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Abstract. The Mittag-Leffler (ML) function plays a fundamental role in fractional calculus but
very few methods are available for its numerical evaluation. In this work we present a method for the
efficient computation of the ML function based on the numerical inversion of its Laplace transform
(LT): an optimal parabolic contour is selected on the basis of the distance and the strength of
the singularities of the LT, with the aim of minimizing the computational effort and reducing the
propagation of errors. Numerical experiments are presented to show accuracy and efficiency of the
proposed approach. The application to the three parameter ML (also known as Prabhakar) function
is also presented.
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1. Introduction. The Mittag-Leffler (ML) function was introduced at the be-
ginning of the twentieth century by the Swedish mathematician Magnus Gustaf Mittag-
Leffler [24, 25] while studying summation of divergent series. Extensions to two [41]
and three [31] parameters of the original single parameter function were successively
considered; all of these functions can be regarded as special instances of the general-
ized hypergeometric function investigated by Fox [9] and Wright [43].

Until the 1960s, few authors (e.g., [19]) recognized the importance of the ML
function in fractional calculus and, in particular, in describing anomalous processes
with hereditary effects [1, 4, 5, 8]. For a historical outline and a review of the main
properties of the ML function we refer to [17, 23] and the recent monograph [15].

For any argument z € C, the ML function with two parameters «, 8 € C, with
R(a) > 0, is defined by means of the series expansion

(1.1) Eo5(2) = kzzom,

where I'(z) = fooo t*~le~tdt is the Euler gamma function; since the integral repre-
sentation of I'(z) holds only for R(z) > 0, the extension to the half-plane R(z) < 0,
with z ¢ {0,—1,—2,...}, is accomplished by means of the relationship I'(z + n) =
z(z+1)---(z+n—1I(z), n € N [20, 22].

As a special case, the ML function with one parameter is obtained for g =1, i.e.,
Eo(z) = Eq4,1(%), whilst the generalization to a third parameter

oo

1 D(y+ k)2*
(7) = k' (ak + )

(12) B2 = ¢
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is recently receiving an increasing amount of attention due to the applications in
modeling polarization processes in anomalous or inhomogeneous materials [3].

In this work we restrict our attention to real parameters «, (3, and v, with o > 0
and v > 0, since they are of more practical interest.

With the exception of a few special cases in which the ML function can be repre-
sented in terms of other elementary and special functions, as for instance Ey 1(z) = €,
FE51(2%) = cosh(z), Fa21(—2?) = cos(z), and E%J(izl/Q) = e*erfe(F2'/?), most of
the programming languages do not provide built-in functions for the ML function.

Although it is theoretically possible to evaluate E, g(z) and Eg 5(2) by truncating
the series in (1.1) and (1.2), in the majority of the applications this is not advisable:
with arguments having moderate or large modulus |z| the convergence of the series
is very slow and involves an exceedingly large amount of computation; moreover, a
large number of terms in the series can significantly grow before decreasing, thus
generating overflow or numerical cancellation unless variable precision arithmetic is
used. In finite precision arithmetic (which is the natural environment for scientific
computing) the use of (1.1) and (1.2) is, therefore, confined just to small arguments.

Very few methods have been presented so far in the literature. The sophisticated
algorithm described in [16] uses different techniques to evaluate the ML function and
its derivative in different parts of the complex plane. Other approaches based on
mixed techniques (Taylor series, asymptotic series, and integral representations) were
discussed in [18, 32]. The only existing MATLAB code [30] (which implements some
of the ideas introduced in [16]) shows a great variability in the amount of computation
required to achieve a prescribed accuracy and in some regions of the complex plane
turns out to be poorly accurate.

The recent introduction [11, 12, 26] of new methods for fractional differential
equations involving a large number of evaluations of the ML function, also with matrix
arguments [27], motivates the investigation of different techniques to perform the
computation, over the whole complex plane, in an accurate and fast way.

In this paper we consider an approach based on the inversion of the Laplace
transform (LT) in which a quadrature rule is applied on a suitable complex contour,
namely a parabola. Methods of this kind have been successfully applied [13, 40] to
the ML function restricted to some very special cases (0 < o < 1, =1, or real z).

The extension to the more general case is, however, not trivial and demands not
only a different and more in-depth theoretical analysis but also a thoroughly different
strategy. Since the possible presence of a large number of singularities of the LT,
it can indeed be impossible to find a contour encompassing all of the singularities
and behaving in a satisfactory way for computational purposes. Our approach is,
therefore, to consider separate regions in which the LT is analytic and look, in each
region, for the contour and discretization parameters allowing one to achieve a given
accuracy. The optimal parabolic contour (OPC) algorithm hence selects the region in
which the numerical inversion of the LT is actually performed by choosing the one in
which both the computational effort and the errors are minimized.

This paper is organized as follows. Section 2 introduces the LT of the ML function,
describes its analyticity properties, and discusses the numerical inversion. In section
3 the OPC algorithm is presented and a detailed error analysis is derived in order to
provide information for the selection of the optimal contour and the suitable quadra-
ture parameters. Section 4 is hence devoted to illustrating numerical experiments,
and some concluding remarks are discussed in section 5.
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2. Evaluation of the ML function by LT inversion. During the last few
decades, an increasing amount of attention has been devoted to methods for comput-
ing special functions by inverting the LT; there are some key factors accounting for
this interest:

1. for several functions (including the ML) the LT has an analytical formulation
which is much more simple than the function itself;

2. algorithms for the numerical inversion of the LT are usually quite simple to
implement and run in a fast way;

3. it is possible to derive accurate error estimations and perform the computation
virtually within any prescribed accuracy.

