢ Bx̄s(r). We can conclude that T : Bx̄s(r) ! Bx̄s(r) is a
contraction with contraction constant

def
=

kZ(r)kX
r

< 1. (15)

Application of the Contraction Mapping Theorem on the Banach space Bx̄s(r) gives the
existence and uniqueness of a solution x̃(s) of the equation Ts(x̃(s)) = x̃(s) in Bx̄s(r), and
therefore of Fs(x̃(s)) = 0. From (14) we get that x̃(s) is in the interior of Bx̄s(r). As in
Lemma 5 in [1], the operator eT : � ⇥ B(r) ! B(r) defined by

eT (s, y) = Ts(y + x̄s) � x̄s

is a uniform contraction on �. Since Fs 2 C
` (X, W), we have eT 2 C

` (� ⇥ B(r), B(r)).
By the Uniform Contraction Principle (e.g. see [14]), x̃(s) is a C

` function of s 2 �.

Remark 2.3 (The computation of the Y and Z bounds). While, in practice, the
Y bounds satisfying (11) can be obtained using interval arithmetic, the computation of
the bound Z satisfying (12) is more delicate. In fact, the bound Z can be obtained as
a polynomial bound in the variable radius r. More explicitly, the computation of the Z

bound requires expanding each component of DTs(x̄s + b1)b2 for all b1, b2 2 B0(r). This is

7

equivalent to expanding each component of DTs(x̄s + b̃1r)b̃2r for all b̃1, b̃2 2 B0(1). If the
nonlinearities of the original di↵erential equation are polynomials of order less than or equal
to n, then the operator f will consists of discrete convolutions with power at most n. Since
Ts(x) = x�AFs(x) and DTs(x̄s+ b̃1r)b̃2r, then each component of DTs(x̄s+ b̃1r)b̃2r can be
expanded as a polynomial of order n in r. While this computation can be performed using
Taylor expansions, obtaining the sharpest bounds is still problem dependent and we refer to
Section 5 for an explicit example. More generally, in the problem definition of Section 1, we
assumed that the operator f is twice Fréchet di↵erentiable, which insures that the Taylor
expansion of DTs(x̄s + b̃1r)b̃2r will yield a quadratic polynomial in r.

Verifying in practice the hypotheses of Lemma 2.2 can be delicate. This is why we
introduce the radii polynomials, which provide an e�cient way to determine (when possible)
the existence of a positive radius r such that the hypotheses of Lemma 2.2 are satisfied.

Before introducing the polynomials, we make two assumptions. Assume that there exists
a number M � m, where m is the dimension of the finite dimensional projection f

(m), such
that the bounds Y and Z satisfying (11) and (12) are such that

A1. Yk = 0 for all k � M .

A2. There exists a uniform polynomial bound Z̃M (r) such that, for all k � M ,

Zk(r) Z̃M (r)

!
q
k

. (16)

Before introducing the radii polynomials, let us make a few comments on assumptions
A1 and A2. If equation (1) comes from a problem involving polynomial nonlinearities,
then the nonlinear terms in (1) are convolutions sums of the form [ā(j1) ⇤ ā

(j2) ⇤ · · · ⇤ ā
(j`)]k

which are eventually equal to zero for large enough k since āk = 0 for k � m. Hence, by
construction of A defined in (9), and of the bound Y as in (11), there exists M such that
Yk can be defined to be 0 for k � M . Now, there are some analytic convolution estimates
(e.g. the ones developed in [11, 13, 15]) that allow computing Z̃M (r) satisfying (16). These
explicit estimates essentially follow from the fact that the Banach space ⌦q given in (4) is
an algebra under discrete convolutions. The computation of the uniform polynomial bound
Z̃M (r) is presented explicitly in the example of Section 5. We are now ready to define the
radii polynomials.

Definition 2.4. Recall (11), (12) and (16). We define the finite radii polynomials (pk(r))
M�1
k��2

by

pk(r) = Yk + Zk(r) � r

!
q
k

, k = �2, . . . , M � 1, (17)

and the tail radii polynomial by

pM (r) = Z̃M (r) � r. (18)

The following result justifies the construction of the radii polynomials of Definition 2.4.

Lemma 2.5. If there exists r > 0 such that pk(r) < 0 for all k = �2, . . . , M , then there is

a unique C
`
function x̃ : � ! Bx̄s(r) : s 7! x̃(s) such that Fs(x̃(s)) = 0, and x̃(s) lies in

the interior of Bx̄s(r) for all s 2 �.

Proof. For �2 k < M , notice that pk(r) < 0 implies that

!
q
k

��Yk + Zk(r)
�� < r.

8

For k � M , since Yk = 0 and pM (r) < 0, we get that

!
q
k

��Yk + Zk(r)
�� = !

q
kZk(r) = Z̃M (r) < r.

Therefore we have
kY + ZkX = sup

k��2
!
q
k

��Yk + Zk(r)
�� < r.

The result then follows from Lemma 2.2.

2.2 Construction of the bounds required for the radii polynomials

Recall the assumption that f : R2 ⇥ B1 ! B2 is assumed to be twice Fréchet di↵erentiable,
that is f 2 C

`(R2 ⇥ B1, B2), with ` � 1.
While the explicit construction of the radii polynomials is problem dependent, we present

a general way to construct them. For a more detailed example, we refer to Section 5, where
the radii polynomials are explicitly defined and used to construct two-dimensional manifolds
of equilibria of the Cahn-Hilliard equation. To compute Y = (Yk)k��2 satisfying (11), we
expand

Ts(x̄s) � x̄s = �A

✓
0

f(x̄s)

◆

as a polynomial in the variables s1 and s2 by using a Taylor expansion of order nY with
2 nY `. For each i, j � 0 such that 2 i + j nY and for each k � 0, consider

y
(i,j)
k = y

(i,j)
k (x̄0, x̄1, x̄2) such that

fk(x̄s) = fk(x̄0) + s1[fx(x̄0)(x̄1 � x̄0)]k + s2[fx(x̄0)(x̄2 � x̄0)]k +
X

2i+jnY
i,j�0

y
(i,j)
k s

i
1s

j
2. (19)

From this, and using the fact that |s1|, |s2| 1 for all s = (s1, s2) 2 �, consider bounds

Y
(i,j)
k such that |y(i,j)

k | Y
(i,j)
k . Therefore, set YF = (Y�2, Y�1, . . . , Ym�1) to be

YF = |Am|

0

BB@|fF (x̄0)| + |[fx(x̄0)(x̄1 � x̄0)]F | + |[fx(x̄0)(x̄2 � x̄0)]F | +
X

2i+jnY
i,j�0

Y
(i,j)
F

1

CCA . (20)

From assumption A1, Yk = 0 for all k � M , for some M � m. For more details on the
existence of such M , we refer to the example in Section 5. For m k M � 1, set

Yk =
1

|µk|

0

BB@|fk(x̄0)| + |[fx(x̄0)(x̄1 � x̄0)]F | + |[fx(x̄0)(x̄2 � x̄0)]F | +
X

2i+jnY
i,j�0

Y
(i,j)
k

1

CCA . (21)

As already mentioned in Remark 2.3, if the nonlinearities of the original problem are
polynomials, then the nonlinearities of f will be discrete convolutions. In this case, all terms
in (20) and (21) will be finite sums that can be evaluated using interval arithmetic.

We now turn to the computation of Z(r) = (Zk(r))k��2 satisfying (12). To simplify the
computation, define the linear operator A

† : X ! W by

(A†
x)k

def
=

8
<

:

h
DF (m)

0 (x̄0)xF

i

k
, if � 2 k m � 1

µkxk, if k � m.

9

Consider b1, b2 2 B(r) and expand

DTs(x̄s + b1)b2 = [I � A DFs(x̄s + b1)]b2

= [I � AA
†]b2 � A[DFs(x̄s + b1)b2 � A

†
b2],

where the first term is expected to be small, provided that Am is a good approximate inverse

for DF (m)
0 (x̄0). The idea is to compute a Taylor expansion of the other term DFs(x̄s +

b1)b2 � A
†
b2 in the variables s1, s2 and r. Choose a Taylor expansion of order nZ with

2 nZ `. Let b1 = (p(1)1 , p
(1)
2 , a

(1)) and b2 = (p(2)1 , p
(2)
2 , a

(2)). Consider b̃1, b̃2 2 B(1) such

that b1 = b̃1r and b2 = b̃2r, and denote b̃1 = (p̃(1)1 , p̃
(1)
2 , ã

(1)) and b̃2 = (p̃(2)1 , p̃
(2)
2 , ã

(2)). Then,

consider z
(`,i,j)
k = z

(`,i,j)
k (b̃1, b̃2, x̄0, x̄1, x̄2, �̄0, �̄1, �̄2) such that

[DF(x̄s + b1)b2 � A
†
b2]k = [DF(x̄s + b̃1r)b̃2r � A

†
b̃2r]k

=
nZX

`=1

0

@
(nZ+1�`)X

i=0

(nZ+1�`�i)X

j=0

z
(`,i,j)
k s

i
1s

j
2

1

A r
`
. (22)

Using the fact that for s = (s1, s2) 2 �, |s1|, |s2| 1 and |(b̃1)k|, |(b̃1)k| !
�q
k , consider

bounds Z
(`)
k = Z

(`)
k (x̄0, x̄1, x̄2, �̄0, �̄1, �̄2) such that

������

(nZ+1�`)X

i=0

(nZ+1�`�i)X

j=0

z
(`,i,j)
k s

i
1s

j
2

������
 Z

(`)
k . (23)

Then set ZF (r) = (Z�2(r), . . . , Zm�1(r)) to be

ZF (r) =
⇣���I � AmDF (m)

0 (x̄0)
���!�q

F

⌘
r +

nZX

`=1

|Am|Z(`)
F r

`
. (24)

From assumption A2 there exists a uniform polynomial bound Z̃M (r) such that, for all
k � M , (16) is satisfied. For more details on the existence of such bound for an explicit
problem, we refer to the example in Section 5. For m k M � 1, set

Zk(r) =
nZX

`=1

1

|µk|
Z

(`)
k r

`
. (25)

Combining (20), (21), (24) and (25), we have all ingredients to construct the finite radii
polynomials (16) from Definition 2.4.

We refer to Remark 2.3 for a comment about the computation of the Z bounds in general.

This being said, even though the computation of the z
(`,i,j)
k and Z

`
k satisfying (22) and (23) is

problem dependent and presented only in the example of Section 5, let us compute explicitly

z
(1,1,0)
k , z

(1,0,1)
k and Z

(1)
k , for k 2 {�2, �1}.

2.2.1 Computation of Z(1)
k , for k 2 {�2,�1}.

Letting k
def
= (�2, �1), note that

[DF(x̄s + b̃1r)b̃2r � A
†
b̃2r]k = s1

�
�̄1 � �̄0

�T
(b̃2)F r + s2

�
�̄2 � �̄0

�T
(b̃2)F r.

10

Therefore,

z
(1,1,0)
k =

�
�̄1 � �̄0

�T
(b̃2)F and z

(1,0,1)
k =

�
�̄2 � �̄0

�T
(b̃2)F ,

so that we can set the bound Z
(1)
k 2 R2

+ to be

Z
(1)
k =

���
�
�̄1 � �̄0

�T ���!�q
F +

���
�
�̄2 � �̄0

�T ���!�q
F , (26)

where !
�q
F

def
= (1, 1, 1, 1, 1

2q ,
1
3q , . . . ,

1
(m�1)q) 2 Rm+2.

2.3 Smoothness of the local chart

Suppose that we have computed numerical approximations x̄0, x̄1 and x̄2 corresponding to
the simplex

�
def
=
[

s2�

{x̄s} ⇢ X.

Assume also that the hypotheses of Lemma 2.5 have been verified, yielding the existence of
a set

⌃
def
=
[

s2�

Bx̄s(r) ⇢ X

centered at the simplex �, and containing a genuine solution chart x̃(�) ⇢ ⌃ ⇢ X, where
x̃ is a C

` function such that Fs(x̃(s)) = 0 for every s 2 �. We want to show that the
local chart x̃(�) is C

` smooth. For this we show that x̃ is a C
` di↵eomorphism. Since

Fs(x̃(s)) = 0 we get, in particular, that �̄T
s (x̃(s) � x̄s) = 0 for every s 2 �. We have that

@

@s1

�
�̄T

s (x̃(s) � x̄s)
�

=
@�̄T

s

@s1
(x̃(s) � x̄s) + �̄T

s
@

@s1
(x̃(s) � x̄s)

= (�1 � �0)
T (x̃(s) � x̄s) + �̄T

s

✓
@x̃

@s1
� (x̄1 � x̄0)

◆
= 0.