Although from a theoretical point of view the inversion of the LT is an ill-posed
problem, satisfactory numerical results are expected for the ML function since it is
possible to evaluate its LT in the whole complex plane and with high accuracy.

An explicit representation of the LT of (1.1) and (1.2) is, however, not available.
We must, therefore, introduce the following generalization of the ML function (1.1):

(2.1) eap(t; ) =tP 1B, 5(tN), teR., AeC,
in order to express the corresponding LT as [20, 22, 29]

s b

s — )\’

Eapls;A) = R(s) >0, and |As™% <1
(for ease of presentation we just focus on the two parameter function (1.1); the ex-
tension to the three parameter case (1.2) will be discussed in subsection 3.4).

By means of the formula for the inversion of the LT it is possible to formulate
the following integral representation of ey g(t; \):

1 o+1i00 o
(2.2) eap(t; \) = %/Uﬂ‘oo e’ Eq.8(s; N)ds,
where (0 — i00, 0 4 i00) is the Bromwich line, with o € R chosen to ensure that all of
the singularities of £, g(s; A) lie to the left of the line R(s) = 0. Since the presence
of noninteger powers, £ g(s; A) is a multivalued function and a branch-cut extending
from 0 to —oo along the real axis is introduced to make the integrand single-valued.

Remark 2.1. For convenience we assume A # 0; it is readily verified that
€a,5(t;0) = tP71/T(B). Moreover, also t = 0 is of no interest since e, 5(0;A) = 0
for B >1, eq,1(0;A) = 1/T(5), and eq g(t; A\) = +o00 as t — 04 for § < 1.

As first suggested by Talbot [34], to exploit (2.2) for numerical computation it is
necessary to deform the Bromwich line into an equivalent contour C that begins and
ends in the left half of the complex plane in order to rapidly dampen the exponential
factor e* and avoid high oscillations which are the source of numerical instability (for
the equivalence of the contours it is meant that they encompass all the singularities
of £4,5(s; A) to the left). Once a suitable contour is selected, a quadrature rule can
be applied.

The above two steps are intimately related. As deeply studied in [35, 40], the
choice of the contour affects in a significant way the convergence properties of the
quadrature rule which depend on the analyticity of the integrand in a region sur-
rounding the path of integration. A satisfactory selection of the deformed contour is,
therefore, not possible without a subtle analysis of the regions in which &, g(s; ) is
analytic.
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After denoting 6 = Arg()\), —m < 0 < 7, the poles of &, g(s; A), i.e., the solutions
of the equation s — \ =0, are

(2.3) st = AV = £V ez
The relevant poles are those in the main Riemann sheet, for which it is —7 <
(0 + 2j7)/a < 7 or, equivalently, such that j belongs to

(2.4) J(a,a):{jez‘_%_i<j<ﬂ_i};

their number depends on « and 6, ranging from zero when 0 < a < 1 and |0] > ar
to a possible very large number otherwise.

The origin is a pole only when 8 > «a; however, it must be always included among
the singularities because a branch-point singularity occurs at the origin.

From a formal point of view we denote with S* = {sj,s1,...,s%} the set of
all singularities (the poles and the branch-point) of &, g(s;\), where sj = 0 and
s7 = 5;_1_minj(a,9), j=1,...,J, with J = |J(«,0)|.

In the presence of a large number of singularities, or when some of them have a
large imaginary part, it can be nearly impossible to find suitable contours allowing a
fast decay of the exponential factor and, at the same time, encompassing all of the
singularities. For this reason it can be useful, thanks to Cauchy’s residue theorem, to
remove some of the poles by residue subtraction

1
st st .
(2.5) ea p(t; M) E Res(e”€ap(s;A),s%) + 57 /Ce Ea.p(s; N)ds,

s*eSg

where S5 C S* is the set of all singularities of £, g lying on the rightmost part of the
complex plane delimited by C, and Res(f,s*) denotes the residue of the function f at
s* (observe that, due to the selected branch-cut, C cannot traverse the negative real
semiaxis and must encompass at least sf = 0 to its left).

It is a favorable achievement that the residues in (2.5) can be explicitly represented

in terms of elementary functions as

l (8*)1_ﬁes*t.

Res(e*Eap(s; M), 8%) = a

Assuming the contour C is represented by means of a complex-valued function
z(u), —00 < u < 00, then (2.5) can be rewritten as

(2.6) eap(t; \) = é Z (S*)l—ﬁes*t + i/jo g(u)du,

S*GSE 211

where

@7) g0) = €9, 0 (=(0); N2/ ) = Sor LTI,
T =) — X

Numerical quadratures for integrals on unbounded intervals

j / " u)du

— 00
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are presented in several papers and reference books (e.g., see [6]). An extensive
analysis of the trapezoidal rule has been recently provided in the remarkable paper
by Trefethen and Weideman [35] which not only focuses on the fast convergence of
the trapezoidal rule but also discusses its main practical applications. Despite its
simplicity, the trapezoidal rule appears indeed as a powerful tool to perform fast and
highly accurate integration in a variety of applications.

On a given equispaced grid kh, k € Z, with step-size h > 0, the infinite and finite
trapezoidal approximations of I are

00 N
I, =h Z g(kh), Inn=nh Z g(kh)
k=N

k=—o0

and the corresponding error I — Ij, n results from the sum of the discretization error
DE = |I — Ih} and the truncation error TE = |Ih — Ih_,N}.

Under the assumption that g(u) decays rapidly as u — 00, an estimation of TE
is given by the last term retained in the summation, i.e., TE = (’)(|g(hN)|), N — oo.

As discussed in [35, 40], the estimation of DE is performed on the basis of the
analyticity properties of g(u). For reasons which will be clear later, we need to slightly
modify the statement of the original result, with no substantial changes in the proof
which remains the same as outlined in [35].

THEOREM 2.2. Let g(w) be analytic in a strip —d* < S(w) < ¢*, for some ¢* > 0,
d* > 0, with g(w) — 0 uniformly as |w| — oo in that strip. For any 0 < ¢ < ¢* and
0<d<ditis

DE = |I — I)| < DE,(c) + DE_(d),

where

M (c)
e2mc/h _ 1’7

M_(d)

DE(c) = o2rd/h _ |

DE_(d) =
and

M, (c) = max /700 lg(u+ ir)|du, M_(d) = max /Oo lg(u — ir)|du.

0<r<e 0<r<d J_

In most cases (for instance with the exponential function [40]), the contribution of
M, (¢) and M_(d) is negligible and the estimations DE, (c) ~ e~2"/" and DE, (d) ~
e~ 2md/h are sufficiently accurate for a satisfactory error analysis. When applied to the
ML function it is possible, depending on the parameters « and 3, that My (c¢) — 400
when ¢ — ¢* and M_(d) — 400 when d — d*. The consequence of unbounded
limits for M, (c) and M_(d) is that their contribution can be nonnegligible. This
is especially true within very narrow strips of analyticity (as when there are several
singularities), for which ¢ or d are necessarily close to their upper bounds ¢* and d*.

Providing a reliable estimation for My (¢) and M_(d) (and for the rate by which
they tend to +00) and including them in the error analysis is, therefore, of utmost
importance in order to select optimal parameters and fulfill an assigned accuracy.

3. Parabolic contours and the OPC algorithm. Removing some of the
singularities by the residue subtraction in (2.5) offers a considerable freedom in the
choice of the integration path. The task of selecting a suitable contour in a specific
region of the complex plane is greatly simplified by first fixing the geometric shape
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and hence adopting a parametrized description of the contour with very few (usually
just one) parameters; the problem is thus reduced to the evaluation of the optimal
parameters.

Several families of contours have been proposed so far. After the original work of
Talbot [34] on contours of cotangent shape (see also [7, 28, 38]), special attention has
been paid to parabolic [2, 14, 39, 40] and hyperbolic contours [21, 14, 33, 40].

The convergence rates of the N-points trapezoidal rule on cotangent, hyperbolic,
and parabolic contours have been studied in [36]; the respective rates of 0(3.89*]\7 ),
(’)(3.20’]\7), and 0(2.85’]\7) indicate a fast convergence with all these contours.

Although the convergence with cotangent and hyperbolic contours is slightly
faster, the simpler representation of parabolic contours makes them much more easy
to handle; therefore, parabolas appear to be preferable, especially when the presence
of a certain number of singularities demands the fulfillment of tightened constraints.

As in [35, 40], for a real parameter p > 0 we consider the parabolic contour

(3.1) C: z(u) = p(iu+ 1)2, —00 < u < 00.

To select the singularities that must be removed in (2.5), we partition the complex
plane into neighboring regions having the singularities of £, 3 on their respective
boundaries; in each region the parabolic contour and the discretization parameters
are determined, according to a suitably modified version of the procedure described
in [13, 40], with the aim of fulfilling a prescribed accuracy € > 0. Among the possible
contours (one for each region), the OPC algorithm makes an optimal selection with
respect to the computational effort: the region and the contour involving the smaller
number N of quadrature nodes are hence selected. Nevertheless, some issues related
to reducing the propagation of round-off errors are also addressed.

As already observed in [13], the computation necessary to select the contour is
much less than the computation involved by the inversion of the LT. Thus the overall
process of establishing the contour in an optimal way adds only a negligible amount
of computation, with the obvious advantage of performing the actual, and more ex-
pensive, inversion with the smallest possible number of floating point operations.

The starting step in the OPC algorithm is to sort the singularities of £, g in order
to identify a sequence of regions delimited by two consecutive singularities. To this
purpose we introduce the function ¢ : C — R, defined according to

o) = R

The function ¢ allows one to split the complex plane into regions bounded by
parabolas of type (3.1) as stated in the following proposition.

PROPOSITION 3.1. Let 2(u) = p(iu+ 1)2, with u > 0. A point s € C lies on the
parabola z(u) whenever p(s) = p. Moreover, whenever ¢(s) < p the point s lies at
the left of the parabola z(u) and whenever p(s) > u the point s lies at the right of the
parabola z(u).

Proof. After expanding z(u) = p(1 — u?) + 2iupu, it is immediate to see that a
point s € C lies on the parabola described by z(u) whenever

{ p(1—u?) = R(s),
2uu = 3(s);

hence, the first part of the proof follows by considering the unique positive solution g
of this system. The remaining statements easily follow by observing that z(u) defines,
as u varies, a bundle of parabolas moving from left towards right as p increases. a
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Hereafter, we assume that the singularities s7 € S* are arranged in ascending
order with respect to the function ¢, i.e.,

0=p(s5) <e(s1) < <ep(s]):

We can, therefore, consider the J 4 1 parabolas defined by (3.1), each with u =
¢(s7), and determine J + 1 disjointed regions R; in the complex plane with the
singularities s7 and s}, on the left and right boundaries (except for the last region
R which is unbounded to the right). In Figure 1 we show, for instance, the complex
plane partitioned into six regions of this kind (note that the first parabola, the one

with © = p(sf) = 0, collapses onto the negative real axis).