Hence,

�̄T
s

@x̃

@s1
(s) = �̄T

s (x̄1 � x̄0) � (�̄1 � �̄0)
T (x̃(s) � x̄s). (27)

Similarly,

�̄T
s

@x̃

@s2
(s) = �̄T

s (x̄2 � x̄0) � (�̄2 � �̄0)
T (x̃(s) � x̄s). (28)

Define the matrix function G : � ! R2⇥2 by

G(s) =
✓
�̄T

s
@x̃

@s1
(s) �̄T

s
@x̃

@s2
(s)

◆
. (29)

The next result relates the fact that det(G) is non-vanishing on � to the smoothness of the
local chart x̃ obtained from Lemma 2.5. Before, given any " > 0, define the set �" to be
the "-neighbourhood of �, i.e.

�"
def
= {s = (s1, s2) | s1, s2 � �" and s1 + s2 1 + "}. (30)

Note that for any " � 0, � ⇢ �".

11

Lemma 2.6. Let ` � 1. Suppose that the hypotheses of Lemma 2.5 are satisfied, yielding

the existence of a C
`
function x̃ : � ! X such that Fs(x̃(s)) = 0, for all s 2 �. Recall the

definition of G in (29). If

det(G(s)) 6= 0, for all s 2 �, (31)

there exists " > 0 such that x̃ : �" ! x̃(�") is a C
`
di↵eomorphism, with �" as in (30).

Proof. By construction of the radii polynomials, there exists "1 > 0 such that the map
x̃ extends to a C

` function on �"1 . Now, x̃ 2 C
`(�) implies that det(G) : � ! R is

continuous. Hence, since det(G) 6= 0 on �, there exists " 2 (0, "1) such that det(G(s)) 6= 0
for every s 2 �" ⇢ �"1 . Hence, x̃ : �" ! x̃(�") is a C

` function. Since det(G) 6= 0 on �",
@x̃
@s1

and @x̃
@s2

are two linearly independent non trivial vectors in X. Hence, for any s0 2 �",
the operator

dx̃

ds
(s0) =

@x̃

@s1
(s0)

@x̃

@s2
(s0)

�
(32)

is a bounded linear isomorphism of �" onto dx̃
ds (s0)(�"). Then, by the Inverse Function

Theorem, there exists an open neighbourhood Vs0 of x̃(s0) in dx̃
ds (s0)(�") ⇢ X and a local

C
` inverse function x̃

�1
s0 : Vs0 ! �" such that x̃

�1
s0 � x̃ is the identity on Vs0 . Since,

x̃(�") ⇢ [s02�"Vs0 , we can define a C
` inverse function x̃

�1 : x̃(�") ! �".

Having computed a simplex � given by three numerical approximations x̄0, x̄1, x̄2 and
their respective kernels �̄0, �̄1, �̄2, the rigorous computation of a local smooth chart of the
manifold goes as follows: compute the radii polynomials using interval arithmetic, verify the
hypotheses of Lemma 2.5 and finally verify the smoothness hypothesis (31) with interval
arithmetic. We will refer to this procedure as “rigorous verification” (or simply “verifi-
cation”) of the simplex �. Section 3 shows how we compute a simplicial approximation
(triangulation) of the implicitly defined manifold. Then, the results in Section 4 yield an
atlas which shows that what we actually computed is a smooth C

` manifold.

3 Multi-parameter continuation algorithm

As already mentioned, our method relies on the ability to compute a simplicial approxi-
mation (triangulation) of a portion of a two-dimensional manifold implicitly defined by an
infinite dimensional nonlinear equation on X. In order to carry out the computations, a
finite dimensional projection must first be considered. This means that, in practice, we need
to compute a triangulation of a manifold M embedded in Rn:

M ⇢ {x 2 Rn : F (x) = 0, with F : Rn ! Rn�2},

where we typically think of F as being one realization of the map f
(m) defined in Section 2,

for some m 2 N. For sake of simplicity of the presentation, we use the same notation M to
denote the manifold embedded in Rn and the manifold embedded in the infinite dimensional
Banach space X. In addition to that, when describing the algorithm for the numerical
computation of a simplicial approximation of M, we will not distinguish between rigorous
mathematical statements and statements that are only “numerically true”. For example,
we may write x 2 M, but mean that we numerically compute x to be approximately in M.

There is a considerable amount of literature devoted to the numerical continuation of
multidimensional manifolds implicitly defined by nonlinear equations. The methods that
have been proposed essentially fall into two classes: simplicial methods (e.g. see [10] and
references therein) and predictor-corrector methods (see [6, 7, 8, 16]). Predictor-corrector

12

methods show more favorable computational complexity in the case of low dimensional man-
ifolds embedded in a high dimensional space, which is the case of interest for us. Moreover,
they are more prone to the implementation of adaptive strategies based on local proper-
ties of the manifold. From our standpoint, the main feature that distinguishes among the
predictor-corrector methods cited above is how the manifold is represented. In [6], the man-
ifold is represented as a set of overlapping neighborhoods, each defined through a chart, a
center point, basis for the tangent space at the center point, and other relevant data. A
triangulation of the manifold can be constructed a posteriori by appropriately connecting
the center points of the neighborhoods, but this does not allow for adaptive construction
of the triangulation. In [7, 8, 16] the manifold is represented as a database of nodes and
simplices. The database is progressively built by adding one simplex at a time. This does
allow for appropriate evaluation of each simplex before it is actually added to the database,
which will be an essential feature of the method we propose (see Section 3.1.3).

For these reasons, we decided to build our algorithm upon the one proposed by Brodzik
and Rheinboldt in [8]. Even though the main philosophy of their algorithm is essentially
intact, yet we introduce several novelties that improve its robustness and make it suitable
for our purpose, as described in the remark below.

Remark 3.1. The main di↵erences between our approach and the one from Brodzik and
Rheinboldt in [8] are: (1) adaptive step-size selection based on the outcome of the verification
test; (2) check for non-local overlap of simplices; (3) a sorting rule on the “frontal nodes”
aimed at limiting the computational complexity of the aforementioned check; (4) simplicial
neighborhoods allowed to have more than six simplices.

We now give a general description and some implementation details of the algorithm we
use to perform our task, putting particular emphasis on the novelties while passing over
some implementation details, for which we refer the reader to [8].

3.1 Description of the algorithm

Under suitable assumptions on DF , the solution set {x 2 Rn : F (x) = 0} is a (collection
of) smooth manifold(s). We are interested in computing a triangulation of the portion of
the solution set that lies inside a given bounded region B of Rn.

3.1.1 Constructing the first patch

As is typical of all continuation techniques, the algorithm starts o↵ by considering an initial,
user supplied, node x0 2 M \ B, and then proceeds to explore the manifold from there.
An initial regular hexagonal neighborhood centered at x0 on the tangent plane Tx0M is
considered, where each vertex vi, i = 1, . . . , 6, of the hexagon is taken at a user supplied
distance h0 from x0. Each of the six vertices of the hexagon is then projected onto M
orthogonally to Tx0M, see Figure 1. The projection is done via a stationary Gauss-Newton
method. For x

(0) = v1, . . . , v6, we iterate

x
(k+1) = x

(k) � DF (x0)
+
F (x(k)), k = 0, 1, . . . (33)

until convergence, where DF (x0)+ = DF (x0)T
�
DF (x0)DF (x0)T

��1
is the Moore-Penrose

pseudoinverse of DF (x0). Details and convergence properties of Gauss-Newton’s method
are in [17]. We declare successful convergence when

���x(k+1) � x
(k)
��� < tol

⇣
1 +

���x(0)
���
⌘

13

within a prescribed number iterations. In all of our computations, we have chosen tol =
10�12. The implementation follows closely the one adopted in [8] and [16]. Let

DF (x0)
T =

⇥
Q1 Q2

⇤ R
0

�
(34)

be a QR factorization of DF (x0)T , with Q1 2 Rn⇥(n�2) and Q2 2 Rn⇥2 having mutually
orthonormal columns, and R 2 R(n�2)⇥(n�2) being upper triangular. As already mentioned
in Section 2, DF (·) will always be assumed to be full rank at each computed node on M.
In particular, DF (x0) is full rank, which implies that R is invertible. Then the iterations
(33) are implemented as follows:

solve Rz
(k) = F (x(k)), set x

(k+1) = x
(k) � Q1z

(k)
, k = 0, 1, . . . (35)

Note that the columns of Q2 form an orthonormal basis for ker(DF (x0)), which spans
Tx0M. This also justifies the assertion that the iterates in (35) proceed in the direction
perpendicular to Tx0M. The computation of the decomposition in (34) will be our only
source of orthonormal bases for tangent spaces.

If projection fails for a vertex vi, its distance from x0 is reduced by a fixed factor ⌧ > 1
(i.e. h is replaced by h/⌧) and projection is reattempted until convergence is successful or
a minimum distance hmin is reached. In all our computations, we have set ⌧ = 1.2.

Assuming successful convergence for all the six vertices, six simplices and six new nodes
have been computed. Before they are added to the database, each simplex needs to be
checked for verification as specified in Section 3.1.3. If verification fails, the two edges of the
simplex that are connected to x0 are shortened again by ⌧ and the test is reattempted until
it is successful or hmin is reached. Assuming successful outcome of the test on each simplex,
the simplices are added to the database and declared verified by setting an appropriate
flag to true, see Section 3.1.6. Upon being added to the database, each node is marked
as interior if it belongs to B, exterior otherwise. Among interior nodes, those that lie on
the boundary of the portion of M that still needs to be explored are marked as frontal.
Simplices that are incident to a frontal node will also be referred to as frontal.

At this stage the database contains six simplices and seven nodes, and, typically, all
nodes except x0 are expected to be frontal. The six simplices constitute the first patch1 of
the triangulation. The algorithm now proceeds via an advancing front technique.

x0
Tx0

M

Figure 1: First patch.

1
By “patch centered at x” we mean the neighborhood of simplices adjacent to x.

14

3.1.2 Advancing the front

Let Q be the (non-empty) set of all frontal nodes at a given stage. The algorithm will now
select a node in Q according to a given sorting rule (we will elaborate on this in Section
3.1.4), and attempt to complete its patch. Suppose that the frontal node xc is picked. The
algorithm will now try to fill in the patch centered at xc with the missing simplices.

First, the existing simplices that are adjacent to xc are projected orthogonally on the
tangent plane TxcM. To do so, we compute the QR factorization of DF (xc) as in (34), and
then project their incident nodes on TxcM using the orthogonal projector P = Q2Q

T
2 . Then

the gap angle � is computed. The gap angle � is defined as the “exterior” angle, on TxcM,
formed by the two (projected) extremal edges of the incomplete patch, see Figure 2a. To
compute it, we used the algorithm described in [7].

If the gap angle is too small (i.e., below a user defined threshold �min) the two extremal
simplices of the patch are glued together by “identifying” their closer edges. Let e1 =
{xc, x1} and e2 = {xc, x2} be the two edges under consideration. In practice, this operation
is performed by simply projecting on M the point x̄ = 1

2 (x1+x2), identifying x1 and x2 with
x̄, and appropriately updating the adjacency relations in the database. Since this operation
modifies one node for each of the simplices involved, the corresponding verification flags are
set to false. In all our experiments, we set �min = ⇡/6.

Assume � is above �min. The number k of new simplices that need to be added to
complete the patch centered at xc is determined as follows:

k = min

⇢
1,

�

⇡/3

��
, (36)

with the added requirement that the total number of simplices that compose a patch cannot
exceed a prescribed number (which we chose equal to ten). Here [y] denotes the nearest
integer to y. Note that, through the use of formula (36), we aim at simplices whose angle
adjacent to xc is as close as possible to ⇡/3.

Suppose k > 1. This means that k � 1 new nodes need to be computed to complete the
patch. We consider the k �1 half-lines on TxcM that divide � into k equal parts, see Figure
2a. Along each direction, we form the predictors x

pred
i , 1 i k �1, at distance h from xc.

The step-size h is chosen as follows: it is the length of the shorter edge adjacent to xc already
in the database, multiplied by the factor ⌧ . All the predictors are consecutively projected
onto M via the same method described in Section 3.1.1. If a projection fails, the step-size h

is reduced by the factor ⌧ (again, just as in Section 3.1.1) and projection is reattempted for
all the predictors, until convergence is successful or hmin is reached. Assuming all projections
are successful with the common step-size h, let xi, 1 i k � 1, be the projected points.
These are, potentially, the k�1 new nodes that identify the k missing simplices. Whether or
not they will be incorporated into the database depends on the outcome of the verification.
Each of these simplices is checked for verification. If verification is successful, we proceed
to the next stage. If verification fails on a simplex, the simplex is rejected. The two edges
of the rejected simplex that are incident to xc are “shortened” again by ⌧ , and verification
is reattempted until it is successful or hmin is reached. Note that shortening of an edge
is performed keeping the node xc fixed; this causes the other node incident to the edge to
detach from M, and triggers its re-projection onto M. If any previously verified simplex
was altered (i.e., one of its nodes was modified), the corresponding verification flag is set to
false.

If k = 1, there is no need to compute new nodes. The simplex identified by the two
extremal edges of the incomplete patch will complete the patch. If it passes verification, we
proceed to the next stage. In case it fails, the simplex is handled just as described above.

15

x
pred
1

x
pred
2

xc

gap angle

(a) Computation of the predictors. (b) Patch completed.

Figure 2: Advancing the front: general step. Frontal simplices are colored in red. Incomplete
patches centered at priority frontal nodes are colored in yellow.

Assuming successful verification, each simplex is checked for overlap with any of the
currently frontal simplices (see Section 3.1.5). The current version of the algorithm halts if
overlap is detected. Correct handling of this situation is ongoing work, and we anticipate it
will be a feature of a next version.

Finally, having ruled out overlap, all newly created simplices and nodes are added to the
database, with all simplices flagged as verified. Nodes are declared interior/exterior/frontal
as specified in Section 3.1.1.

We recall that we heuristically set ⌧ = 1.2. In our experiments, this choice produced a
nearly optimal balance between two goals: minimizing the number of rejections and maxi-
mizing the average surface area of a simplex.

The simplices (if any) that, during the process described above, had their verification flag
set to false (due to alteration of one of their nodes) undergo the verification test again. In
case the verification test fails, we split the simplex in four new sub-simplices by appropriately
connecting the nodes of the original simplex and the mid-points of its edges (see Figure 3),
and then apply the verification test to each one of these new simplices. This is done only at
the level of the simplex, that is, the mid-points are not projected to the manifold. In case
the verification for some of these sub-simplices fails, any failing sub-simplex undergoes the
splitting process again. The process is repeated until either all the sub-simplices are verified
or a maximum number of subdivisions is reached. If the verification is successful before
the maximum number of subdivisions allowed is reached, the original simplex is declared
as verified and the sub-simplices are discarded. If the maximum number of subdivision is
reached the computation is halted.

Remark 3.2 (Reasons why the splitting process may fail). It is important to remark
that we assume that the solution manifold is regular as described in the Problem Definition
in Section 1. Recall that this assumption is that for all x 2 M, the linear operator Df(x) :
R2 ⇥ B1 ! B2 has a bounded inverse. However, in practice, we may not know a priori that
the manifold is regular, and therefore, the verification could fail because one of the following
two situations occurs.

1. The manifold M is regular over a given simplex � 2 S, but it varies too much over �.
In this case, with a large enough number of subdivisions we will be able to verify the
manifold.

16

2. There is a singular point in the manifold over a given simplex � 2 S. In this situation,
the splitting process will fail regardless of how many subdivisions of � we take.

Figure 3: Splitting of a simplex.

In our experiments, successful verification of a simplex turned out to be a much stricter
requirement than successful projection of predictors, so much that we can assert that, in
practice, the step-size selection strategy of our algorithm is solely driven by the verification.

3.1.3 Verification of a simplex

Let S = {x1, x2, x3} be a newly computed simplex. Before adding it to the database, we
need to rigorously verify, using interval arithmetic, the hypothesis of Lemmata 2.5 and 2.6.
We refer to this procedure as rigorous verification (or simply verification), which is a test
providing precise bounds in the Banach space X around an approximate simplex within
which a genuine smooth local chart of the manifold is rigorously guaranteed to exist. We
refer to Section 2 for details. In order to carry out the verification, the matrices �̄i 2 Rn⇥2,
i = 1, 2, 3, introduced in Section 2, need to be available; we recall that each �̄i 2 Rn⇥2

must have orthonormal columns that span the kernel of DF (xi). In practice, each matrix
is computed as follows.

Let �ref be a matrix whose columns form an orthonormal basis for Tx0M, where we recall
that x0 is the first node considered on the triangulation. First, an orthonormal basis �

i
1, �

i
2

for DF (xi) is computed through the decomposition in (34). Let �i = [�i
1, �

i
2]. Then, �i

is “rotated” as close as possible to �ref through the “moving frame” algorithm adopted by
Rheinboldt in [16], which renders a matrix Q 2 R2⇥2, Q

T
Q = I, such that k�iQ � �refkF is

minimized, where k·kF denotes the Frobenius norm of a matrix. Finally, we set �̄i = �iQ.
Of course, we only run this procedure if xi was a newly computed node, not yet in the
database. Otherwise, we simply obtain the frame from the database, see Section 3.1.6.

As proved in [16], as far as the range of �ref induces a coordinate system on the portion
of M under interest, this procedure is guaranteed to produce frames �̄i that vary smoothly
with respect to the node xi. Motivation for using this procedure comes solely from the aim
to limit the magnitude of the first two coe�cients in Table 4, and therefore increase the
chances of successful verification of a simplex.

3.1.4 Sorting the queue of frontal simplices

The way the queue of frontal nodes is visited is critical to the complexity of the procedure
described in Section 3.1.5, which grows proportionally to the number of frontal simplices.

17

This consideration has lead us to implement the sorting strategy that is described below.
Upon completion of a new patch (with the exemption of the first patch), we compute the

gap angle at the two “extremal” new frontal nodes, i.e. those that also belong to a simplex
external to the patch. If the gap angle is below a given threshold �prio, the corresponding
node is declared a priority node and the computed gap angle is saved in the database. In
all our computations, we have chosen �prio = 5⇡/6, which is equivalent to giving priority
to nodes whose completion of the patch needs two or less simplices. See Figure 2b. When
picking a new node from the set Q of frontal nodes, precedence is given to priority nodes.
In case there are more than one priority nodes, we pick first the node that has the smallest
gap angle.

Besides limiting the size of the set of frontal simplices, this strategy has proven success-
ful also in growing the triangulation, loosely speaking, in a convex fashion, avoiding the
formation of “tentacles” that may cause artificial overlaps.

3.1.5 Checking for overlap

Before adding a newly created simplex to the database, one needs to verify that it does not
overlap with the portion of manifold that has already been triangulated. Failure to do so
may cause the algorithm to cover the same portion of the manifold more than once, and
even enter an infinite loop.

To detect this situation we have implemented a procedure based on the Separation
Theorem for convex sets [18]: any two disjoint compact convex sets in Rn are strictly
separated by a hyperplane. In particular, any two non-overlapping triangles on the plane
are separated by a line. It is easy to see that, in order to check whether two given triangles
on the plane overlap, it is enough to test each of the six lines that contain an edge of one
triangle as follows: if any of those lines separates the vertex that belongs to the same triangle
from the three vertices that belong to the other, then the triangles do not overlap; if this
separation test fails for all the six lines, the triangles do overlap.

Our strategy to check for overlap of two simplices is an adaptation of the idea described
above to our context. Given two simplices T1 and T2, we perform the following separation

test :

1. (a) project T2 orthogonally on the 2-dimensional plane H determined by T1; Call T̃2

the projected simplex;

(b) for each line l ⇢ H that contains an edge of T1, check whether l separates the
vertex of T1 exterior to l from all the vertices of T̃2; in practice, the check is
performed projecting each vertex on a line (separating axis) l

? ⇢ H perpendicular
to l, see Figure 4; if l separates T1 and T̃2, declare T1 and T2 not overlapping and
leave the test;

2. repeat part 1. exchanging the roles of T1 and T2;

3. if parts 1. and 2. have not revealed the existence of a separating line, declare T1 and
T2 overlapping.

Before being added to the database of simplices, each newly created (and verified) sim-
plex is checked for overlap against all the frontal simplices currently in the database. It
is enough to consider only frontal simplices, as intersection with a non-frontal simplex is
ruled out by successful outcome of the verification. The separation test may produce false
negatives: clearly, the fact that T1 and T̃2 overlap does not necessarily imply that T1 and
T2 do so. In order to reinforce the test, we do as follows. In case of lack of separating line, a

18

proximity check is also performed: T1 and T2 are declared not-overlapping if their distance
is larger then 10 times the length of the longest edge.

l⊥

l

T1
T̃2

Figure 4: Separation test; the two triangles are intended to lie on the plane H.

3.1.6 The database

The database is made of two structure arrays, named node and simplex. Each array consists
of several cell arrays that contain the relevant data of the triangulation, as shown in the
Tables 1 and 2. The k-th element of each array contains data that are relevant to the k-th
node, or simplex.

name content
node.coord coordinates (n-dimensional column vector)
node.type node type; it’s an integer k that indicates one of the

following: interior (k = 0, 1), exterior (k = 2), frontal
without priority (k = �1), frontal with priority (k =
�2)

node.simplex indices of incident simplices
node.frame orthonormal basis for the tangent space (n ⇥ 2 matrix

with mutually orthonormal columns)
node.gap gap angle (non-empty only for priority nodes)

Table 1: Structure array of nodes

name content
simplex.node indices of the incident nodes
simplex.verified verification flag; 1 (true) if the simplex was successfully

verified, 0 (false) otherwise

Table 2: Structure array of simplices

19

We point out that the orthonormal frames in node.frame are saved (and, if necessary,
updated) only when a simplex incident to the corresponding node is successfully verified.
We always make sure that two adjacent simplices that passed verification did so sharing
exactly the same data (coordinates and orthonormal frames for the tangent space) at the
common nodes. This is key in going from computing the local charts to obtaining a globally
smooth atlas of the manifold, as will be explained in Section 4.

4 Rigorous computation of the global manifold

In Section 2 we show how to rigorously construct local smooth charts. In this section we
describe how these charts fit together to form a smooth manifold M. Suppose that we
have computed, as described in Section 3, a simplicial approximation S for a portion of the
solution set {x 2 X : f(x) = 0}. For each simplex � 2 S assume that we have verified
the hypotheses of Lemmas 2.5 and 2.6, and therefore we have a map x̃� : � ! X such that
Fs(x̃�(s)) = 0 for all s 2 �, where we recall that � = {s = (s1, s2) | s1, s2 � 0 and s1+s2
1}. By Lemma 2.6 there is an " = "(�) > 0 such that x̃� can be extended to a C

`

di↵eomorphism, also denoted by x̃�, on�"
def
= {s = (s1, s2) | s1, s2 � �" and s1+s2 1+"}.

For each � 2 S, let U� = x̃�(�") and define

M def
=
[

�2S
U� , (37)

then U� are charts and x̃
�1
� are chart maps for M. Hence M is a two-dimensional manifold.

To show that M is a smooth manifold essentially all we have to show is that the local charts
are smooth along the edges of adjacent simplices.

First we show that we have a connected manifold. When computing the local charts for
two adjacent simplices, we want to make sure that the charts agree on the common edge.
Since the charts are the zeros of Fs(x) given by (8), we need to construct the functions Fs(x)
in such a way that they agree along the common edges of adjacent simplices. Recalling that
the function Fs(x) is constructed for each simplex in terms of its vertices x̄i and the kernels
�̄i at the vertices, we need to make sure that the kernel used in each vertex is the same
for all simplices that share that vertex. For this reason, when computing the simplicial
approximation S, we compute and store one kernel for each vertex and perform the proofs
using these kernels. By doing so, the equations we solve on any two adjacent simplices agree
on the common edge, and we have a connected manifold.

In Theorem 4.2, we will prove that we have a smooth manifold. In order to do so, we
need the following lemma.

Lemma 4.1. Suppose that the hypotheses of Lemma 2.5 are satisfied, yielding the existence

of a C
`
function x̃ : � ! X such that Fs(x̃(s)) = 0, for every s 2 �. Then the linear

operator DFs(x̃(s)) is invertible for every s 2 �.