A
Rs
Ry
Rs X Rs
R, 33
\?i\
*
s
RQ * 5 X
L)O L
*
52 *
S4

F1G. 1. Partitioning of C into some regions Rj by means of parabolas (3.1) through sj*-‘

A parabolic contour defined according to (3.1) is in a region R;, j € {0,1,...,J},
whenever p satisfies

(3.2) p(s]) < p < p(s511)

(for convenience, a fictitious singularity s%,; with ¢(s%,,) = 400 is introduced). At
the same time, if z;(u) = p;(iu + 1)? is a parabolic contour with y; satisfying (3.2),
then R; is the region of analyticity of Theorem 2.2 for g;(u) = €% (WtE, 5(z;(u); A)zj(u)
and can be expressed as

(3.3) R;={z€C|z=p;(iw+1)* weC and —d; < S(w) <c§},

with

(34) ¢ = L o(s5) j d; =
wi +00, j=4J

Basically, by means of (3.4) it is possible to represent each region of analyticity
Rj as the strip —d; < S(w) < ¢} in the w-plane.
The estimation of the discretization error of Theorem 2.2 involves finding upper

bounds for My (c;) and M_(d;), with ¢; < ¢} and d; < dj, in each region R;.
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Matching the corresponding DEy(c;) and DE_(d;) with TE = (’)(‘ezf(hN)t‘) =
(’)(|e“i(1’(thf)2)t|), according to a procedure similar to that devised in [40], allows
one to obtain the optimal parameters (contour geometry fi;, step-size h;, and number
N; of quadrature nodes) in order to achieve a prescribed tolerance € > 0.

The region involving the minimum computational effort (i.e., the one with the
minimum number of quadrature nodes) is hence selected to perform the numerical
inversion of the LT; the residues corresponding to the singularities left out by the
selected contour are accordingly added in the final result as stated by (2.5).

The main steps of the OPC algorithm can be, therefore, listed as follows:

1. estimation of M (¢;) and M_(d;) in each region Rj;;

2. matching, in each region R;, of DE(¢;), DE_(c;), and TE with the pre-
scribed accuracy € > 0 and evaluation of the parameters fi;, hj, and Nj;

3. selection of the region R; in which to perform the integration on the basis of
the lowest computation and reduction of round-off errors.

3.1. Estimation of M, (¢;) and M_(d;) in each region R;. To provide an
estimation of M (¢;) we distinguish the case in which the region R; is bounded to the
left by the singularity at the origin (i.e., j = 0) and the case in which the singularity
on the left boundary of R; is one of the poles of £, g except the origin (i.e., j > 0).

To discuss the first case we introduce the following preliminary result.

LEMMA 3.2. Let A,o0 >0 and p € R. Then as A — 0,

) 0(1) if p> —%7
/ e (2 + AP du={ O(logoA) ifp=—13
oo O(Ars)  ifp< 1.

Proof. By splitting the integral into the two subintervals (—oo, 0] and [0, 00) and
making the change of variable s = u?/A, it is possible to preliminarily observe that

/ e (2 + A)F du = APt / s72e M (54 1) ds.
e 0

The right-hand side of the above equation is the integral representation of the con-
fluent hypergeometric function of the second kind [37], namely the ¥(a, b, z) function
with parameters a = 1/2, b =p+ 3/2, and z = 0 A, and hence

/ e (u 4+ A du = AP UL (L p + 3, 04).

As z — 0 the U-function admits the following asymptotic expansions [42]:

Zugl)zj + zl_bZUJ(-l)zj ifb&7Z,

U(a,b,z) = Zu V20 421 bZU§ 27 +log(2)2'~ wa 2 ifbeZ” u{o},

Zu(BzJ—i—ZU 279 +log(z Zw ' ifbeZ"

with coefficients {uy)}j, {vj(-g)}j, and {wy)}j, ¢ =1,2,3, independent of z. The proof
now follows by considering the leading terms in each summation. O
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The first region Ry is bounded to the left by the singularity sj at the origin; since
(3.4), the corresponding upper bound for the strip of analyticity in the w-plane is
¢y = 1. We can provide the following estimation for M, (cp) for ¢o < 1.

PROPOSITION 3.3. Let po be such that 0 < po < @(sy). For any ¢y < 1 there
exists a constant My (independent of co) such that

M (co) < My - M(co),

where as ¢ — 1 it is

o(1) ifB<a+1,
M(c) =< O(loguot(l —c)?) = O(log(1 —¢)) ifB=a+1,
O((1 = ¢)?(a=F+D) if B>a+1.

Proof. By replacing (3.1) and 2'(u) = 2uo(i — u) in (2.7), we preliminarily obtain

a—F+1 po((1— r)4iu)t ((1 —r)+ iu)2(a76)+1

glutir) =2 z(u+ir)® — A

~ Since A#0 (see Remark 2'1)3 it is natural to assume the existence of a positive
M such that |z(u +ir)® — A| > M for any r € [0, ¢fj). Hence

|g(u + Z’I")| < 2‘ua—ﬁ+le;¢o(1—r)2tMe—,ugu2t (UQ + (1 _ T)Q)a*3+1/2

and, after putting for brevity M, = 2/1437'8+1€“0tM, we have for any ¢y < 1

M (co) < My - M(co), M(co) = Jmax / e rou’t (u®+ (1 - r)z)a_ﬁﬂ/z du.
STSC0 ) o

The proof now follows after applying Lemma 3.2. O

With A very close to 0, in the above proof it is possible that M < 1, thus affecting
the asymptotic estimation for M(c). In this case, we are in the presence of a very
narrow region Ry which, as we will discuss later in the final part of subsection 3.2.1,
must be discarded since it does not allow one to achieve the assigned tolerance. For
this reason, we do not consider the effects on M ( ) of a possibly very small M.