Proof. Given s 2 �, since x̃(s) 2 Bx̄s(r), there exists b0 = b0(s) 2 B(r) such that x̃(s) =
x̄s + b0. Hence, for every k, every s 2 � and u 2 B(1),

���[DTs(x̃(s))u]k
���r =

���[DTs(x̄s + b0)u]k
���r sup

b1,b22B(r)

���[DTs(x̄s + b1)b2]k
��� Zk(r).

Therefore, recalling (15), the operator norm of DTs(x̃(s)) in X satisfies

kDTs(x̃(s))kX = sup
u2B(1)

kDTs(x̃(s))ukX kZkX
r

< 1. (38)

20

Recalling the definition of Ts in (10), DTs(x̃(s)) = I�A DFs(x̃(s)). From (38), the Neumann
series of DTs(x̃(s)) converges in the operator norm k·kX , and hence we have that the operator
A DFs(x̃(s)) = I � DTs(x̃(s)) is invertible. Therefore, DFs(x̃(s)), restricted to its image,
is invertible.

We now show that we have a smooth manifold. This means, in particular, that we can
define a tangent plane at every point of the manifold. In other words, the manifold does
not have any sharp points.

Theorem 4.2. M is a C
`
manifold.

Proof. We have from Lemma 2.6 that the chart maps x̃
�1
� are C

` di↵eomorphisms. To show
that M is a C

` manifold, we need to show that the local charts are smooth along the edges
of adjacent simplices. Suppose then that we have two local charts corresponding to two
adjacent simplices. More precisely, assume that we have two C

` functions x̃
(i) : �"(�i) ! X,

for i = 1, 2, corresponding to adjacent simplices �1 and �2, such that x̃
(i)(s) is the unique

solution of

F (i)
s (x) =

�(i)

s
T
(x � x

(i)
s)

f(x)

!

in a set B
x(i)
s

⇢ X for every s 2 �. Since �1 and �2 share a common edge, we can assume,
without loss of generality, that the common solution along this common edge is parametrized

by x̃
(1)
(s1,0)

= x̃
(2)
(s1,0)

, with s1 2 [0, 1]. Define g : �" ! X by

g(s1, s2) = F (1)
(s1,s2)

(x̃(2)(s1, s2)).

Then, for every s1 2 [0, 1], g(s1, 0) = F (1)
(s1,0)

(x̃(2)(s1, 0)) = 0. Since x̃
(2) is C

` on �", g(s1, 0)

is C
` on (�", 1 + "), which means that we can compute @g

@s1
(s1, 0) for s1 2 [0, 1]. For each

s1 2 [0, 1] we get
@g

@s1
(s1, 0) = DxF (1)

(s1,0)
(x̃(2)(s1, 0))

@x̃
(2)

@s1
(s1, 0).

From the proof of Lemma 2.6, the vector @x̃(2)

@s1
(s1, 0) is nontrivial for each s1 2 [0, 1]. From

Lemma 4.1, DxF (1)
(s1,0)

(x̃(1)(s1, 0)) = DxF (1)
(s1,0)

(x̃(2)(s1, 0)) is invertible. Hence, we get that

the vector @g
@s1

(s1, 0) is nontrivial for each s1 2 [0, 1]. Then, for a given s1 2 [0, 1], we can use
the Implicit Function Theorem to conclude that there exists "2 > 0 such that g(s1, s2) =

F (1)
(s1,s2)

(x̃(2)(s1, s2)) = 0 for each s2 2 [�"2, "2], and that x̃
(2) 2 C

`([0, 1] ⇥ [�"2, "2]).

Therefore, x̃
(2) : [0, 1] ⇥ [�"2, "2] ! X glues C

` smoothly the solutions x̃
(1) and x̃

(2).
Since the chart maps x̃

�1
� are C

` di↵eomorphisms and they are also C
` smooth along

the edges of adjacent simplices, M is a C
` manifold.

5 Two-dimensional manifold of equilibria of Cahn-Hilliard

Consider the Cahn-Hilliard equation

(
ut = �("2�u + u � u

3)yy, in [0, 1]

uy = uyyy = 0, for y = 0, 1
(39)

21

defined on the interval domain [0, 1] ⇢ R, where u = u(y, t) and " > 0 models interaction
length. Equation (39) was introduced in [19] as a model for phase separation in binary
alloys. The model is mass preserving, meaning that, for any solution u, the total mass �

def
=R 1

0 u(y, t)dy remains constant for all t � 0. Doing a change of coordinates �
def
= 1/"

2
> 0,

the equilibria of (39) are given by the solutions of the elliptic boundary value problem

(
1
�uyy + u � u

3 = c, in [0, 1]

uy = 0, for y = 0, 1
(40)

where the extra parameter c is defined by

c =

Z 1

0
(u � u

3)dy. (41)

The parameters � and c are related by � = c+
R 1
0 u

3
dy. Therefore, if one varies c and solves

for (40), then the parameter � is uniquely determined.

Remark 5.1. There exists a branch of constant solutions (c, u(c)) of (40) such that u(c)�
u(c)3 = c. For c

⇤ def
=
p

1/3 � (
p

1/3)3, the branch undergoes a saddle-node bifurcation at

the parameter values c = �c
⇤
and c = c

⇤
. We refer to the left picture in Figure 5 for a

geometric interpretation. A bifurcation curve from the constant solution u = u(c) is given

by �(�, c)
def
= 1 � 4⇡2

/� � 3u(c)2 = 0. Hence, one can investigate the manifold of equilibria

in the region R def
= {(�, c) | �(�, c) > 0} which is above the curve �(�, c) = 0 in the (�, c)

plane, see Figure 5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

c

u
(c
)

c
⇤

�c
⇤

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
20

40

60

80

100

120

140

160

c

λ

�(�, c) = 0

Figure 5: Left: The branch of constant solutions u = u(c) of (40) satisfying u(c) � u(c)3 = c.
Right: The bifurcation curve �(�, c) = 1 � 4⇡2/� � 3u(c)2 = 0 associated to the piece of the

solution curve {(c, u(c)) |� c⇤ < c < c⇤ and u(�c⇤) < u < u(c⇤)}.

We expand solutions of (40) in the Fourier basis {cos(k⇡y) | k = 0, 1, 2, . . .} as follows:

u(y) = a0 + 2
1X

k=1

ak cos(k⇡y).

Define a = (ak)k�0 to be the infinite dimensional vector of Fourier coe�cients of the expan-
sion of u, p

def
= (�, c) and let x

def
= (p, a). So (40) takes the form

fk(x)
def
= µk(�)ak � (a3)k � �k,0c = 0, k � 0 (42)

22

where µk(�) = 1 � ⇡
2
k
2
/� are the eigenvalues of the linear operator in (40), where �k,l is

the Kronecker symbol and where we used the notation

(a ⇤ b ⇤ c)k =
X

k1+k2+k3=k

kj2Z

a|k1|b|k2|c|k3|, a
3 = a ⇤ a ⇤ a.

From (42), we define f = (fk)k�0. It can be shown that looking for solutions of (40) is
equivalent to looking for solutions of f(x) = 0 in the Banach space X = R2 ⇥ ⌦q, where
⌦q = {a = (ak)k�0 : kakq < 1} is the Banach space of infinite sequences algebraically
decaying to 0 at least as fast as k

�q with decay rate q > 1 (e.g. see [13]). The regularity
estimates given by Lemma A.4 in Appendix A can be used to show that if a 2 ⌦q, then a

3 2
⌦q. Since µk(�) = 1�⇡

2
k
2
/�, one concludes that f given component-wise by (42) is defined

as f : R2 ⇥ ⌦q ! ⌦q�2. Consider the finite dimensional reduction f
(m) : Rm+2 ! Rm of f

defined in (42) by f
(m)(xF) = (fk(xF , 01))m�1

k=0 2 Rm, where xF = (�, c, a0, a1, . . . , am�1) 2
Rm+2. Assume that one has computed x̄0, x̄1, x̄2 2 Rm+2 such that f

(m)(x̄i) ⇡ 0 for each
i = 0, 1, 2 and that dim

�
ker
�
Df

(m)(x̄i)
��

= 2. For each i = 1, 2, 3, define �̄i = [�i
1 �

i
2]

the (m + 2) ⇥ 2 matrix whose columns are given by two linearly independent mutually
orthonormal vectors spanning ker

�
Df

(m)(x̄i)
�
. Moreover, assume that the frames �̄i have

been “rotated” as described in Section 3.1.3.
As in Section 2, let x̄s = x̄0 + s1(x̄1 � x̄0) + s2(x̄2 � x̄0) and �̄s = �̄0 + s1(�̄1 �

�̄0) + s2(�̄2 � �̄0). Denote x̄s = (�s, cs, as) and x̄i = (�̄i, c̄i, āi). Define the Banach space
W = R2 ⇥ ⌦q�2. Consider Fs : X ! W as in (8) and consider the finite dimensional

reduction F (m)
s : Rm+2 ! Rm+2 defined by

F (m)
s (xF)

def
=

✓
�̄T

s (xF � x̄s)
f
(m)(xF)

◆
.

As in Section 2, define the linear operator A : W ! X as follows. Assume we computed

an invertible matrix Am such that Am ⇡ DF (m)
0 (x̄0)

�1
and define A as in (9), where the

tail of A is given by µ
�1
k = (1 � ⇡

2
k
2
/�̄0)�1, for k � m. Then, A maps W to X and one

can define the Newton-like operator Ts : X ! X given by Ts(x) = x � AFs(x). As already
mentioned in Section 2, the idea of the construction of the local charts is to define the radii
polynomials introduced in Definition 2.4. Hence, we need to consider the bounds Y and Z

satisfying (11) and (12), respectively. To compute Y = (Yk)k��2 satisfying (11), we expand
f(x̄s) as a polynomial in the variables s1 and s2. Note that the components Y�2 and Y�1

correspond to the bounds associated to the first two components of Fs. For each i, j � 0

such that 2 i + j 3 and for each k � 0, consider y
(i,j)
k = y

(i,j)
k (x̄0, x̄1, x̄2) such that

fk(x̄s) = µk(�s)(as)k � (a3
s)k � �k,0cs

= fk(x̄0) + s1[fx(x̄0)(x̄1 � x̄0)]k + s2[fx(x̄0)(x̄2 � x̄0)]k +
X

2i+j3

i,j�0

y
(i,j)
k s

i
1s

j
2,

23

where

[fx(x̄0)(x̄1 � x̄0)]k =

✓
1 � ⇡

2
k
2

�̄0

◆
[ā2 � ā0]k

+
⇡
2
k
2

�̄
2
0

(�̄2 � �̄0)[ā0]k � 3[ā2
0(ā2 � ā0)]k � �k,0(c̄2 � c̄0)

[fx(x̄0)(x̄2 � x̄0)]k =

✓
1 � ⇡

2
k
2

�̄0

◆
[ā1 � ā0]k

+
⇡
2
k
2

�̄
2
0

(�̄1 � �̄0)[ā0]k � 3[ā2
0(ā1 � ā0)]k � �k,0(c̄1 � c̄0).

The coe�cients y
(i,j)
k are given in Table 3 in Appendix B. Note that some of these coe�cients

depend on a ⇠ 2 [�̄0, �s], with �s = �̄0+s1(�̄1 � �̄0)+s2(�̄2 � �̄0), which comes from taking
a Taylor expansion of the function s = (s1, s2) 7! µk(�s) around s = (0, 0). In practice, ⇠

is replaced by the interval �̄0 + [0, 1](�̄1 � �̄0) + [0, 1](�̄2 � �̄0) and |y(i,j)
k | is estimated with

interval arithmetic. Note that all the discrete convolutions in Table 3 are finite sums that
can be rigorously estimated combining interval arithmetic with the fast Fourier transform

(FFT) algorithm (e.g. see [20]). We then obtain rigorous upper bounds Y
(i,j)
k for the terms

|y(i,j)
k |. Using formula (20), we define YF = (Y�2, Y�1, . . . , Ym�1).
Let us now choose the M from assumption A1 from Section 2 that assumes Yk can be

taken to be 0 for all k � M . Since (ā0)k = (ā1)k = (ā2)k = 0 for k � m, then for every

k � 3m � 2, fk(x̄0) = [fx(x̄0)(x̄1 � x̄0)]k = [fx(x̄0)(x̄2 � x̄0)]k = 0 and y
(i,j)
k = 0 for all

i, j. Indeed, for vectors a, b, c satisfying ak = bk = ck = 0 for k � m, (a ⇤ b ⇤ c)k = 0 for
k � 3m � 2. Hence, letting M = 3m � 2, we set Yk = 0, for k � M . To define Yk for
m k M � 1, consider µk = µk(�̄0) = 1 � ⇡

2
k
2
/�̄0 and use (21).

To ease the computation of the bound Z = (Zk)k��2 satisfying (12), we consider the

expansion (22), with the coe�cients z
(`,i,j)
k being given in Table 4 in Appendix B. Note

that the components Z�2 and Z�1 correspond to the bounds associated to the first two
components of Fs.

Using the fact that for s = (s1, s2) 2 �, |s1|, |s2| 1 and the fact that |(b̃1)k|, |(b̃1)k|
!

�q
k , consider the intermediate bounds ẑ

(`)
k = ẑ

(`)
k (x̄0, x̄1, x̄2, �̄0, �̄1, �̄2) such that

������

(4�`)X

i=0

(4�`�i)X

j=0

z
(`,i,j)
k s

i
1s

j
2

������
 ẑ

(`)
k . (43)

The coe�cients ẑ
(`)
k are given in Table 5 in Appendix B. Since many discrete convolutions

in Table 5 are infinite, we use the following result to estimate them.

Lemma 5.2. Consider a decay rate q � 2 and a, b, c 2 ⌦q
, where ⌦q

is defined in (4).
Consider a computational parameter M and define a

(M) = (a0, a1, . . . , aM�1) 2 RM
. Define

b
(M)

, c
(M)

similarly. Consider "
(3)
k = "

(3)
k (q, M, M) as in (50). Then, for k 2 {0, . . . , M�1},

|(a ⇤ b ⇤ c)k|
���
⇣
a
(M) ⇤ b

(M) ⇤ c
(M)
⌘

k

���+ 3(kakqkbkqkckq)"(3)k .

Proof. The result follows from Lemma A.6 in Appendix A.

Using Lemma 5.2, we obtain rigorous upper bounds Z
(`)
k for the terms ẑ

(`)
k from Table 5.

Using formula (24) and (25), we define Zk for k 2 {�2, �1, . . . , M � 1}. Now, to obtain the
uniform polynomial bound Z̃M (r) of assumption A2, we use the following.

24

Lemma 5.3. Consider a decay rate q � 2 and a, b, c 2 ⌦q
, where ⌦q

is defined in (4).

Consider ↵
(3)
k as defined in (49). Then, for any k � M � 6, ↵

(3)
k ↵

(3)
M and

|(a ⇤ b ⇤ c)k| (kakqkbkqkckq)
↵
(3)
M

!
q
k

. (44)

Proof. The result follows from Lemma A.4 and Lemma A.5.

Lemma 5.4. Consider �0 > 0 and a number M such that

M >

p
�0

⇡
. (45)

Then, for every k � M , one has that
1

|µk(�0)| �0
⇡2M2��0

and that

��� ⇡2k2

µk(�0)

��� ⇡2M2�0
⇡2M2��0

.

Proof. Considering k � M , one has that |µk(�0)| = |1� 1
�0

k
2
⇡
2| = 1

�0
k
2
⇡
2 �1 = k2⇡2��0

�0
�

⇡2M2��0
�0

> 0. That implies that 1
|µk(�0)| �0

⇡2M2��0
. Also,

��� ⇡2k2

µk(�0)

��� = ⇡2k2�0
k2⇡2��0

 ⇡2M2�0
⇡2M2��0

,

since the function x 7! ⇡2x2

⇡2x2��0
decreases for x � M .

Using the results of Lemma 5.3 and Lemma 5.4, we introduce the asymptotic polynomial

bound Z̃M (r) satisfying (16). For ` = 1, 2, 3, consider the asymptotic bound Z̃
(`)
M such that

for k � M and for all s 2 D,

sup
b1,b22B(r)

���[DTs(x̄s + b1)b2]k
���

3X

`=1

1

|µk(�0)|
ẑ
(`)
k r

`

3X

`=1

Z̃
(`)
M r

`

!
1

!
q
k

, (46)

where the Z̃
(`)
M can be found in Table 6 in Appendix B. Using (46) and the coe�cients of

Table 6, define the tail radii polynomial (18). Again, note that some of the coe�cients in
Table 6 depend on a ⇠ between �̄0 and �s = �̄0 + s1(�̄1 � �̄0) + s2(�̄2 � �̄0) which comes
from taking a Taylor expansion of the function s = (s1, s2) 7! µk(�s) around s = (0, 0). In

practice, ⇠ is replaced by the interval �̄0 + [0, 1](�̄1 � �̄0) + [0, 1](�̄2 � �̄0) and Z̃
(`)
M is finally

obtained with interval arithmetic.
We have finally all the ingredients to construct the radii polynomials {pk(r)}Mk=�2 of

Definition 2.4 with interval arithmetic. Once this is done, we can verify (if possible) the
hypotheses of Lemma 2.5 and then the smoothness hypothesis (31). As mentioned above,
this procedure is referred to as the verification of a simplex. Therefore, our algorithm
provides precise bounds in the Banach space around each approximate simplex within which
a genuine smooth local chart of the manifold is guaranteed to exist in the mathematically
rigorous sense. Using the method of Section 3 to obtain a triangulation of the manifold
based on successes or failures of the verification of each simplex, we can conclude, using the
theory of Section 4, that we performed a rigorous computation of the smooth C

` manifold.
We now present some results.

Example 5.5. As a first example, we computed a manifold of equilibria of (39) identified
by the following constraints:

� 2 [39, 41], �(�, c) � 10�3
.

For the projection f
(m), we took m = 40, i.e., we kept the first 40 Fourier modes of

solutions u of (39). We also fixed the algebraic decay rate of the Banach space ⌦q as defined

25

in (4) to be q = 2. We started the computation from a point x0 2 R42 numerically on the
manifold. We obtained x0 by fixing c = 0 and following in � (via a standard path-following
algorithm) the branch of equilibria that bifurcates from the trivial solution at � = 4⇡2, up
to � ⇡ 40. The actual coordinates of x0 can be downloaded from [24]. Furthermore, we
chose h0 = 4.5 ⇥ 10�3 and hmin = 10�5, see Section 3 for the meaning of these parameters.

Starting from x0, we applied the method described in Section 3, with the (unsubstantial)
exception reported in a Remark below. The computation was completed successfully (i.e.
it terminated due to absence of frontal nodes) and resulted in a database made of 57960
nodes and 114059 simplices. The number of rejected steps (due to verification failures) was
21585, which accounts for nearly 16% of the total work. At the end, all simplices had been
successfully verified, with 6814 simplices requiring 1 splitting and 13 simplices requiring 2
to 5 splittings.

Denote by S1 the simplicial approximation obtained as described above. A geometric
representation of S1 is presented in Figure 6. On each simplex � 2 S1 the hypotheses of
Lemmas 2.5 and 2.6 were verified yielding a map x̃� : � ! X such that Fs(x̃�(s)) = 0. By
Lemma 2.6 there is an " = "(�) > 0 such that x̃� can be extended to a C

` di↵eomorphism,
also denoted by x̃�, on �" = {s = (s1, s2) | s1, s2 � �" and s1 + s2 1 + "}. For each
� 2 S1, let U� = x̃�(�").

Theorem 5.6. Consider S1, the simplicial approximation defined above. Then, the set

M1
def
=

[

�2S1

U�

is a smooth two-dimensional manifold implicitly defined by the infinite dimensional nonlinear

equation f = 0, with f given component-wise by (42). Moreover, M1 yields a smooth two-

dimensional manifold of equilbria of the Cahn-Hilliard equation (39). Furthermore, for each

� 2 S1 defined by � = {x̄s | s 2 �}, one has that

sup
s2�

kx̃�(s) � x̄skX r,

where r = r(�) is the radius obtained by solving the radii polynomials as in Lemma 2.5.

Example 5.7. As a second example, we computed again a manifold of equilibria of the
Cahn-Hilliard equation, this time identified by the constraints:

� 2 [69.9, 70.1], �(�, c) � 0.2 .

As in Example 5.5, we kept m = 40 Fourier modes, and chose the decay rate for ⌦q to
be q = 2. We started the computation from a point x0 2 R42 numerically on the manifold,
obtained just like in Example 5.5, but with � ⇡ 70 (again, see [24] for the actual coordinates
of x0), and chose h0 = 10�2 and hmin = 10�5. Also in this case, the computation termi-
nated successfully, this time with a resulting database of 24168 nodes and 47658 simplices.
Rejected steps were 7646, i.e., nearly 14% of the total work. All simplices were successfully
verified, with 3446 of them requiring 1 splitting.

Denote by S2 the simplicial approximation obtained as described above. S2 is depicted
in Figure 7. On each simplex � 2 S2 the hypotheses of Lemmas 2.5 and 2.6 were verified
yielding a map x̃� : � ! X such that Fs(x̃�(s)) = 0. By Lemma 2.6, there is an " = "(�) > 0
such that x̃� can be extended to a C

` di↵eomorphism, also denoted by x̃�, on �". For each
� 2 S2, let U� = x̃�(�").

26

Theorem 5.8. Consider S2 the simplicial approximation defined above. Then, the set

M2
def
=

[

�2S2

U�

is a smooth two-dimensional manifold implicitly defined by the infinite dimensional nonlinear

equation f = 0, with f given component-wise by (42). Moreover, M2 yields a smooth two-

dimensional manifold of equilbria of the Cahn-Hilliard equation (39). Furthermore, for each

� 2 S2 defined by � = {x̄s | s 2 �}, one has that

sup
s2�

kx̃�(s) � x̄skX r,

where r = r(�) is the radius obtained by solving the radii polynomials as in Lemma 2.5.

Remark 5.9. The only exception to the strategy described in Section 3 is that, during
the numerical triangulation of the manifold, verification of simplices was (temporarily) per-
formed –without– interval arithmetic. This is because the overhead associated to the use of
interval arithmetic makes the computation impossible to be performed on a single computing
unit. Hence, proper verification of simplices was postponed to a distributed computed en-
vironment, where it was spread over 500 processors. To witness the benefit of this strategy,
verification of all simplices for the computation outlined in Example 5.5 required 39 hours
(the duration of the longest-lasting process), with a total CPU time of approximately 680
days, while that of Example 5.7 required 18 hours, and a total CPU time of approximately
206 days, whereas building the databases for the two triangulations required, respectively,
approximately 12 and 4 hours on a single processing unit.

Remark 5.10. The software was developed in MATLAB, and interval arithmetics compu-
tations were carried out by the toolbox INTLAB [21]. The construction of the database for
the triangulations was performed on a desktop computer equipped with Intel Core 2 Duo
E6400 2.13GHz CPU and 2 GB of RAM, while verification of the simplices was performed
on the PACE HPC environment at the Georgia Institute of Technology. The complete
database of nodes and simplices for both computation above, as well as the MATLAB code
used to run the verification, can be found at [24].

Remark 5.11. The computation times reported in Remark 5.9 are admittedly long, and
ought to be explained. On the one hand, as we already pointed out in Section 3, the
construction of the triangulation is slowed down by the verification process, which, even
if performed without the use of interval arithmetic, greatly penalizes the step-length and,
consequently, the computational e↵ort needed to cover a given portion of a manifold. If the
continuation was to be performed without verification, it would be completed at a fraction
of the cost (based on our experience, we expect this “fraction” to be below 1/100). On the
other hand, the verification of simplices with interval arithmetic, which we postponed to a
distributed computing environment, is currently implemented under INTLAB/MATLAB,
which is not an environment optimized for performance. The verification stage would greatly
benefit of being implemented in a better performing language, and this is an aspect that we
plan to tackle in the future.

6 Conclusion

In this paper we introduce a new rigorous multi-parameter continuation method to compute
smooth two-dimensional manifolds implicitly defined by zeros of nonlinear operators defined

27

Figure 6: The solution manifold of Theorem 5.6. On this plot, the L
2 norm of the solution

u is depicted. The red curve corresponds to the curve of constant equilibria of the 1D Cahn-
Hilliard equation (39) from which the solution manifold bifurcates. The curve of constant
solutions together with its corresponding (�, c) parameter values can be found in Figure 5.

on infinite dimensional Banach spaces. The method is applied to compute two portions of
a two-dimensional manifold of equilibria of the 1D Cahn-Hilliard PDE.