We now consider the regions R;, j = 1,...,J, which are bounded to the left by
one of the poles s} of &, g(s; A) except the origin (i.e., ¢(s7) > 0).

LEMMA 3.4. LetabeR with b > a > 0. F0r0< a < 1i4tis b —a® >
ab® (b —a), and for a > 1 it is b* — a® > aa®" (b — a).

Proof. For 0 < a <1 one can immediately verify that

b b
bo‘—ao‘:a/ so‘*ldsZa/ b tds = ab® (b — a)

and in a similar way the proof follows for o > 1. d

PROPOSITION 3.5. Let j € {1,...,J}, p; > 0 such that p(s}) < p; < p(s,1)
and let c; be the upper bound of the stmp of analyticity (3.3) correspondmg to R;.
For any cj < cj there exists M, > 0 (independent of cj) such that

My (cj) < My - (cf —¢;)” L

Proof. Let ¢; < ¢ and consider 1 € [0,¢;]. By Proposition 3.1, s7 lies on the

parabola 27 (u) = ¢(s] )(zu +1)? and hence \ = (s7)* lies on the curve (z;(u))a =
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(¢(s5))"(iu + 1), The distance between (z;(u + ir))* and X is, therefore, greater

than the distance between (z;(u -+ ir))® and (z}(u))” evaluated at u =0, i.e.,

‘(zj(u—l—zr )\| ?(1 —r)Qa—(go(s;))a .

Since ¢ (s7) < p; (1 — r) , Lemma 3.4 yields
‘(zj(u—l—zr )\| > abP, (,u](l—’l")Q—(p(S;)),

where P, ; :(go(s;))a_ when 0 < a < 1and Poj = pj~ 11— r)Qa_Q when o > 1.

It is elementary to see that for any r < ¢; < cj we obtain

2 *\ 2 (p(S;) o 2 N
(=) =t = s (=) = E20) = (0= = (- )
= (e~ )2 v — &) > 2(e] — ) (1 - ).

Since from (3.4) ¢(s})/p; = (1 — ¢})?, when 0 < @ < 1 we can easily verify that

a—1 * ;g *\ —
[yt in)™ = A > 2a(p(5) " 1y — ) (1— ) = 20(p(s1)” (¢} — ) (1)~
while, for > 1, it is instead
‘zj u A+ ar)® —/\‘ > 2apf(cj —¢j)(1 —cj 2ot

We denote with Q«,; the constant independent of c;,

Qo = { 20‘(‘?( ))a(l -5 )_1 if0 <a <1,

2ap§ (1 j)2°‘ v ifa > 1,

and write the inequality
‘(ZJ(U+Z7°) )‘| > Qa,](c —¢j),

which allows one to obtain

M(es) = max [ lgtut inldu < M6 - )

with M, = 24 o B'He“JtM and

N 1 . . ©° B 12
= — put 2 )2
My Qus OISH@;M(U, M(r) /ﬂoe (u® + (1 -7)?) du

being M (r) < 400 since 7 < c; <1 a

Also for M_(d;) it is necessary to distinguish two cases: when the computation
is performed in a region R;, j = 0,...,J — 1, bounded to the right, and when the
integration is instead performed in last region R ;.

PROPOSITION 3.6. Let j € {0,...,J — 1}, p; > 0, such that p(s}) < p; <
¢(s%41), and let d5 be the lower bound of the strip of analyticity (3.3) corresponding
to R;. For any d; < dj there exists M_ >0 (independent of d;) such that
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Proof. This proof is symmetric to the proof of Proposition 3.5, and we omit the de-
tails. We just point out that the term M_ is now given by M_ = Z;L?_BHe“J‘(Hd;)th_
with M_ obtained in a similar way as M+. O

The discussion for M_(dy) in the last (right-unbounded) region R is the same
as proposed in [40]. We just recall that an upper bound for M_(d;) is achieved at

dy =m/(pusthy) — 1, which allows one to write
(3.5) DE_(dy) = O(e™ /wsthi+2n/ha) =5,

3.2. Evaluation of the quadrature parameters. Thanks to the analysis car-
ried out in subsection 3.1, and after highlighting the exponential growing factor in
M_, some upper bounds for the discretization errors are now available in the forms

DE,(¢;) < MJr(c;—cj)_pfe_Q”;/hf, DE_(dj) < M_ (d}f—dj)_qfe_Q”da*'/th“P(S}H)t

for ¢; < ¢j, dj < d7, and some nonnegative values p; and ¢;; only in the last region
R a different result applies for DE_(d;), according to (3.5).

Unless p; = 0 and g; = 0, the presence of the algebraic terms (cj — ¢;)7"/ and
(dj — dj)~% cannot be disregarded; they can be indeed very large, and an unfit
selection of ¢; and d; can lead to an incorrect error analysis as already observed in
the first part of [13].

The task of including, in the error analysis, the contribution of a possibly large
algebraic term was accomplished in [13] by introducing an auxiliary variable and
expressing the parameters in the formula for the numerical inversion of the LT in
terms of this variable; the optimal value of the auxiliary variable was hence selected
by minimizing the number of quadrature nodes in order to keep the computational
effort at a minimum. Numerical experiments showed that despite the nonnegligible
computation required by finding the minimum of a nonlinear function, the overall
computation was, nevertheless, performed in an efficient way.

The work in [13] was devoted to the evaluation of the ML function (2.1) on the
real negative semiaxis and, mainly, for 0 < o < 1, thus involving just one singularity,
namely at origin. In the more general context this approach is no longer feasible:
since most of the regions R; have two distinct singularities, the introduction of two
auxiliary variables leads to the need of finding the minimum of a nonlinear function
with two variables, a problem whose solution can be quite expensive.

We propose here a completely different approach to take into account the algebraic
terms in DE (¢;) and DE_(d;). To this purpose we distinguish again two main cases:
the case of a bounded to the right region R; (ie., j =0,...,J — 1) and the case of
the right-unbounded region (i.e., the last region R ).

3.2.1. Quadrature parameters in a region bounded to the right. The
most straightforward way to prevent the possible growth of the terms (cj — ¢;) ™"/
and (d —d;)~% in the discretization errors DEy (c;) and DE_(d;) is by forcing p;
to belong to a subinterval [¢}, @7, ] instead of [p(s}), p(s741)], with

(3.6) p(s5) < @j < Pip1 < @(s741)

(the equality in (3.6) is introduced just to cover the case in which p; = 0). Under the
conformal map z;(w) = p;(iw 4 1)?, the strip —d} < I(w) < & corresponding to the
region determined by the parabolas through ¢} and ¢}, is given by

(3.7) R Ry A Y b5 P
i Z
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A suitable strategy is to fix an arbitrary value f > 1 and select o5 and @}, by
forcing
(3.8) (¢G—¢c) ™ = (df —dj)~% = .

Whenever (3.8) can be imposed without a large value of f, for instance f ~ 1, then
the terms (cj —¢5)~P and (dj — J;)_qf can be neglected in DE, (¢;) and DE_(d;).
Within very narrow regions R; it cannot be possible to satisfy (3.8) for sufficiently
small values of f; the accuracy € must, therefore, be scaled as £ = ¢/ f before removing
(c; — ;)P and (dj — OZ;)"]J' from the discretization errors. Obviously, this scaling
also has an effect on the truncation error TF and leads to slightly increasing the
number N; of quadrature nodes.

The asymptotic balancing of the different components of the error now reads

271'6; 27Td*

(3.9) TTh T hjj + @it =wy (1 - h2N2) = logé,
J

from which it is immediate to obtain

(1+w),/¢ —|—,/ pi 4t
(3.10) i = < %Jrl) w = _Gn

2—|—w loge’
and
b 21 /¥ VY N L _loge
J loge (1+w)\ /@5 + /P~ By th;

An essential task is to select f small enough to make (¢ —¢;) 5 and (d} —d}) ¢
negligible in DE, (¢;) and DE_(d;) and, at the same time, satisfy (3.6). To this
purpose we explicitly represent ¢; — ¢; and dj — d in terms of ¢} and ¢}, as

L o VEVR) e (el - V)

cC, —C;, = s .=
/ / 1+’U} SOJ + QDJ+1 J ].+’U} SOJ + QDJ+1

The obvious assumption f > 1 is sufficient to ensure that p(s3) < @; and p5 1 <
(s s7 +1) anyway, a minimum threshold value fmm > 1 must be determlned with the
aim of fulfilling cpj < <pj+1 for f > fmm.

When p; = 0, a simple computation allows one to verify that ¢(s}) = @5 < @74
for

a5

o(s3)

NETMENEEY

in the more general case we provide the following result (note that in regions bounded
to the right it is always ¢; # 0).
PROPOSITION 3.7. Let p;,q; >0 and r; = max{p;,q;}. If

\/SO +\/S0 j+1
\/‘P 5j+1 _\/SO Sj

fmin -
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then ¢ < @j44-
Proof. Tt is elementary to verify that (cj —¢;)™" = (dj — g;)_qj = f when @5
and @7, are obtained after solving the linear system

2+ w— (14+w)f Ve —f /P @5 e(s3)
) ) = (24w)
Utw) 7o 2wt J70 )\ /P #(s741)

whose solutions can be explicitly formulated as

_ _ 2
24w+ FH9) Jo(s5) + F1P0 Jo(s )

24+w— (1+w)f~1/pi + f-1/4

7 =

and

(W) Y fo(s) + @ w— (L w) ) felsh) |

Pjr1 = 2+w—(1+w)f-1/pi 4 f~Va

By the hypothesis (3.11) it is

4 EBINE
1/pj < \/80 I J+1 1 1/‘1] < o o j+1 ’
\/80 j+1 \/80 \/80 j+1 \/(p

and hence

(812)  FTE (s + T Jelsin) < \Jelsia) = yfelsh):

A simple computation allows one to prove that

\/ S51) \/‘p Sn) TG fo(sy) + FHP Jo(sig)

2+w— (1+w)f~1pi  f-1/4 ’

75 = @ + 2+ w)

from which the proof follows after using (3.12). O

In very narrow regions the value of ¢(s7) can be very close to ¢(s7,;), and the
threshold f,,;, can be too large to ensure the achievement of a small tolerance € > 0;
in this case no contours can be selected, and the region must be discarded.

Remark 3.8. A more conservative error analysis would also take into account
the exponential growing term e* in M, (see the proofs of Propositions 3.3 and
3.5). In this case, and by using for simplicity the upper bound e¢;+1t, the integration
parameters are obtained after replacing logé with log& — ¢}, ¢ in the formulas for
w and h;. This change, however, does not seem to offer substantial improvements
since it actually exerts the effects in regions with large ¢(s}) and ¢(s}, ;) which are
normally discarded for accuracy reasons as we will discuss later on.