The method proved itself robust and successful when applied to the 1D Cahn-Hilliard
equation. Yet, of course, we believe there is room for improvement. Rigorously computing
large portions of a manifold can be burdensome. This is mostly due to the high computa-
tional cost involved in verifying a simplex with interval arithmetic. This is a motivation to
try to minimize the number of simplices needed to “cover” a given portion of a manifold, as
well as the number of simplices rejected due to verification failure. This is work in progress.
Another improvement concerns the correct handling of situations where overlap of frontal
simplices of the triangulation is detected. This also is work in progress. Note that we did
not detect any overlap in the Examples presented in Section 5. We now conclude the paper
by discussing future directions.

We believe it would interesting to explore the possibility of rigorously detecting bifurca-
tions, for instance those related to loss of rank of the Jacobian matrix. The smooth singular
value decomposition would be a useful tool for this project, see [22]. It would also be valuable
to try to prove existence of cusp bifurcations in the two dimensional manifold of equilibria
of the 2D Cahn-Hilliard model as numerically suggested in [4]. Another interesting problem
would be to extend the work of [23] and compute two-dimensional manifolds of connecting

28

Figure 7: The solution manifold of Theorem 5.8. On this plot, the total mass � of the
solution u is depicted.

orbits in the Gray-Scott model for autocatalytic reaction.

Acknowledgments

The authors would like to thank the anonymous referees for helpful comments and sugges-
tions. Part of this work was done while the third author was visiting the School of Math-
ematics of the Georgia Institute of Technology, whose hospitality and support is gratefully
acknowledged.

A Convolution estimates

In this Appendix, we provide the necessary convolution estimates required to construct
the radii polynomials for the Cahn-Hilliard equation studied in Section 5. We decided to

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

y

u

Figure 8: Profile of the solution u(y) corresponding to the initial point x0 2 R42 numerically
on the manifold (the actual coordinates of x0 can be downloaded from [24]). This point
correspond to one of the equilibrium solution on the manifold of Theorem 5.6 at (�, c) =
(40, 0).

include all formulas and proofs so that the paper is self-contained. Note, however, that
these analytic convolution estimates are taken directly from [15] for estimates concerning
quadratic and cubic nonlinearities.

Consider a decay rate q � 2, a computational parameter M � 6 and define, for k � 3,

�k = �k(q)
def
= 2

k

k � 1

�q
+

4 ln(k � 2)

k
+

⇡
2 � 6

3

�
2

k
+

1

2

�q�2

. (47)

Lemma A.1. For q � 2 and k � 4 we have

k�1X

k1=1

k
q

k
q
1(k � k1)q

 �k.

Proof. First observe that

k�1X

k1=1

k
q

k
q
1(k � k1)q

= 2

k

k � 1

�q
+ k

q�1
k�2X

k1=2

k

k
q
1(k � k1)q

= 2

k

k � 1

�q
+ k

q�1

"
k�2X

k1=2

k � k1

k
q
1(k � k1)q

+
k�2X

k1=2

k1

k
q
1(k � k1)q

#

= 2

k

k � 1

�q
+ k

q�1

"
k�2X

k1=2

1

k
q
1(k � k1)q�1

+
k�2X

k1=2

1

k
q�1
1 (k � k1)q

#

= 2

k

k � 1

�q
+ 2

k�2X

k1=2

k
q�1

k
q�1
1 (k � k1)q

.

30

Using the above we define

�
(q)
k :=

k�2X

k1=2

k
q�1

k
q�1
1 (k � k1)q

=
1

2

k�2X

k1=2

k
q

k
q
1(k � k1)q

.

We then obtain the following recurrence inequality

�
(q)
k =

k�2X

k1=2

k
q�1

k
q�1
1 (k � k1)q

= k
q�2

k�2X

k1=2

(k � k1) + k1

k
q�1
1 (k � k1)q

=
1

k

k�2X

k1=2

k
q�1

k
q�1
1 (k � k1)q�1

+
k�2X

k1=2

k
q�2

k
q�2
1 (k � k1)q

 1

k

k�2X

k1=2

k
q�1

k
q�1
1 (k � k1)q�1

+
1

2

k�2X

k1=2

k
q�2

k
q�2
1 (k � k1)q�1

=

2

k
+

1

2

�
�
(q�1)
k .

Applying the above inequality q � 2 times we get

�
(q)
k �

(2)
k

2

k
+

1

2

�q�2

.

Also

�
(2)
k =

k�2X

k1=2

k

k1(k � k1)2
=

k�2X

k1=2

1

k1(k � k1)
+

k�2X

k1=2

1

(k � k1)2

=
1

k

"
k�2X

k1=2

1

k1
+

k�2X

k1=2

1

k � k1

#
+

k�2X

k1=2

1

(k � k1)2

=
2

k

k�2X

k1=2

1

k1
+

k�2X

k1=2

1

k
2
1

 2

k
ln (k � 2) +

⇡
2

6
� 1.

Using the above inequalities we get

k�1X

k1=1

k
q

k
q
1(k � k1)q

= 2

k

k � 1

�q
+ 2�(q)

k 2

k

k � 1

�q
+ 2�(2)

k

2

k
+

1

2

�q�2

 2

k

k � 1

�q
+

4 ln (k � 2)

k
+

⇡
2 � 6

3

�
2

k
+

1

2

�q�2

= �k.

Define the weights by

!
q
k :=

(
1, if k = 0

|k|q, if k 6= 0.

Lemma A.2 (Quadratic estimates). Given a decay rate q � 2 and M � 6. For k 2 Z,

31

define the quadratic asymptotic estimates ↵
(2)
k = ↵

(2)
k (q, M) by

↵
(2)
k

def
=

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

1 + 2
MX

k1=1

1

!
2q
k1

+
2

M2q�1(2q � 1)
, for k = 0

MX

k1=1

2!q
k

!
q
k1

!
q
k+k1

+
2!q

k

(k + M + 1)qMq�1(q � 1)

+2 +
k�1X

k1=1

!
q
k

!
q
k1

!
q
k�k1

, for 1 k M � 1

2 + 2
MX

k1=1

1

!
q
k1

+
2

Mq�1(q � 1)
+ �M , for k � M,

(48)

and for k < 0,

↵
(2)
k

def
= ↵

(2)
|k| .

Then, for any k 2 Z,
X

k1+k2=k

kj2Z

1

!
q
k1

!
q
k2

↵
(2)
k

!
q
k

.

Proof. For k = 0,

X

k1+k2=0

kj2Z

1

!
q
k1

!
q
k2

= 1 + 2
MX

k1=1

1

!
2q
k1

+ 2
1X

k1=M+1

1

!
2q
k1

 1 + 2
MX

k1=1

1

!
2q
k1

+

Z 1

M

dx

x2q

 1 + 2
MX

k1=1

1

!
2q
k1

+
2

M2q�1(2q � 1)
=

↵
(2)
0

!
q
0

.

For 1 k M � 1, and recalling that the one-dimensional weights (2),

X

k1+k2=k

kj2Z

1

!
q
k1

!
q
k2

=
1

!
q
k

"
MX

k1=1

2!q
k

!
q
k1

!
q
k+k1

+
1X

k1=M+1

2!q
k

!
q
k1

!
q
k+k1

+
2

!
q
0

+
k�1X

k1=1

!
q
k

!
q
k1

!
q
k�k1

#

 1

!
q
k

"
MX

k1=1

2!q
k

!
q
k1

!
q
k+k1

+
2!q

k

(k + M + 1)q

Z 1

M

dx

xq
+ 2 +

k�1X

k1=1

!
q
k

!
q
k1

!
q
k�k1

#

 1

!
q
k

"
MX

k1=1

2!q
k

!
q
k1

!
q
k+k1

+
2!q

k

(k + M + 1)qMq�1(q � 1)
+ 2 +

k�1X

k1=1

!
q
k

!
q
k1

!
q
k�k1

#
=

↵
(2)
k

!
q
k

.

32

Finally, for k � M , one gets from Lemma A.1 that

X

k1+k2=k

kj2Z

1

!
q
k1

!
q
k2

=
1

!
q
k

"
2

1X

k1=1

!
q
k

!
q
k1

!
q
k+k1

+
2

!
q
0

+
k�1X

k1=1

!
q
k

!
q
k1

!
q
k�k1

#

 1

!
q
k

"
2

MX

k1=1

1

!
q
k1

+ 2
1X

k1=M+1

1

!
q
k1

+
2

!
q
0

+ �k

#

 1

!
q
k

"
2

MX

k1=1

1

!
q
k1

+ 2

Z 1

M

dx

xq
+

2

!
q
0

+ �M

#

 1

!
q
k

"
MX

k1=1

2

!
q
k1

+
2

Mq�1(q � 1)
+ 2 + �M

#
=

↵
(2)
k

!
q
k

.

Lemma A.3. For any k 2 Z with |k| � M � 6, we have that ↵
(2)
k ↵

(2)
M .

Proof. For k � 6, the fact that ln(k�1)
k+1 ln(k�2)

k implies that �k+1(q) �k(q). By definition

of ↵
(2)
k , for |k| � M , one gets that ↵

(2)
k ↵

(2)
M .

Lemma A.4 (Cubic estimates). Given q � 2 and M � 6. Let

⌃⇤
a :=

M�1X

k1=1

↵
(2)
k1

M
q

!
q
k1

�
M � k1

�q + ↵
(2)
M

�M �

M�1X

k1=1

1

!
q
k1

!
,

↵̃
(2)
M := max

n
↵
(2)
k | k = 0, . . . , M

o
, ⌃⇤

b := ↵̃
(2)
M �M and ⌃⇤ := min {⌃⇤

a,⌃
⇤
b}. Define the cubic

asymptotic estimates ↵
(3)
k = ↵

(3)
k (s, M) by

↵
(3)
k

def
=

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

↵
(2)
0 + 2

M�1X

k1=1

↵
(2)
k1

!
2q
k1

+
2↵(2)

M

(M � 1)2q�1(2q � 1)
, for k = 0

M�kX

k1=1

↵
(2)
k+k1

!
q
k

!
q
k1

!
q
k+k1

+
↵
(2)
M !

q
k

(M + 1)q(M � k)q�1(q � 1)
+

k�1X

k1=1

↵
(2)
k1

!
q
k

!
q
k1

!
q
k�k1

+
MX

k1=1

↵
(2)
k1

!
q
k

!
q
k1

!
q
k+k1

+
↵
(2)
M !

q
k

(M + k + 1)qMq�1(q � 1)
+ ↵

(2)
k + ↵

(2)
0 ,

for 1 k M � 1

↵
(2)
M

MX

k1=1

1

!
q
k1

+
2↵(2)

M

Mq�1(q � 1)
+ ⌃⇤ +

MX

k1=1

↵
(2)
k1

!
q
k1

+ ↵
(2)
M + ↵

(2)
0 , for k � M

(49)
and for k < 0,

↵
(3)
k

def
= ↵

(3)
|k| .

Then, for any k 2 Z,
X

k1+k2+k3=k

kj2Z

1

!
q
k1

!
q
k2

!
q
k3

↵
(3)
k

!
q
k

.

Moreover, ↵
(3)
k ↵

(3)
M , for all k � M .

33

Proof. In what follows, the estimates are obtained similarly as in the proof of Lemma A.2

with the di↵erence that we often use the fact ↵
(2)
k ↵

(2)
M , for all k � M (see e.g. Remark A.1

in [13]). For k = 0,

X

k1+k2+k3=0

kj2Z

1

!
q
k1

!
q
k2

!
q
k3

 ↵
(2)
0 + 2

M�1X

k1=1

↵
(2)
k1

!
2q
k1

+
2↵(2)

M

(M � 1)2q�1(2q � 1)
=

↵
(3)
0

!
q
0

.

For k > 0,

X

k1+k2+k3=k

kj2Z

1

!
q
k1

!
q
k2

!
q
k3

1X

k1=1

"
1

!
q
k1

↵
(2)
k+k1

!
q
k+k1

#
+

k�1X

k1=1

"
1

!
q
k1

↵
(2)
k�k1

!
q
k�k1

#
+

1X

k1=1

"
1

!
q
k+k1

↵
(2)
k1

!
q
k1

#

+
1

!
q
0

↵
(2)
k

!
q
k

+
1

!
q
k

↵
(2)
0

!
q
0

.