NUMERICAL EVALUATION OF ML FUNCTIONS 1363

3.2.2. Quadrature parameters in an unbounded region to the right. In
the last and right-unbounded region R; the balancing of the exponential factors of
the errors leads to

2mc) w2 27
= = + == = pst(1 = h3N7) = loge,

1 =
(3.13) hy ,LLJch hy

where ¢4 < ¢ is selected according to (3.7) for ¢% > ¢(s%), from which we obtain

1428, mNy 1428

3.14 hy = = N; = lo
(3:-14) TN, Mo anre)aree)y Y orey oF

Unfortunately, because of the implicit dependence on the unknown gy, we cannot
use (3.7) to determine ¢4. It is, therefore, necessary to formulate hs, 17, and Ny
directly in terms of ¢% instead of ¢5. Since we have

)
(3.15) HT = 55,
(1—e¢5)?

by matching the two representations of p; in (3.14) and (3.15), we then obtain a
second order algebraic equation with respect to ¢ whose unique solution satisfying
cy <1lis

o 3FTA-VIFI2A ANy
I A—4 ’ o tey

A straightforward manipulation leads to

1 ( 34 2—2~/1+12A> P54 — A)?
- y Mg =
(

hy=— -
TN, 1A 4—A — 1+ 124)2

and, after imposing —27¢%/h; = loge, we obtain

N, = 1+2cJ1 _ ot 1_31?g£+ 1_210§*£ '
2mey T 2p%t 1Y

A direct evaluation of a suitable value for ¢% is now not possible due to its implicit
dependence on ;. We hence use an iterative process by which, starting from an initial
guess very close to ¢(s%), the value of @% is increased until the corresponding value
of f, evaluated as

£ (x \/E SJ
(3.16) F=( ) ( W_VJ

does not fall into an interval [ Frnin, fmw] which is a priori selected, for instance [1, 10].
To this aim a target value fior € [fimin, fmaxz) can be established, and the new at-
tempted value for ¢% is obtained after replacing f with fi,, in (3. 16) In our experi-
ments we have observed the convergence of this procedure within a few (usually 1 or
2) iterations.
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3.3. Selection of the region in which to invert the LT. After evaluating
parameters fj, hj, and N; in each subregion R;, we select the region involving the
minimum number N; of quadrature nodes to actually perform the numerical inversion
of the LT with the minimum computational effort.

Because of the presence of the factor e#*, with large values of ¢ and/or pu, it is
possible to have the presence in the summation Ij, y of terms with large magnitude
and terms with small magnitude; the effects of this simultaneous presence are in
numerical cancelation, which can become catastrophic.

As already observed in [39], the rounding error is roughly RE = ette, with € the
machine precision. To keep rounding errors below the desired accuracy £ > € it is,
therefore, necessary that p; < (loge —loge)/t and, hence, from (3.10) it is sufficient
to verify

\/P5 +4/P541 <2/ (loge —loge)/t.

In regions with ¢(s}) > (loge —loge)/t this condition cannot be fulfilled; in order
to prevent round-off errors from destroying all of the significant digits, such regions
must be discarded and the computation moved to one of the remaining regions. In
the other cases the above equation provides a bound for @; 11

Another possible source for numerical cancelation is the closeness of the contour to
one of the singularities on the boundary of the region R;. We observe, however, that,
despite the previous case in which the accuracy is affected by a factor proportional to
eMle, in this case the accuracy is affected only in an algebraic way and, as observed
by means of numerical experiments, it is sufficient to select @5 and @; 11 as previously
described in order to avoid the cancelation.

In the last region Ry it is possible, even when ¢(s%) > (loge — loge)/t, that the
value p; resulting from the balancing of the various components of the error is too
large and the round-off error RE ~ e*’!e exceeds the required tolerance e. Since in
this case RE dominates the discretization error DE_ [39], it is necessary to replace
in (3.13) the exponential factor of DE_ with that of RFE; by solving explicitly with
respect to pg, hy, and N; we derive in this case

(10 1o e) N, — logey/—loge L _i loge
s 8¢ ! 27 (\/p4t — VIoge — loge)’ 77 N, \/ loge—loge’

The introduction of the round-off error in the error analysis prevents one from
placing the contour in a place in which it is not possible to guarantee that round-off
errors do not exceed the assigned tolerance . Since now an explicit value of p; is
available, the computation of ¢% follows directly from (3.16) as

75 = (F vz +\Jols)

(obviously, the region Ry must be discarded when ¢% exceeds the threshold (loge —
log €)/t since even the accuracy fe cannot be achieved).

Since rounding errors depend, in an exponential way, on the value of ¢, it can be
useful to scale the ML function in order to force ¢ to assume small values. By simple
algebraic manipulations, it is indeed immediate to see that for any 7 > 0

Iy =

~ | =

t
eap(t; \) = 7"8716065 (—;TO‘/\) ,
T
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and it is, therefore, possible to reduce the propagation of rounding errors by suitably
using the above scaling, for instance with 7 ~ ¢.

3.4. Extension to three parameters. The main information used by the OPC
method is the location and the strength of the singularities of the LT} its extension to
the three parameter ML function (1.2) is, therefore, straightforward. The LT of the
corresponding generalization e, 5(t;\) = tﬁflEgﬁ(to‘/\) is indeed

V=8

Y . —
8(17,8(57)\) - (SO‘ — )\)’77

R(s) >0, and |[As™%| <1,

which has the same singularities of the two parameter counterpart. It is elementary

to reformulate Proposition 3.3 by replacing o with oy and evaluate the new bounds

of Proposltlons 3.5 and 3.6, respectively, as M (c;) < M - (c5 —¢j)77 and M_(d;) <
(dy —dj)77.

With ~ ;é 1 we must restrict the computation to 0 < a < 1 and |Arg(\)| > ar
since otherwise nontrivial difficulties (whose discussion is beyond on the scope of the
present paper) arise due to more involved branch-cuts; the case 0 < aw < 1 and A real
and negative is, however, the most interesting for applications [3].

4. Numerical experiments. To test the proposed method and verify its com-
putational efficiency we present in this section some numerical experiments.

All of the experiments are performed in MATLAB, version 7.9.0.529, on an Intel
Dual Core E5400 processor running at 2.70 GHz under the Windows XP operating
system; the MATLAB code implementing the OPC method and described in the
previous sections is made available at [10]. As a reference we use the values evaluated
after summing the series (1.1) or (1.2) in variable precision arithmetic with 100 digits
by means of Maple.

In all of the experiments we set the target tolerance e = 1071%; the goal is to test
whether it is possible to provide an approximation E"Y 5(z) of the ML function £ ,(2)
with an accuracy very close to the machine prec151on The tolerance e represents the
absolute error in the computation of the integral in (2.6), and this is the error we
expect when the value of the function is not large in modulus (in this case no residue
calculation is usually involved); otherwise, the summation of residues can dominate
the integral in (2.6) by several orders of magnitude, and the leading error is the round-
off error in the computation of residues: in the double precision used by MATLAB it
involves a relative error smaller than ¢ = 107'°. The resulting error is, therefore, a
combination of absolute (with small values of E ;(2)) and relative (for large values
of E 4(2)) errors, and it can be represented as

|El,6(2) - El,@(z)}
1+ |E] 4(2))]

(4.1) <1071°,

In Figure 2 we report the error (4.1) for the two parameter function E, g(z), for
a = 0.7 and g = 1.0, evaluated in several points z on the real negative axis. As we
can clearly see, the OPC method achieves an accuracy very close to or smaller than
the requested tolerance of 1071 (the few gaps in the error plot are due to the fact
that in some cases the approximated and reference values are exactly the same).

To show the efficiency of the proposed method we present in Figure 3 the compu-
tational time and compare it with that of the MATLAB ml1f code [30]. This is so far
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2l

F1G. 2. Error for Eq g(z) with a = 0.7, 8 = 1.0, and arg(z) = .

the unique available MATLAB code for the ML function and, since it is widely used,
it can be considered as a sort of benchmark for testing new methods.

We observe that whilst the CPU time consumed by OPC remains nearly constant,
the m1f code demands a CPU time close to or slightly less than OPC for very small
and large values of |z| whilst for moderate values of |z| the CPU time of m1f is some
order of magnitude higher than OPC.

10" ¢
g
C ottt T T s T T s s s s s e 1 "
_1 1 1
107 :
8 1 1
=z 1 1
5} ' 1
ERTN '
& | :
o 1 '
A ! 1
“10° :
: |
V! :__ i
10’4 I I | Tty
0 5 10 15 20

F1G. 3. Computation time for E, g(z) with a = 0.7, f = 1.0, and arg(z) = 7.

This nonuniform behavior can be explained by observing that m1f uses different
techniques according to the value of |z|: for very small |z| the series (1.1) is evalu-
ated until numerical convergence, and this computation is quite fast; an asymptotic
expansion is instead used when |z| is large, and the computation becomes faster and
faster as |z| grows; for intermediate values of |z| a Romberg integration is applied to
an integral representation of the ML function, with a computational cost proportional
to 2P whenever an accuracy € = 1077 is requested. On the other hand, most of the
computation of OPC is spent by the trapezoidal rule whose cost depends essentially
on the number of nodes, which is kept at the minimum by the algorithm (and it is
roughly proportional to p for any argument z); the amount of computation required
by the other tasks of OPC, such as location of the singularities, choice of the suitable
region, and evaluation of the quadrature parameters, is usually negligible.

The plot in Figure 4 shows that the OPC algorithm behaves in a robust way
and provides results within the requested tolerance also for complex values on the
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imaginary axis (we used here o = 0.5, 8 = 1.0, for which it is known that m1f does
not provide accurate results).

2l

FIG. 4. Error for Eq g(z) with a = 0.5, 8 = 1.0, and arg(z) = 7.

We conclude our experiments by presenting the errors for the three parameter
function E] 4(z) for « = 0.6, 8 = 0.9, v = 1.2, and arg(z) = °F. As we can see from
Figure 5, OPC behaves in a satisfactory way and produces errors very close to the
target tolerance also for E 5(2).

-18 I I I I I I

0 2 4 6 8 10 12
|zl

F1G. 5. Error for EZB(z) with « = 0.6, 8 =0.9, v = 1.2, and arg(z) = 37'".

We do not report the CPU time for E"Y ( ) since it would not provide any further

information; as discussed in subsection 3 4 the evaluation of the three parameter

function just involves different coefficients in the error estimations, and most of the
computation (and hence the CPU time) is the same as in the two parameter case.

5. Concluding remarks. In this work we have presented the OPC method for
the evaluation of the two parameter ML function, a function which plays a funda-
mental role in fractional calculus. The OPC method allows one to evaluate the ML
function with high accuracy, and numerical experiments have shown its computational
efficiency. The generalization to the three parameter ML function has been discussed
and tested, too. The corresponding MATLAB code is made freely available [10].
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of improvement in this paper.
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