Consider k 2 {1, . . . , M � 1}. Since ↵
(2)
k ↵

(2)
M , for all k � M by Lemma A.3, we have

1X

k1=1

↵
(2)
k+k1

!
q
k1

!
q
k+k1

 1

!
q
k

"
M�kX

k1=1

↵
(2)
k+k1

!
q
k

!
q
k1

!
q
k+k1

+
↵
(2)
M !

q
k

(M + 1)q(M � k)q�1(q � 1)

#
.

Similarly,

1X

k1=1

↵
(2)
k1

!
q
k1

!
q
k+k1

 1

!
q
k

"
MX

k1=1

↵
(2)
k1

!
q
k

!
q
k1

!
q
k+k1

+
↵
(2)
M !

q
k

(M + k + 1)qMq�1(q � 1)

#
.

From the definition of ↵
(3)
k for k 2 {1, . . . , M � 1}, one gets that

X

k1+k2+k3=k

kj2Z

1

!
q
k1

!
q
k2

!
q
k3

↵
(3)
k

!
q
k

.

For k � M , using again that ↵
(2)
k ↵

(2)
M by Lemma A.3, one gets that

1X

k1=1

↵
(2)
k+k1

!
q
k1

!
q
k+k1

 1

!
q
k

"
↵
(2)
M

MX

k1=1

1

!
q
k1

+
↵
(2)
M

Mq�1(q � 1)

#
.

Using Lemma A.1,

k�1X

k1=1

↵
(2)
k1

!
q
k1

!
q
k�k1

=
M�1X

k1=1

↵
(2)
k1

!
q
k1

!
q
k�k1

+
1

!
q
k

k�1X

k1=M

!
q
k↵

(2)
k1

!
q
k1

!
q
k�k1

 1

!
q
k

M�1X

k1=1

↵
(2)
k1

!
q
k1

�
1 � k1

k

�q +
↵
(2)
M

!
q
k

k�1X

k1=M

!
q
k

!
q
k1

!
q
k�k1

 1

!
q
k

"
M�1X

k1=1

↵
(2)
k1

!
q
k1

�
1 � k1

M

�q + ↵
(2)
M

k�1X

k1=1

!
q
k

!
q
k1

!
q
k�k1

�
M�1X

k1=1

!
q
k

!
q
k1

!
q
k�k1

!#

 1

!
q
k

"
M�1X

k1=1

↵
(2)
k1

M
q

!
q
k1

�
M � k1

�q + ↵
(2)
M

�M �

M�1X

k1=1

1

!
q
k1

!#
=

1

!
q
k

⌃⇤
a.

34

Hence,
k�1X

k1=1

↵
(2)
k1

!
q
k1

!
q
k�k1

 ↵̃
(2)
M

!
q
k

�M =
1

!
q
k

⌃⇤
b .

Recalling that ⌃⇤ = min {⌃⇤
a,⌃

⇤
b}, one gets that

k�1X

k1=1

↵
(2)
k1

!
q
k1

!
q
k�k1

 1

!
q
k

⌃⇤. Also,

1X

k1=1

↵
(2)
k1

!
q
k1

!
q
k+k1

 1

!
q
k

"
MX

k1=1

↵
(2)
k1

!
q
k1

+
↵
(2)
M

Mq�1(q � 1)

#
.

Combining the above inequalities, we get, for the case k � M ,

X

k1+k2+k3=k

kj2Z

1

!
q
k1

!
q
k2

!
q
k3

 1

!
q
k

"
↵
(2)
M

MX

k1=1

1

!
q
k1

+
2↵(2)

M

Mq�1(q � 1)
+ ⌃⇤

+
MX

k1=1

↵
(2)
k1

!
q
k1

+ ↵
(2)
M + ↵

(2)
0

#
=

↵
(3)
k

!
q
k

.

Lemma A.5. For any k 2 Z with |k| � M � 6, we have that ↵
(3)
k ↵

(3)
M .

Proof. For k � 6, the fact that ln(k�1)
k+1 ln(k�2)

k implies that �k+1(q) �k(q). By definition

of ↵
(3)
k , for |k| � M , one gets that ↵

(3)
k ↵

(3)
M .

Lemma A.6. Given q � 2 and 6 M̄ M , define for 0 k M̄ � 1

"
(3)
k = "

(3)
k (q, M̄ , M) :=

M�kX

k1=M̄

↵
(2)
k+k1

!
q
k1

!
q
k+k1

(50)

+
M+kX

k1=M̄

↵
(2)
k1�k

!
q
k1

!
q
k1�k

+
↵
(2)
M

(M + 1)q(q � 1)

1

(M � k)q�1
+

1

(M + k)q�1

�

and for k < 0

"
(3)
k (q, M̄ , M) := "

(3)
|k| (q, M̄ , M).

Fix 0 |k| M̄ � 1 and ` 2 {1, 2, 3}. Then, we have that

X

k1+k2+k3=k

max{|k1|,...,|k`|}�M̄

1

!
q
k1

!
q
k2

!
q
k3

 `"
(3)
k .

Proof. We have that

X

k1+k2+k3=k

max{|k1|,...,|k`|}�M̄

1

!
q
k1

!
q
k2

!
q
k3

 `

X

k1+k2+k3=k

|k1|�M̄

1

!
q
k1

!
q
k2

!
q
k3

,

and

35

X

k1+k2+k3=k

|k1|�M̄

1

!
q
k1

!
q
k2

!
q
k3

=
�M̄X

k1=�1

1

!
q
k1

X

k2+k3=k�k1

1

!
q
k2

!
q
k2

!
q
k3

+
1X

k1=M̄

1

!
q
k1

X

k2+k3=k�k1

1

!
q
k2

!
q
k2

!
q
k3

1X

k1=M̄

"
↵
(2)
k+k1

!
q
k1

!
q
k+k1

+
↵
(2)
k1�k

!
q
k1

!
q
k1�k

#

M�kX

k1=M̄

↵
(2)
k+k1

!
q
k1

!
q
k+k1

+ ↵
(2)
M

1X

k1=M�k+1

1

!
q
k1

!
q
k+k1

+
M+kX

k1=M̄

↵
(2)
k1�k

!
q
k1

!
q
k1�k

+ ↵
(2)
M

1X

k1=M+k+1

1

!
q
k1

!
q
k1�k

M�kX

k1=M̄

↵
(2)
k+k1

!
q
k1

!
q
k+k1

+
M+kX

k1=M̄

↵
(2)
k1�k

!
q
k1

!
q
k1�k

+
↵
(2)
M

(M + 1)q(q � 1)

1

(M � k)q�1
+

1

(M + k)q�1

�
= "

(3)
k .

B Coe�cients used to define the bounds Y and Z

k 2 {0, . . . , 3m � 3}.

y
(2,0)
k

⇡2k2

�̄2
0
(�̄1 � �̄0)(ā1 � ā0)k � ⇡2k2

⇠3 (�̄1 � �̄0)2(ā0)k � 3
�
ā0 ⇤ (ā1 � ā0)2

�
k

y
(1,1)
k

⇡2k2

�̄2
0
(�̄2 � �̄0)(ā1 � ā0)k + ⇡2k2

�̄2
0
(�̄1 � �̄0)(ā2 � ā0)k

� 2⇡2k2

⇠3 (�̄2 � �̄0)(�̄1 � �̄0)(ā0)k � 6 (ā0 ⇤ (ā2 � ā0) ⇤ (ā1 � ā0))k

y
(0,2)
k

⇡2k2

�̄2
0
(�̄2 � �̄0)(ā2 � ā0)k � ⇡2k2

⇠3 (�̄2 � �̄0)2(ā0)k � 3
�
ā0 ⇤ (ā2 � ā0)2

�
k

y
(3,0)
k �⇡2k2

⇠3 (�̄1 � �̄0)2(ā1 � ā0)k �
�
(ā1 � ā0)3

�
k

y
(2,1)
k � 2⇡2k2

⇠3 (�̄2 � �̄0)(�̄1 � �̄0)(ā1 � ā0)k � ⇡2k2

⇠3 (�̄1 � �̄0)2(ā2 � ā0)k � 3
�
(ā2 � ā0) ⇤ (ā1 � ā0)2

�
k

y
(1,2)
k �⇡2k2

⇠3 (�̄2 � �̄0)2(ā1 � ā0)k � 2⇡2k2

⇠3 (�̄2 � �̄0)(�̄1 � �̄0)(ā2 � ā0)k � 3
�
(ā2 � ā0)2 ⇤ (ā1 � ā0)

�
k

y
(0,3)
k �⇡2k2

⇠3 (�̄2 � �̄0)2(ā2 � ā0)k �
�
(ā2 � ā0)3

�
k

Table 3: The coe�cients y
(i,j)
k .

36

k 2 {�2, �1}.

z
(1,1,0)
k

�
�̄1 � �̄0

�T
(b̃2)F

z
(1,0,1)
k

�
�̄2 � �̄0

�T
(b̃2)F

k 2 {0, . . . , 3m � 3}.

z
(1,0,0)
k

8
><

>:

�3
⇣
ā
2
0 ⇤ ã

(2)
I

⌘

k
, for k < m

�3
�
ā
2
0 ⇤ ã

(2)
�
k
, for k � m

z
(1,0,1)
k

⇣
⇡2k2

�̄2
0
(ā2 � ā0)k � 2⇡2k2

�̄3
0

(�̄2 � �̄0)(ā0)k
⌘

�̃
(2) + ⇡2k2

�̄2
0
(�̄2 � �̄0)(ã(2))k � 6

�
ā0 ⇤ (ā2 � ā0) ⇤ ã

(2)
�
k

z
(1,0,2)
k

⇣
� 2⇡2k2

�̄3
0

(�̄2 � �̄0)(ā2 � ā0)k + 3⇡2k2

⇠4 (�̄2 � �̄0)2(ā0)k
⌘

�̃
(2) � ⇡2k2

⇠3 (�̄2 � �̄0)2(ã(2))k � 3
�
(ā2 � ā0)2 ⇤ ã

(2)
�
k

z
(1,0,3)
k

3⇡2k2

⇠4 (�̄2 � �̄0)2(ā2 � ā0)k�̃(2)

z
(1,1,0)
k

⇣
⇡2k2

�̄2
0
(ā1 � ā0)k � 2⇡2k2

�̄3
0

(�̄1 � �̄0)(ā0)k
⌘

�̃
(2) + ⇡2k2

�̄2
0
(�̄1 � �̄0)(ã(2))k � 6

�
ā0 ⇤ (ā1 � ā0) ⇤ ã

(2)
�
k

z
(1,1,1)
k

⇣
� 2⇡2k2

�̄3
0

(�̄2 � �̄0)(ā1 � ā0)k � 2⇡2k2

�̄3
0

(�̄1 � �̄0)(ā2 � ā0)k + 6⇡2k2

⇠4 (�̄2 � �̄0)(�̄1 � �̄0)(ā0)k
⌘

�̃
(2)

� 2⇡2k2

⇠3 (�̄2 � �̄0)(�̄1 � �̄0)(ã(2))k � 6
�
(ā2 � ā0) ⇤ (ā1 � ā0) ⇤ ã

(2)
�
k

z
(1,1,2)
k

⇣
3⇡2k2

⇠4 (�̄2 � �̄0)2(ā1 � ā0)k + 6⇡2k2

⇠4 (�̄2 � �̄0)(�̄1 � �̄0)(ā2 � ā0)k
⌘

�̃
(2)

z
(1,2,0)
k

⇣
� 2⇡2k2

�̄3
0

(�̄1 � �̄0)(ā1 � ā0)k + 3⇡2k2

⇠4 (�̄1 � �̄0)2(ā0)k
⌘

�̃
(2) � ⇡2k2

⇠3 (�̄1 � �̄0)2(ã(2))k � 3
�
(ā1 � ā0)2 ⇤ ã

(2)
�
k

z
(1,2,1)
k

⇣
6⇡2k2

⇠4 (�̄2 � �̄0)(�̄1 � �̄0)(ā1 � ā0)k + 3⇡2k2

⇠4 (�̄1 � �̄0)2(ā2 � ā0)k
⌘

�̃
(2)

z
(1,3,0)
k

3⇡2k2

⇠4 (�̄1 � �̄0)2(ā1 � ā0)k�̃(2)

z
(2,0,0)
k � 2⇡2k2

�̄3
0

(ā0)k�̃(1)
�̃
(2) � 6

�
ā0 ⇤ ã

(1) ⇤ ã
(2)
�
k

z
(2,0,1)
k

⇣
� 2⇡2k2

�̄3
0

(ā2 � ā0)k + 6⇡2k2

⇠4 (�̄2 � �̄0)(ā0)k
⌘

�̃
(1)

�̃
(2) � 6

�
(ā2 � ā0) ⇤ ã

(1) ⇤ ã
(2)
�
k

z
(2,0,2)
k

6⇡2k2

⇠4 (�̄2 � �̄0)(ā2 � ā0)k�̃(1)
�̃
(2)

z
(2,1,0)
k

⇣
� 2⇡2k2

�̄3
0

(ā1 � ā0)k + 6⇡2k2

⇠4 (�̄1 � �̄0)(ā0)k
⌘

�̃
(1)

�̃
(2) � 6

�
(ā1 � ā0) ⇤ ã

(1) ⇤ ã
(2)
�
k

z
(2,1,1)
k

⇣
6⇡2k2

⇠4 (�̄2 � �̄0)(ā1 � ā0)k + 6⇡2k2

⇠4 (�̄1 � �̄0)(ā2 � ā0)k
⌘

�̃
(1)

�̃
(2)

z
(2,2,0)
k

6⇡2k2

⇠4 (�̄1 � �̄0)(ā1 � ā0)k�̃(1)
�̃
(2)

z
(3,0,0)
k

3⇡2k2

⇠4 (ā0)k(�̃(1))2�̃(2) � 3
�
(ã(1))2 ⇤ ã

(2)
�
k

z
(3,0,1)
k

3⇡2k2

⇠4 (ā2 � ā0)k(�̃(1))2�̃(2)

z
(3,1,0)
k

3⇡2k2

⇠4 (ā1 � ā0)k(�̃(1))2�̃(2)

Table 4: The coe�cients z
(`,i,j)
k .

37

k 2 {�2, �1}.

ẑ
(1)
k

��(�̄1 � �̄0)T
��!�q

F +
��(�̄2 � �̄0)T

��!�q
F

k � 0.

ẑ
(1)
k

3ẑ(0)k +
���⇡

2k2

�̄2
0
(ā2 � ā0)k � 2⇡2k2

�̄3
0

(�̄2 � �̄0)(ā0)k
���+ ⇡2k2

�̄2
0

|�̄2 � �̄0|!�q
k + 6 (|ā0| ⇤ |ā2 � ā0| ⇤ !

�q)k

+
���� 2⇡2k2

�̄3
0

(�̄2 � �̄0)(ā2 � ā0)k + 3⇡2k2

⇠4 (�̄2 � �̄0)2(ā0)k
���+ ⇡2k2

|⇠3| (�̄2 � �̄0)2!
�q
k + 3

�
|ā2 � ā0|2 ⇤ !

�q
�
k

+ 3⇡2k2

⇠4 (�̄2 � �̄0)2|(ā2 � ā0)k| +
���⇡

2k2

�̄2
0
(ā1 � ā0)k � 2⇡2k2

�̄3
0

(�̄1 � �̄0)(ā0)k
���+ ⇡2k2

�̄2
0

|�̄1 � �̄0|!�q
k

+6 (|ā0| ⇤ |ā1 � ā0| ⇤ !
�q)k +

���� 2⇡2k2

�̄3
0

(�̄2 � �̄0)(ā1 � ā0)k � 2⇡2k2

�̄3
0

(�̄1 � �̄0)(ā2 � ā0)k + 6⇡2k2

⇠4 (�̄2 � �̄0)(�̄1 � �̄0)(ā0)k
���

+ 2⇡2k2

|⇠3| |�̄2 � �̄0||�̄1 � �̄0|!�q
k + 6 (|ā2 � ā0| ⇤ |ā1 � ā0| ⇤ !

�q)k

+
��� 3⇡

2k2

⇠4 (�̄2 � �̄0)2(ā1 � ā0)k + 6⇡2k2

⇠4 (�̄2 � �̄0)(�̄1 � �̄0)(ā2 � ā0)k
���

+
���� 2⇡2k2

�̄3
0

(�̄1 � �̄0)(ā1 � ā0)k + 3⇡2k2

⇠4 (�̄1 � �̄0)2(ā0)k
���+ ⇡2k2

|⇠3| (�̄1 � �̄0)2!
�q
k + 3

�
(ā1 � ā0)2 ⇤ !

�q
�
k

+
��� 6⇡

2k2

⇠4 (�̄2 � �̄0)(�̄1 � �̄0)(ā1 � ā0)k + 3⇡2k2

⇠4 (�̄1 � �̄0)2(ā2 � ā0)k
���+ 3⇡2k2

⇠4 (�̄1 � �̄0)2|(ā1 � ā0)k|

ẑ
(2)
k

2⇡2k2

|�̄3
0| |(ā0)k| + 6

�
|ā0| ⇤ (!�q)2

�
k
+
���� 2⇡2k2

�̄3
0

(ā2 � ā0)k + 6⇡2k2

⇠4 (�̄2 � �̄0)(ā0)k
���+ 6

�
|ā2 � ā0| ⇤ (!�q)2

�
k

+ 6⇡2k2

⇠4 |�̄2 � �̄0||(ā2 � ā0)k| +
���� 2⇡2k2

�̄3
0

(ā1 � ā0)k + 6⇡2k2

⇠4 (�̄1 � �̄0)(ā0)k
���+ 6

�
|ā1 � ā0| ⇤ (!�q)2

�
k

+
��� 6⇡

2k2

⇠4 (�̄2 � �̄0)(ā1 � ā0)k + 6⇡2k2

⇠4 (�̄1 � �̄0)(ā2 � ā0)k
���+ 6⇡2k2

⇠4 |�̄1 � �̄0||(ā1 � ā0)k|

ẑ
(3)
k

3⇡2k2

⇠4 |(ā0)k| + 3
�
(!�q)3

�
k
+ 3⇡2k2

⇠4 |(ā2 � ā0)k| + 3⇡2k2

⇠4 |(ā1 � ā0)k|

Table 5: The bounds ẑ
(`)
k . For k 2 {0, . . . , m � 1}, ẑ

(0)
k =

�
|ā0|2 ⇤ !

�q
I

�
k
, where (!�q

I)k = 0

if |k| < m and (!�q
I)k = !

�q
k otherwise. For k � m, ẑ

(0)
k =

�
|ā0|2 ⇤ !

�q
�
k
.

Z̃
(1)
M

3
⇣

�0
⇡2M2��0

⌘
kā0k2q↵

(3)
M + 1

�̄2
0

⇣
⇡2M2�0
⇡2M2��0

⌘
|�̄2 � �̄0| + 6

⇣
�0

⇡2M2��0

⌘
kā0kqkā2 � ā0kq↵(3)

M + 1
|⇠3|

⇣
⇡2M2�0
⇡2M2��0

⌘
(�̄2 � �̄0)2

+3
⇣

�0
⇡2M2��0

⌘
kā2 � ā0k2q↵

(3)
M + 1

�̄2
0

⇣
⇡2M2�0
⇡2M2��0

⌘
|�̄1 � �̄0| + 6

⇣
�0

⇡2M2��0

⌘
kā0kqkā1 � ā0kq↵(3)

M

+ 2
|⇠3|

⇣
⇡2M2�0
⇡2M2��0

⌘
|�̄2 � �̄0||�̄1 � �̄0| + 6

⇣
�0

⇡2M2��0

⌘
kā2 � ā0kqkā1 � ā0kq↵(3)

M + 1
|⇠3|

⇣
⇡2M2�0
⇡2M2��0

⌘
(�̄1 � �̄0)2

+3
⇣

�0
⇡2M2��0

⌘
kā1 � ā0k2q↵

(3)
M

Z̃
(2)
M 6

⇣
�0

⇡2M2��0

⌘
kā0kq↵(3)

M + 6
⇣

�0
⇡2M2��0

⌘
kā2 � ā0kq↵(3)

M + 6
⇣

�0
⇡2M2��0

⌘
kā1 � ā0kq↵(3)

M

Z̃
(3)
M 3

⇣
�0

⇡2M2��0

⌘
↵
(3)
M

Table 6: The bounds Z̃
(`)
M , for ` = 1, 2, 3.

38

References

[1] Jan Bouwe van den Berg, Jean-Philippe Lessard, and Konstantin Mischaikow. Global
smooth solution curves using rigorous branch following. Math. Comp., 79(271):1565–
1584, 2010.

[2] Michael Plum. Existence and enclosure results for continua of solutions of parameter-
dependent nonlinear boundary value problems. J. Comput. Appl. Math., 60(1-2):187–
200, 1995. Linear/nonlinear iterative methods and verification of solution (Matsuyama,
1993).

[3] Sarah Day, Yasuaki Hiraoka, Konstantin Mischaikow, and Toshi Ogawa. Rigorous
numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J.

Appl. Dyn. Syst., 4(1):1–31 (electronic), 2005.

[4] Stanislaus Maier-Paape, Ulrich Miller, Konstantin Mischaikow, and Thomas Wanner.
Rigorous numerics for the Cahn-Hilliard equation on the unit square. Rev. Mat. Com-

plut., 21(2):351–426, 2008.

[5] Jean-Philippe Lessard. Recent advances about the uniqueness of the slowly oscillating
periodic solutions of Wright’s equation. J. Di↵erential Equations, 248(5):992–1016,
2010.

[6] Michael E. Henderson. Multiple parameter continuation: computing implicitly defined
k-manifolds. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12(3):451–476, 2002.

[7] M. L. Brodzik and W. C. Rheinboldt. The computation of simplicial approximations of
implicitly defined two-dimensional manifolds. Comput. Math. Appl., 28(9):9–21, 1994.

[8] M. L. Brodzik. The computation of simplicial approximations of implicitly defined
p-dimensional manifolds. Comput. Math. Appl., 36(6):93–113, 1998.

[9] R. Melville and D. S. Mackey. A new algorithm for two-dimensional numerical contin-
uation. Comput. Math. Appl., 30(1):31–46, 1995.

[10] Eugene Allgower and Kurt Georg. Simplicial and continuation methods for approxi-
mating fixed points and solutions to systems of equations. SIAM Rev., 22(1):28–85,
1980.

[11] Maxime Breden, Jean-Philippe Lessard, and Matthieu Vanicat. Global Bifurcation
Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component
Reaction-Di↵usion System. Acta Appl. Math., 128:113–152, 2013.

[12] Wolf-Jürgen Beyn and Eusebius Doedel. Stability and multiplicity of solutions to dis-
cretizations of nonlinear ordinary di↵erential equations. SIAM J. Sci. Statist. Comput.,
2(1):107–120, 1981.

[13] Marcio Gameiro and Jean-Philippe Lessard. Analytic estimates and rigorous continua-
tion for equilibria of higher-dimensional PDEs. J. Di↵erential Equations, 249(9):2237–
2268, 2010.

[14] Shui Nee Chow and Jack K. Hale. Methods of bifurcation theory, volume 251 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-

ematical Science]. Springer-Verlag, New York, 1982.

39

[15] Marcio Gameiro and Jean-Philippe Lessard. E�cient Rigorous Numerics for
Higher-Dimensional PDEs via One-Dimensional Estimates. SIAM J. Numer. Anal.,
51(4):2063–2087, 2013.

[16] Werner C. Rheinboldt. On the computation of multidimensional solution manifolds of
parametrized equations. Numer. Math., 53(1-2):165–181, 1988.

[17] L. Dieci and T. Eirola. Numerical dynamical systems. Lecture Notes, 2005.

[18] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part I. Wiley Classics
Library. John Wiley & Sons Inc., New York, 1988. General theory, With the assistance
of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-
Interscience Publication.

[19] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system i. interfacial free
energy. Journal of Chemical Physics, 28:258–267, 1958.

[20] Marcio Gameiro, Jean-Philippe Lessard, and Konstantin Mischaikow. Validated contin-
uation over large parameter ranges for equilibria of PDEs. Math. Comput. Simulation,
79(4):1368–1382, 2008.

[21] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Develop-

ments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, Dordrecht,
1999. http://www.ti3.tu-harburg.de/rump/.

[22] Luca Dieci, Maria Grazia Gasparo, and Alessandra Papini. Path following by svd. In
Computational Science–ICCS 2006, pages 677–684. Springer, 2006.

[23] Jan Bouwe van den Berg, Jason D. Mireles-James, Jean-Philippe Lessard, and Kon-
stantin Mischaikow. Rigorous numerics for symmetric connecting orbits: even homo-
clinics of the Gray-Scott equation. SIAM J. Math. Anal., 43(4):1557–1594, 2011.

[24] Marcio Gameiro, Jean-Philippe Lessard, and Alessandro Pugliese. MATLAB codes.
http://archimede.mat.ulaval.ca/jplessard/galepu

40

